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THE TOPOLOGICAL DEGREE OF A-PROPER MAPS 

H. SHIP FAH WONG 

1. Introduction. Recently several fixed-point theorems have been proved 
for new classes of non-compact maps between Banach spaces. First, Petryshyn 
[15] generalized the concept of compact and quasi-compact maps when he 
introduced the P-compact maps and proved a fixed-point theorem for this 
class of maps. Then in [6], de Figueiredo defined the notion of G-operator to 
unify his own work on fixed-point theorems and that of Petryshyn. He also 
proved that the class of G-operators was a fairly large one. 

We notice the following facts: (i) The essential idea in the above cases is 
that if certain finite-dimensional "approximations" of the map have fixed 
points, then the map has a fixed point; (ii) One of the tools used in proving 
fixed-point theorems in the finite-dimensional case is the Brouwer degree and 
its generalization to maps of the type Identity + Compact in [8]. Furthermore, 
in the latter case, it was proved that the degree of finite-dimensional approxi­
mations of any map of the form Identity + Compact becomes constant after 
some step, and this limit is the degree. The next step then is to try to define 
the degree of maps of the type Identity + P-compact by considering the 
degree of finite-dimensional approximations; but in general we cannot expect 
the degree to be an integer. This was done in [2; 3] for the class of A-proper 
maps first introduced by Petryshyn [16] under the heading "maps satisfying 
condition (H) ' \ 

Here in §§ 2 and 3 we improve on the work done in [2] by giving a new 
representation of the degree which allows us to prove the sum formula. The 
idea of this representation comes from the use of ultrapowers in non-standard 
analysis (see [18]). We also give a weaker "homotopy axiom" which proves 
more useful in computations. In § 4, we define a fixed-point index for P-compact 
maps and compute it in the difrerentiable case as it is done in [8; 7, p. 136, 
Theorem 4.7]. 

Acknowledgements. I wish to express my deepest thanks to my supervisor 
Professor S. Takahashi, whose constant help and encouragement made this 
work possible. I would also like to extend my appreciation to the referee for 
his suggestions which helped improve this paper. 

2. Preliminaries. 
(A) Basic facts concerning filters and ultrapowers. Throughout this work, 
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N will denote the set of natural numbers, Z the ring of integers, and ZN the 
ring of all sequences of integers with coordinatewise addition and multiplica­
tion. If E is a set, & (E) will denote the ordered family of all subsets of E. 

Definition 1. A filter^ on £ is a non-void family of subsets of E such that 
(i) Alt Az^Sf implies i i H i 2 e #*, 

(ii) If A e & and A C B, then B 6 ̂ ~, 
(iii) 0 € #" . 

An example of a filter on N is J S = {̂4 C N| N\^4 is finite}. On any set E, 
any non-void subset A £_ E generates a filter {B (Z E \ A C. B}. This filter 
is called the principal filter generated by A. 

If ^ is a filter, then & C & (£) or #~ 6 ^ ( ( ^ (£)) ; therefore on the class 
of all filters on £ , we have an induced order relation ^ . J^ i rg J^2 whenever 
for any ,4, 4̂ Ç J S implies 4̂ 6 ̂ "2 . 

Definition 2. Any maximal element of the set of filters on E is called an 
ultrafilter on E. 

PROPOSITION I. If a filter & on E is an ultrafilter, then if A KJ B G ^ we 
have either A 6 #~ or B Ç £F. 

Proof. See [1, p. 65]. Thus J^o is not an ultrafilter on N since N Ç J^o but 
neither the subset of even integers nor the subset of odd integers belongs toJ^V 

By Zorn's lemma, every filter on a set E is contained in an ultrafilter on E. 
Leti^~ be a filter on N such that J^o é ^ , and define a relation ~ on ZN in the 
following way: 

{Xi\ ~ {3/*} whenever {i| #, = 3 }̂ € !F. 

This relation is compatible with the ring structure of ZN ; therefore the 
quotient set * Z ( J r ) = Z N / ^ with the induced operations is a ring. I t con­
tains the subring of classes of constant sequences isomorphic to Z; from now 
on we shall identify Z with its isomorphic image. 

