THE TOPOLOGICAL DEGREE OF A-PROPER MAPS

H. SHIP FAH WONG

1. Introduction. Recently several fixed-point theorems have been proved for new classes of non-compact maps between Banach spaces. First, Petryshyn [15] generalized the concept of compact and quasi-compact maps when he introduced the P-compact maps and proved a fixed-point theorem for this class of maps. Then in [6], de Figueiredo defined the notion of G-operator to unify his own work on fixed-point theorems and that of Petryshyn. He also proved that the class of G-operators was a fairly large one.

We notice the following facts: (i) The essential idea in the above cases is that if certain finite-dimensional "approximations" of the map have fixed points, then the map has a fixed point; (ii) One of the tools used in proving fixed-point theorems in the finite-dimensional case is the Brouwer degree and its generalization to maps of the type Identity + Compact in [8]. Furthermore, in the latter case, it was proved that the degree of finite-dimensional approximations of any map of the form Identity + Compact becomes constant after some step, and this limit is the degree. The next step then is to try to define the degree of finite-dimensional approximations; but in general we cannot expect the degree to be an integer. This was done in [2; 3] for the class of A-proper maps first introduced by Petryshyn [16] under the heading "maps satisfying condition (H)".

Here in §§ 2 and 3 we improve on the work done in [2] by giving a new representation of the degree which allows us to prove the sum formula. The idea of this representation comes from the use of ultrapowers in non-standard analysis (see [18]). We also give a weaker "homotopy axiom" which proves more useful in computations. In § 4, we define a fixed-point index for P-compact maps and compute it in the differentiable case as it is done in [8; 7, p. 136, Theorem 4.7].

Acknowledgements. I wish to express my deepest thanks to my supervisor Professor S. Takahashi, whose constant help and encouragement made this work possible. I would also like to extend my appreciation to the referee for his suggestions which helped improve this paper.

2. Preliminaries.

(A) Basic facts concerning filters and ultrapowers. Throughout this work,

Received May 20, 1970 and in revised form, December 7, 1970. This paper constitutes part of a doctoral thesis written at the Université de Montréal under the direction of Professor S. Takahashi.

N will denote the set of natural numbers, Z the ring of integers, and Z^N the ring of all sequences of integers with coordinatewise addition and multiplication. If *E* is a set, $\mathscr{P}(E)$ will denote the ordered family of all subsets of *E*.

Definition 1. A filter \mathscr{F} on E is a non-void family of subsets of E such that (i) $A_1, A_2 \in \mathscr{F}$ implies $A_1 \cap A_2 \in \mathscr{F}$, (ii) If $A \in \mathscr{F}$ and $A \subset B$, then $B \in \mathscr{F}$, (iii) $\emptyset \notin \mathscr{F}$.

An example of a filter on N is $\mathscr{F}_0 = \{A \subset \mathbb{N} | \mathbb{N} \setminus A \text{ is finite} \}$. On any set E, any non-void subset $A \subset E$ generates a filter $\{B \subset E \mid A \subset B\}$. This filter is called the principal filter generated by A.

If \mathscr{F} is a filter, then $\mathscr{F} \subset \mathscr{P}(E)$ or $\mathscr{F} \in \mathscr{P}((\mathscr{P}(E)))$; therefore on the class of all filters on E, we have an induced order relation $\leq \mathscr{F}_1 \leq \mathscr{F}_2$ whenever for any $A, A \in \mathscr{F}_1$ implies $A \in \mathscr{F}_2$.

Definition 2. Any maximal element of the set of filters on E is called an ultrafilter on E.

PROPOSITION 1. If a filter \mathscr{F} on E is an ultrafilter, then if $A \cup B \in \mathscr{F}$ we have either $A \in \mathscr{F}$ or $B \in \mathscr{F}$.

Proof. See [1, p. 65]. Thus \mathscr{F}_0 is not an ultrafilter on N since $N \in \mathscr{F}_0$ but neither the subset of even integers nor the subset of odd integers belongs to \mathscr{F}_0 .

By Zorn's lemma, every filter on a set E is contained in an ultrafilter on E. Let \mathscr{F} be a filter on N such that $\mathscr{F}_0 \leq \mathscr{F}$, and define a relation \sim on \mathbb{Z}^N in the following way:

$$\{x_i\} \sim \{y_i\}$$
 whenever $\{i \mid x_i = y_i\} \in \mathcal{F}$.

This relation is compatible with the ring structure of \mathbb{Z}^N ; therefore the quotient set $*\mathbb{Z}(\mathscr{F}) = \mathbb{Z}^N/\sim$ with the induced operations is a ring. It contains the subring of classes of constant sequences isomorphic to \mathbb{Z} ; from now on we shall identify \mathbb{Z} with its isomorphic image.

Definition 3. If \mathscr{F} is an ultrafilter on N such that $\mathscr{F}_0 \leq \mathscr{F}$, then we say that the corresponding $*\mathbb{Z}(\mathscr{F})$ is an ultrapower of Z.

PROPOSITION 2. If A is an infinite subset of N, then there exists a filter \mathscr{F} which contains A with $\mathscr{F}_0 \leq \mathscr{F}$.

Proof. Set $\mathscr{F} = \{B \subset \mathbf{N} | B \supset A \cap C \text{ for any } C \in \mathscr{F}_0\}.$

(B) Some definitions. Let X be a real Banach space. A projectional scheme for X is

- (i) a nested sequence $\{X_n\}$ of finite-dimensional subspaces of X,
- (ii) $\bigcup_n X_n$ is dense in X,
- (iii) for each *n* there is a continuous linear projection $p_n: X \to X_n$ and $p_m p_n = p_n p_m = p_m$ if $n \ge m$.

A-PROPER MAPS

The projectional scheme is complete if $\lim_{n} p_n x = x$ for each $x \in X$. X is said to have property $(\pi)_k$ for some $k \ge 1$ if it has a projectional scheme such that $||p_n|| \le k$ for all n. We restrict our study to real Banach spaces having property $(\pi)_k$ for some k. We suppose that the projectional schemes are fixed for each space and that whenever we have a map $f: A \to Y$ for some subset $A \subset X$, then dim $X_n = \dim Y_n$ for each n with projections $p_n: X \to X_n$ and $q_n: Y \to Y_n$.

Following Petryshyn and de Figueiredo, we state the following definitions.

Definition 4. (a) Let G be a subset of the Banach space X and $f: G \to X$ a continuous map. f is said to be P-compact if for any $\alpha > 0$, the existence of a bounded sequence $\{x_{n_j} \in G \cap X_{n_j}\}$ such that $p_{n_j}fx_{n_j} - \alpha x_{n_j}$ converges to $y \in X$ implies the existence of a convergent subsequence $\{x_{n_{j_k}}\}$ with $\lim x_{n_{j_k}} = x \in G$ and $fx - \alpha x = y$.

As an example we have that any map f such that f(G) is relatively compact is P-compact.

(b) Let X and Y be Banach spaces; $G \subset X$. $f: G \to Y$ is an A-proper map if for any bounded sequence $\{x_{n_j} \in G \cap X_{n_j}\}$ such that $q_{n_j}fx_{n_j}$ converges to y there exists a convergent subsequence $\{x_{n_{j_k}}\}$ with $\lim x_{n_{j_k}} = x \in G$ and fx = y.

Note that if f is P-compact, then $f - \lambda I$ is A-proper for any $\lambda > 0$.

(c) Let C be a closed convex subset of a Banach space X. A map $f: C \to X$ is Galerkin approximable (or is a G-operator) if $p_n f$ is continuous for n sufficiently large and if f has a fixed point in C whenever

 $\{n|p_n f| (C \cap X_n) \text{ has a fixed point in } (C \cap X_n)\} \in \mathscr{F}_0.$

Any P-compact map is a G-operator. For more examples of P-compact maps see [17] and for G-operators see [6].

Our aim is to build a degree theory for a class of maps which includes the A-proper maps and for that purpose we state the following definition.

Definition 5. Let X and Y be Banach spaces, \mathscr{F} a filter on N with $\mathscr{F}_0 \leq \mathscr{F}$, $y \in Y$, and $G \subset X$. A map $f: G \to Y$ is a y- \mathscr{F} -operator if

(i) $q_n f$ is continuous when n is sufficiently large,

(ii) the existence of a bounded sequence $\{x_n \in G \cap X_n\}$ such that $\{n \mid q_n f x_n = q_n y\} \in \mathscr{F}$ implies that there exists an $x \in G$ for which fx = y.

Remarks. (1) If Y = X and f is a G-operator, then (I - f) is a $0 - \mathcal{F}_0$ -operator.