Definition 3. If Ĵ ~ is an ultrafilter on N such that J^o Hk^, then we say 
that the corresponding *Z(J^~) is an ultrapower of Z. 

PROPOSITION 2. If A is an infinite subset of N, then there exists a filter J r 

which contains A with J ^ é &'• 

Proof. Set & = \B C N| B D A H C for any C € ̂ 0 } . 

(B) 50me definitions. Let X be a real Banach space. A projectional scheme 
for X is 

(i) a nested sequence {Xw} of finite-dimensional subspaces of X, 
(ii) \JnXn is dense in X, 

(iii) for each n there is a continuous linear projection pn: X —> Xn and 
iM>n = PnPm = Pm H K t m. 

https://doi.org/10.4153/CJM-1971-042-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-042-5


A-PROPER MAPS 405 

The projectional scheme is complete if limnpnx = x for each x G X. X is 
said to have property {ir)k for some k ^ 1 if it has a projectional scheme such 
that \\pn\\ S k for all n. We restrict our study to real Banach spaces having 
property (7r)fc for some k. We suppose that the projectional schemes are fixed 
for each space and that whenever we have a map / : A —> F for some subset 
A C X, then dim Xn = dim Yn for each n with projections pn: X —> Xn and 
qn: Y->Yn. 

Following Petryshyn and de Figueiredo, we state the following definitions. 

Definition 4. (a) Let G be a subset of the Banach space X and f: G -* X a. 
continuous map. / is said to be P-compact if for any a > 0, the existence of 
a bounded sequence {xnj G G C\ Xnj) such that pnjfocnj — axnj converges to 
y £ X implies the existence of a convergent subsequence \xnjk} with 
lim xnj = x G G and fx — ax = y. 

As an example we have that any m a p / such that / (G) is relatively compact 
is P-compact. 

(b) Let X and Y be Banach spaces; G C X.f: G —> Y is an A-proper map 
if for any bounded sequence {xnj G G P\ Xny} such that g_njjocnj converges 
to y there exists a convergent subsequence {xnjk\ with lim x ^ = x G G and 

/ * = y-
Note that if / is P-compact, then / — \I is A-proper for any X > 0. 
(c) Let C be a closed convex subset of a Banach space X. A m a p / : C —» X 

is Galerkin approximable (or is a G-operator) if £ n / is continuous for n suffi­
ciently large and if / has a fixed point in C whenever 

[n\pnf I (C H X„) has a fixed point in (C H I n ) | G #"0. 

Any P-compact map is a G-operator. For more examples of P-compact 
maps see [17] and for G-operators see [6]. 

Our aim is to build a degree theory for a class of maps which includes the 
A-proper maps and for that purpose we state the following definition. 

Definition 5. Let X and Y be Banach s p a c e s , ^ a filter on N with J S ^ ^~, 
3/ G F, and G C ^ . A map / : G —» F is a y -«^-operator if 

(i) gn/ is continuous when w is sufficiently large, 
(ii) the existence of a bounded sequence {xn G G Pi XTC} such that 

{n\ qnfxn = gw^} G ^ implies that there exists an x G G for which /x = ^. 

Remarks. (1) If F = X and / is a G-operator, then (7 —/) is a O-^V 
operator. 

(2) If we suppose that F has a complete projectional scheme, then maps 
satisfying condition (h) introduced by Petryshyn [14, p. 340] are y -«^"-operators 
for any ^ ^ J S and any y G F. 

(3) Therefore under the same condition on F, an A-proper map is a 
;y-e^~-operator for any y G F and any ^ ^ #"0. 
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3. Degree theory of A-proper maps. Throughout this section, G will be 
an open bounded subset of the Banach space X and dG = cl G\G. {Xn\ and 
{ Yn) will denote the projectional schemes of X and F, respectively, and we 
suppose thatXw and Yn are oriented, with dim Xn — dim Yn. Set Gn — G C\Xn 

for each n. Gn is an open bounded subset of Xn. If <p: cl Gn —> Yn is a con­
tinuous map, then for any a 6 Fw\<p(dGn) there is a well-defined integer 
d(<p, Gni a) called the degree of/ at the point a (sometimes called the Brouwer 
degree). For a definition and properties of the degree see either [4] or [9]. 