(2) If we suppose that Y has a complete projectional scheme, then maps satisfying condition (h) introduced by Petryshyn [14, p. 340] are y- \mathscr{F} -operators for any $\mathscr{F} \ge \mathscr{F}_0$ and any $y \in Y$.

(3) Therefore under the same condition on Y, an A-proper map is a $y - \mathcal{F}$ -operator for any $y \in Y$ and any $\mathcal{F} \geq \mathcal{F}_0$.

H. SHIP FAH WONG

3. Degree theory of A-proper maps. Throughout this section, G will be an open bounded subset of the Banach space X and $\partial G = \operatorname{cl} G \setminus G$. $\{X_n\}$ and $\{Y_n\}$ will denote the projectional schemes of X and Y, respectively, and we suppose that X_n and Y_n are oriented, with dim $X_n = \dim Y_n$. Set $G_n = G \cap X_n$ for each n. G_n is an open bounded subset of X_n . If $\varphi: \operatorname{cl} G_n \to Y_n$ is a continuous map, then for any $a \in Y_n \setminus \varphi(\partial G_n)$ there is a well-defined integer $d(\varphi, G_n, a)$ called the degree of f at the point a (sometimes called the Brouwer degree). For a definition and properties of the degree see either [4] or [9].

Let \mathscr{F} be an arbitrary (but fixed) filter on **N** with $\mathscr{F}_0 \leq \mathscr{F}$ and set $*\mathbb{Z}(\mathscr{F}_0) = *\mathbb{Z}$. Suppose that $f: \operatorname{cl} G \to Y$ is a $y - \mathscr{F}$ -operator for some $y \in Y$; then if $\{n \mid q_n y \notin q_n f(\partial G_n)\} \in \mathscr{F}$, the sequence $\{d(q_n f, G_n, q_n y)\}$ determines an element of $*\mathbb{Z}(\mathscr{F})$ which we call the degree of f at y, denoted by D(f, G, y).

PROPOSITION 3. Let $f: \operatorname{cl} G \to Y$ be a y- \mathcal{F} -operator. Then

(a) Whenever D(f, G, y) is defined and $\{n \mid d(q_n f, G_n, q_n y) \neq 0\} \in \mathcal{F}$, there exists an $x \in \text{cl } G$ such that fx = y. If \mathcal{F} is an ultrafilter $\mathcal{F}_0 \leq \mathcal{F}$, then $D(f, G, y) \neq 0$ implies that $\{n \mid d(q_n f, G_n, q_n y) \neq 0\} \in \mathcal{F}$;

(b) Suppose that g: cl $G \to Y$ is another y- \mathcal{F} -operator such that

 $\{n \mid \text{there exists a homotopy } F_n \text{ from } q_n f \text{ to } q_n g \text{ such that } \}$

$$q_n y \in F_n(\partial G_n \times [0, 1])\} \in \mathscr{F};$$

then D(f, G, y) = D(g, G, y).

Proof. Let us prove the second part of (a); the rest follows directly from the definitions and the properties of the Brouwer degree.

Let \mathscr{F} be an ultrafilter and $D(f, G, y) \neq 0$. Suppose that

 $\{n \mid d(q_n f, G_n, q_n y) \neq 0\} \notin \mathscr{F},$

then (its complement) $\{n \mid d(q_n f, G_n, q_n y) = 0\} \in \mathscr{F}$; thus D(f, G, y) = 0, a contradiction.

COROLLARY 1 (de Figueiredo). Let C be an open convex bounded subset of a Banach space X. Suppose that $0 \in C$ and that f: cl $C \rightarrow X$ is a G-operator such that except for finitely many ns,

(*)
$$p_n fx - \lambda x \neq 0$$
 for all $\lambda \geq 1$ and $x \in \partial(C \cap X_n)$.

Then f has a fixed point in C.

Proof. If $p_n fx - \lambda x \neq 0$ for $\lambda \ge 1$ and $x \in \partial(C \cap X_n)$, then $p_n(f-I)|C \cap X_n$ is homotopic to the identity and the homotopy is never zero on the boundary. Therefore $d(p_n(f-I), C \cap X_n, 0) = 1$ whenever (*) is valid for n and using Proposition 3 (a), our proof is complete.

Let us now restrict our attention to A-proper maps. We suppose throughout the rest of this work that all projectional schemes are complete and except for Proposition 5, that \mathcal{F}_0 is the fixed filter; consequently, $*\mathbb{Z}(\mathcal{F}) = *\mathbb{Z}$.

406

PROPOSITION 4. If $f: \operatorname{cl} G \to Y$ is A-proper, then whenever $y \in Y - f(\partial G)$, we can conclude that $\{n \mid q_n y \notin q_n f(\partial G_n)\} \in \mathscr{F}_0$ (the degree is therefore welldefined).

For a proof see [3, Lemma 1].

THEOREM 1. Let G be an open bounded subset of X and let $f_1, f_2: cl G \rightarrow Y$ be A-proper maps with $y \in Y \setminus f_i(\partial G), i = 1, 2$.

(a) If $D(f_1, G, y) \neq 0 \in *\mathbb{Z}$, then there exists an $x \in G$ such that $f_1x = y$.

(b) (Sum formula). If $G = G' \cup G''$, G' and G'' being open disjoint subsets of X such that $y \in Y \setminus f_1(\partial G' \cup \partial G'')$, then

$$D(f_1, G, y) = D(f_1, G', y) + D(f_1, G'', y).$$

(c) If there exists an open set $G' \subset G$ such that $f_1^{-1}(\{y\}) \subset G'$, then

$$D(f_1, G', y) = D(f_1, G, y).$$

- (d) If F: cl $G \times [0, 1] \rightarrow Y$ is a homotopy between f_1 and f_2 such that
- (i) for each fixed $t \in [0, 1]$, F(, t) is A-proper,
- (ii) $y \in Y \setminus F(\partial G \times [0, 1])$,
- (iii) for every $\epsilon > 0$, there exists $\delta > 0$ such that for $t_1, t_2 \in [0, 1], |t_1 t_2| < \delta$ implies

$$||F(x, t_1) - F(x, t_2)|| < \epsilon$$
 for any $x \in cl G$,

Then $D(f_1, G, y) = D(f_2, G, y)$.

Proof. (a) $D(f_1, G, y) \neq 0 \in {}^*\mathbb{Z}$ implies that there is an infinite subsequence $\{n_j\}$ for which $d(q_{n_j}f_1, G_{n_j}, q_{n_j}y) \neq 0$; since f_1 is A-proper, we obtain the desired result.

(b) The hypothesis ensures that the three degrees are defined and

$$D(f_{1}, G, y) = \{d(q_{n}f_{1}, G_{n}, q_{n}y)\}$$

$$= \{d(q_{n}f_{1}, G_{n}' \cup G_{n}'', q_{n}y)\}, \quad G_{n}', G_{n}'' \text{ are disjoint and open in } X_{n}$$

$$= \{d(q_{n}f_{1}, G_{n}', q_{n}y) + d(q_{n}f_{1}, G_{n}'', q_{n}y)\} \text{ by the sum formula for the Brouwer degree}$$

$$= \{d(q_{n}f_{1}, G_{n}', q_{n}y)\} + \{d(q_{n}f_{1}, G_{n}'', q_{n}y)\}$$

$$= D(f_{1}, G', y) + D(f_{1}, G'', y).$$
(c) Since $f_{1}^{-1}(\{y\}) \subset G'$, we have $\{n \mid (q_{n}f_{1})^{-1}\{q_{n}y\} \subset G_{n}'\} \in \mathscr{F}_{0}$; therefore $\{n \mid d(q_{n}f_{1}, G_{n}, q_{n}y)\} \in \mathscr{F}_{0}$,

which completes the proof.

(d) By Proposition 3 (b), it is sufficient to show that for n sufficiently large, $q_n y \notin q_n F(\partial G_n \times [0, 1])$, where $q_n F$ is the homotopy between $q_n f_1$ and $q_n f_2$. Suppose that this is not the case; then there exists an infinite sequence $\{n_j\}$, $n_j \to \infty$, such that

$$(x_{n_j}, t_{n_j}) \in (\partial G_{n_j}) \times [0, 1]$$
 and $q_{n_j}F(x_{n_j}, t_{n_j}) = q_{n_j}y$.

H. SHIP FAH WONG

Because [0, 1] is compact, we may assume without loss of generality that $\{t_{n_j}\}$ converges to t for some $t \in [0, 1]$. By hypothesis,

$$||F(x_{n_j}, t_{n_j}) - F(x_{n_j}, t)|| < \epsilon$$

if n_j is sufficiently large, whence $\{q_{nj}F(x_{nj}, t)\}$ converges to y and since F(, t) is A-proper, this implies the existence of an $x \in \partial G$ such that F(x, t) = y which contradicts hypothesis (ii).

Let us note that Theorem 1 is an improvement of [2, Theorem 1] as we have the sum formula with this representation of the degree. We now compare the definition of Browder and Petryshyn in [2] with ours. If $f: cl G \to Y$ is A-proper, let us denote by D'(f, G, y) the degree defined in [2]; then $D'(f, G, y) \subset \mathbb{Z} \cup \{-\infty, +\infty\}$.

PROPOSITION 5. Suppose that $f: cl G \to Y$ is A-proper and that $D'(f, G, y) \subset \mathbb{Z}$; if $n \in D'(f, G, y)$, there exists a filter $\mathcal{F}' \geq \mathcal{F}_0$ such that

$$D(f, G, y) = \{n, n, n, \ldots\} \in *\mathbb{Z}(\mathscr{F}').$$

Proof. Since $\emptyset \neq D'(f, G, y) \subset \mathbb{Z}$, we have $D'(f, G, y) = \{n_1, n_2, \ldots, n_k\}$. Let $B_i = \{j \mid d(q_j f, G_j, q_j y) = n_i\}, i = 1, 2, \ldots, k$, and construct the filter \mathscr{F}_i generated by \mathscr{F}_0 and B_i . Then $D(f, G, y) = \{n_i, n_i, \ldots\} \in *\mathbb{Z}(\mathscr{F}_i')$.

To end this section let us compute the degree of linear injective A-proper maps. In [12], Petryshyn has shown the following.

PROPOSITION 6. If f is a linear injective A-proper map from X to Y, then there exists a constant c > 0 and an integer N such that for each $n \ge N$ we have $||q_n fx|| \ge c||x||$ for each $x \in X_n$.

COROLLARY 2. If f is bounded, linear, A-proper, and injective, then for any bounded open set G in X, $D(f, G, y) = \{\pm 1, \pm 1, \ldots\}$ for any $y \in f(G)$.

COROLLARY 3. Under the same conditions as in Corollary 2, f is onto. For a proof see [12, Theorem 5].

4. Fixed-point indices of P-compact maps. Before defining the fixed-point index, the following theorem is quoted from [13] to show that A-proper maps are essentially proper maps.

THEOREM 2. Let G be an open bounded subset of X and f a continuous A-proper map from cl G into Y. Then for any closed subset $M \subset G$, the subset $M \cap f^{-1}(L)$ is compact if L is compact in Y.

Proof. See [13, p. 141, Lemma 1].

We obtain the following as an easy corollary.

COROLLARY 4. If $f: cl G \rightarrow X$ is P-compact and if the fixed points of f are in G and are isolated, then they are finite in number.

A-PROPER MAPS

Let G be an open bounded subset of X, f: cl $G \to X$ a P-compact map having x_0 as isolated fixed point, and suppose that $x_0 \in G$. Let U_{x_0} be an open neighbourhood of x_0 in G such that U_{x_0} contains no other fixed point of f. Then we define the fixed-point index of f at x_0 to be $I(f, x_0) = D(f - I, U_{x_0}, 0)$. Because of Theorem 1(c), this definition is independent of the U_{x_0} chosen, provided it is small enough.

In [8], Leray and Schauder calculated explicitly the fixed-point index in the compact, differentiable case. Here we give an analogous theorem for the P-compact case.

THEOREM 3. Let X be a Banach space with property $(\pi)_1$, f: cl $G \to X$ a P-compact map, differentiable at $x_0 \in G$ such that the derivative f_{x_0}' is also P-compact. Suppose that x_0 is a fixed point of f and that +1 is not an eigenvalue of f_{x_0}' . Then x_0 is an isolated fixed point of f and $I(f, x_0) = \{(-1)^{\beta n}\} \in *\mathbb{Z}$, where β_n is the sum of multiplicities of the eigenvalues of $p_n f_{x_0}': X_n \to X_n$ which are greater than 1.

Proof. The fact that x_0 is an isolated fixed point was proved in [17, Theorem 6.3].

The idea of the proof of the second part is to prove that $I(f, x_0) = I(f_{x_0}', 0)$ and then compute $I(f_{x_0}', 0)$. Since +1 is not an eigenvalue of f_{x_0}' , we see that $f_{x_0}' - I: X \to X$ is injective, linear, and A-proper. By Proposition 6, there exists a c > 0 and an integer N_0 such that $n \ge N_0$ implies that

$$||p_n f_{x_0}' x - x|| \ge c ||x|| \quad \text{for } x \in X_n.$$

Since $p_n x \to x$, taking limits we have $||f_{x_0}'x - x|| \ge c||x||$ for every $x \in X$. Consider

$$||f(x_{0} + h) - (x_{0} + h)|| = ||f(x_{0} + h) - f(x_{0}) - h||$$

= ||f(x_{0} + h) - f(x_{0}) - f_{x_{0}}'(h) + f_{x_{0}}'(h) - h||
\ge ||(f_{x_{0}}' - I)(h)|| - ||f(x_{0} + h) - f(x_{0}) - f_{x_{0}}'(h)|| \ge c||h|| - ||\epsilon(x_{0}, h)||,

where $||\epsilon(x_0, h)|| ||h||^{-1} \to 0$ if $||h|| \to 0$. Therefore there exists a $\delta > 0$ such that $||h|| < \delta$ implies $||\epsilon(x_0, h)|| < 2^{-1}c||h||$.

Thus $||f(x_0 + h) - (x_0 + h)|| \ge 2^{-1}c||h||$ when $||h|| < \delta$. Let U_{x_0} be the ball with centre x_0 and radius δ . Then

$$I(f, x_0) = D(f - I, U_{x_0}, 0) = \{ d(p_n(f - I), U_{x_0} \cap X_n, 0) \}.$$

Choose an integer $N \ge N_0$ such that

$$||p_N x_0 - x_0|| \leq \min[8^{-1}\delta, 8^{-1}c\delta, 8^{-1}(||f_{x_0}'|| + 1)^{-1}c\delta].$$

Note that $p_N x_0 \in U_{x_0} \cap X_n$ if $n \ge N$. Define the translation $g: U_{x_0} \to X$ by $g(x) = x - p_N x_0$, and note that $g(U_{x_0} \cap X_n) \subset X_n$ if $n \ge N$. Let us consider the map $H_n: (U_{x_0} \cap X_n) \times [0, 1] \to X_n$ for $n \ge N$ given by

$$H_n(x + x_0, t) = (1 - t)[p_n(f_{x_0}' - I) \cdot g](x + x_0) + tp_n(f - I)(x + x_0).$$

 H_n is a homotopy between $p_n(f_{x_0}' - I)g$ and $p_n(f - I)$. If we prove that for $n \ge N, 0 \notin H_n(\partial(U_{x_0} \cap X_n), t)$ for every $t \in [0, 1]$, then we can conclude that

$$d(p_n(f_{x_0}'-I)g, U_{x_0}\cap X_n, 0) = d(p_n(f-I), U_{x_0}\cap X_n, 0)$$
 for $n \ge N$.

But since g is a translation, it is easy to see that if $n \ge N$, then

$$d(p_n(f_{x_0}'-I)\cdot g, U_{x_0}\cap X_n, 0) = d(p_n(f_{x_0}'-I), B\cap X_n, 0),$$

where B is a ball of radius δ and centre at the origin. Thus we would obtain: $I(f, x_0) = I(f_{x_0}, 0)$. We now prove that $H_n(x + x_0, t) \neq 0$ for

$$(x + x_0) \in \partial(U_{x_0} \cap X_n), t \in [0, 1]$$

and $n \geq N$.

$$\begin{aligned} ||H_n(x + x_0, t)|| &= ||[p_n(f_{x_0}' - I) \cdot g](x + x_0) - tp_n[(f_{x_0}' - I) \cdot g \\ &- (f - I)](x + x_0)|| \\ &\ge ||p_n(f_{x_0}' - I)(x + x_0 - p_N x_0)|| \\ &- ||(f_{x_0}' - I)(x + x_0 - p_N x_0) - (f - I)(x + x_0)||, \end{aligned}$$

since $||p_n|| \le 1$ and $t \in [0, 1].$

$$||p_n(f_{x_0}' - I)(x + x_0 - p_N x_0)|| \ge c||x + x_0 - p_N x_0|| \\\ge c||x - (p_N x_0 - x_0)|| \\\ge c||x|| - c\delta/8 \\\ge 7(c\delta/8)$$

if $(x + x_0) \in \partial (U_{x_0} \cap X_n)$. On the other hand, if $(x + x_0) \in \partial (U_{x_0} \cap X_n)$, then $||x|| = \delta$ and $||(f_{x_0}' - I)(x + x_0 - p_N x_0) - (f - I)(x + x_0)||$ $= ||(-x_0 + p_N(x_0)) + x_0 - f(x + x_0) + f_{x_0}'(x) + f_{x_0}'(x_0 - p_N x_0)||$ $\leq ||x_0 - p_N(x_0)|| + ||\epsilon(x_0, x)|| + ||f_{x_0}'|| ||x_0 - p_N(x_0)||$ $\leq 8^{-1}c\delta + 2^{-1}c\delta + 8^{-1}c\delta$ $= 8^{-1} \cdot 6c\delta.$

Therefore $H_n(x + x_0, t) \neq 0$ for $(x + x_0) \in \partial(U_{x_0} \cap X_n)$ and $t \in [0, 1]$. The proof of the theorem is completed by applying [7, p. 133, Theorem 4.6] to $p_n f_{x_0}': X_n \to X_n$ for $n \geq N$.

We now prove a theorem concerning the effect of a slight perturbation of a P-compact operator on its fixed points and the result is analogous to [7, Theorem 4.8]. In this theorem, full use is made of the sum formula.

Definition 6. If f is a continuous and differentiable map from cl G into X, then the derivative f' defines a map from G into the space of linear maps L(X, X). If f' is continuous, we say that f is continuously differentiable.

THEOREM 4. Suppose that the hypotheses of Theorem 3 are still valid and, furthermore, let f be continuously differentiable on a neighbourhood U of the fixed

410

point x_0 , with f_y' P-compact for every $y \in U$. Then there exists a neighbourhood V of x_0 and an ϵ_0 with $0 < \epsilon_0 < 1$ such that if $|\epsilon| \leq \epsilon_0$, then $(1 + \epsilon)f$ has a unique fixed point in V.

Proof. Since 1 is not an eigenvalue of f_{x_0}' , we have, as before, a constant c > 0 such that $||f_{x_0}'(x) - x|| \ge c||x||$ for every $x \in X$. Because of the hypotheses, we can choose an open ball V of radius δ_0 and centre x_0 such that the following statements are true:

(1) x_0 is the only fixed point of f in cl V,

- (2) $||f_x' f_{x_0}'|| \leq 3^{-1}c$ and $||f_x'|| \leq ||f_{x_0}'|| + 1 = K$ for any $x \in cl V$,
- (3) $||f(x)|| \leq ||f(x_0)|| + 1 = ||x_0|| + 1 = M, x \in cl V,$

(4) $||(x + x_0) - f(x + x_0)|| \ge 2^{-1}c||x||$ if $(x + x_0) \in cl V$.

Let $0 < \epsilon_0 < 1$ be such that $\epsilon_0 \leq \min((4M)^{-1}c\delta_0, (3K)^{-1}c)$. If $|\epsilon| < \epsilon_0$, consider $H(, t) = H_t = f + t\epsilon f - I$: cl $V \to X$. Then

- (a) H_t is A-proper for each $t \in [0, 1]$,
- (b) Given $\xi > 0$, there exists $\eta > 0$ such that $||H_{t_1}(x) H_{t_2}(x)|| < \xi$ whenever $|t_1 - t_2| < \eta$ for every $x \in \text{cl } V$,
- (c) H(x, 0) = (f I)(x) for $x \in cl V$,

 $H(x, 1) = (f + \epsilon f - I)(x) \text{ for } x \in \operatorname{cl} V,$

(d) If
$$t \in [0, 1]$$
 and $x \in \partial V$, then

$$\begin{aligned} ||H(x, t)|| &= ||(f + t\epsilon f - I)(x)|| \\ &\geq ||(f - I)(x)|| - ||\epsilon f(x)|| \\ &\geq 2^{-1}c\delta_0 - |\epsilon| ||f(x)|| \\ &\geq 2^{-1}c\delta_0 - (4M)^{-1}(c\delta_0)M; \end{aligned}$$

thus ||H(x, t)|| > 0.

Whence $D(f + t\epsilon f - I, V, 0) = D(f - I, V, 0) = I(f, x_0)$,

(**) $D(f + t\epsilon f - I, V, 0) = D(f - I, V, 0) = I(f, x_0) = \gamma \neq 0$ (by Theorem 3), i.e. there exists $y \in V$ such that $(1 + \epsilon)f(y) = y$. Let y_0 be such a point. The derivative of $(1 + \epsilon)f$ at y_0 is $(1 + \epsilon)f_{y_0}'$ and it is easily verified that 1 is not an eigenvalue of $(1 + \epsilon)f_{y_0}'$.

We can then use Theorem 3 to conclude that y_0 is an isolated fixed point of $(1 + \epsilon)f$ and that $I((1 + \epsilon)f, y_0) = I((1 + \epsilon)f_{y_0}', 0)$. Next, it is easily shown that for n large, $p_n(f_{x_0}' - I)$ and $p_n[(1 + \epsilon)f_{y_0}' - I]$ are homotopic and satisfy the conditions of Theorem 1(b), which implies that

$$I([1 + \epsilon] f_{y_0}', 0) = I(f_{x_0}', 0) = \gamma.$$

Thus

$$I((1+\epsilon)f, y_0) = I((1+\epsilon)f_{y_0}', 0) = \gamma.$$

By Corollary 4, the fixed points of $(1 + \epsilon)f$ in V are finite in number, let y_1, \ldots, y_r be these fixed points; then

$$D((1+\epsilon)f - I, V, 0) = \sum_{i=1}^{r} I([1+\epsilon]f, y_i)$$
$$= r\gamma$$

but $D((1 + \epsilon)f - I, V, 0) = \gamma$; see (**). Therefore r = 1. We can conclude that $(1 + \epsilon)f$ has only one fixed point in V.

References

- N. Bourbaki, Éléments de mathématique; Première partie, Fasc. II, Livre III; Topologie générale, chapitre 1: Structures topologiques, Actualités Sci. Indust., No. 1142 (Hermann, Paris, 1961).
- 2. F. E. Browder and W. V. Petryshyn, The topological degree and Galerkin approximations for non-compact operators in Banach spaces, Bull. Amer. Math. Soc. 74 (1968), 641-646.
- 3. —— Approximation methods and the generalized topological degree for non-linear mappings in Banach spaces, J. Functional Analysis 3 (1969), 217–245.
- 4. J. Cronin, Fixed points and topological degree in non-linear analysis, Amer. Math. Soc. Surveys, Vol. 11 (Amer. Math. Soc., Providence, R.I., 1964).
- 5. D. G. de Figueiredo, *Topics in non-linear functional analysis*, University of Maryland Lecture series, No. 48, Chapter IV, pp. 112-153 (University of Maryland, College Park, Maryland).
- 6. —— Fixed-point theorems for nonlinear operators and Galerkin approximations, J. Differential Equations 3 (1967), 271–281.
- 7. M. A. Krasnoselskii, *Topological methods in the theory of non-linear integral equations*, Translated by A. H. Armstrong, International series of monographs on Pure and Applied Math., Vol. 45 (a Pergamon Press Book, Macmillan, New York; Pergamon, Oxford, 1964).
- 8. J. Leray and J. Schauder, Topologie et équations fonctionnelles, Ann. Sci. École Norm. Sup. 51 (1934), 45-73.
- 9. M. Nagumo, A theory of degree of mapping based on infinitesimal analysis, Amer. J. Math. 73 (1951), 485-496.
- 10. Degree of mapping in convex linear topological spaces, Amer. J. Math. 73 (1951), 497-511.
- W. V. Petryshyn, Some examples concerning the distinctive features of bounded linear A-proper mappings and Fredholm mappings, Arch. Rational Mech. Anal. 33 (1969), 331-338.
- 12. ——— On projectional solvability and the Fredholm alternative for equations involving linear A-proper operators, Arch. Rational Mech. Anal. 30 (1968), 270–284.
- Invariance of domain theorem for locally A-proper mappings and its implications, J. Functional Anal. 5 (1970), 137-159.
- 14. Fixed-point theorems involving P-compact, semicontractive, and accretive operators not defined on all of a Banach space, J. Math. Anal. Appl. 23 (1968), 336–354.
- 15. —— On a fixed point theorem for nonlinear P-compact operators in Banach space, Bull. Amer. Math. Soc. 72 (1966), 329-334.
- 16. On the approximation-solvability of nonlinear equations, Math. Ann. 177 (1968), 156-164.
- 17. W. V. Petryshyn and T. S. Tucker, On the functional equations involving non-linear generalised P-compact operators, Trans. Amer. Math. Soc. 135 (1969), 343-373.
- 18. A. Robinson, Non-standard analysis (North-Holland, Amsterdam, 1966).

University of Warwick, Coventry, England