Let ^ be an arbitrary (but fixed) filter on N with #"'0 ^ &~ and set 
* Z ( J r

0 ) = *Z. Suppose t h a t / : cl G —> Y is a y-e^-operator for some 3/ G F; 
then if {n\ qny (L qnf(dGn)} G #" , the sequence {d(qnf, Gn, qny)\ determines an 
element of *Z(i^~) which we call the degree of / a t y, denoted by D(f, G, 3;). 

PROPOSITION 3. Let f: cl G —» Y be a y-^-operator. Then 
(a) Whenever D(f,G,y) is defined and {n\d(qnf,Gni qny) 9e 0} ÇcF, £/^r£ 

exwfo aw x G cl G sz/cfe /&a£ fx = 3;. 7/ jF~ is an ultrafilter &~o ̂  J^~, //zew 
W . G, 3/) -A 0 w^/ies tta* {n| d(qnf, Gn, qny) ^ 0} G ^"V 

(b) Suppose that g: cl G —» F is another y-IF'-operator such that 

{n\ there exists a homotopy Fn from qnf to qng such that 
qny G Fn(dGnX [0,1])} G^~; 

thenD(f,G,y) = D{g,G,y). 

Proof. Let us prove the second part of (a) ; the rest follows directly from the 
definitions and the properties of the Brouwer degree. 

Let J F be an ultrafilter and D{f, G, y) 7e 0. Suppose that 

{n\d(qnf,Gn,qny) ^ 0 } G JF , 

then (its complement) {n\ d(qnf, Gm qny) = 0} G ^ " ; thus D(f,G,y) = 0, 
a contradiction. 

COROLLARY 1 (de Figueiredo). Le£ C be an open convex bounded subset of a 
Banach space X. Suppose that 0 G C and that f:clC—*X is a G-operator such 
that except for finitely many ns, 

(*) Pnfx - \x 7* 0 for all\^ landx e d(Cn Xn). 

Then f has a fixed point in C. 

Proof. lipnfx - Xx ^ OforX^ l a n d x G d(CnXn), then pn(f - I)\Cn Xn 

is homotopic to the identity and the homotopy is never zero on the boundary. 
Therefore d(pn(f — 7), C Pi Xn, 0) = 1 whenever (*) is valid for n and using 
Proposition 3 (a), our proof is complete. 

Let us now restrict our attention to A-proper maps. We suppose throughout 
the rest of this work that all projectional schemes are complete and except 
for Proposition 5, that #"0 is the fixed filter; consequently, *Z(#" ) = *Z. 
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PROPOSITION 4. If f: cl G —> Y is A-proper, then whenever y £ Y — f(dG), 
we can conclude that {n\ qny g qnf(dGn)} G ^"o (the degree is therefore well-
defined). 

For a proof see [3, Lemma 1], 

THEOREM 1. Let G be an open bounded subset of X and let fi,f2: cl G —•» Y be 
A-proper maps with y 6 Y\ft(dG), i = 1, 2 . 

(a) If D(fi, G, ;y)^ 0 £ *Z, /&ew there exists an x £ G sz/c/z that fix = y. 
(b) (Sum formula). If G = G' U G", G' and G" &emg o^̂ w disjoint subsets 

of X such that y 6 F\fi(dG' \J dG"), then 

D(fu G, 3/) = 2>(/i, G', y) + 2?(/lf G", y). 

(c) If £/^re existe an open set G' C G ŝ c/z- ^a£/i~1({3;}) C G', £Âew 

D(fuG',y) = D(fuG,y). 

(d) 7f T7: cl G X [0, 1] —> F w a homotopy between fi and / 2 swc& ^a / 
(i) /or each fixed t 6 [0, 1], F( , 0 w A-proper, 

(ii) y 6 F\F(dG X [0, 1]), 
(iii) for every e > 0, there exists 8 > 0 swc& that for h, t2 6 [0, 1], |/i — /2| < ô 

\\F(x, h) — JP(X, J2)|| < tfor any x G cl G, 

Then D (h, G, y) = D( / 2 , G, y). 

Proof, (a) D(fi,G,y)j£ 0 € *Z implies that there is an infinite subse­
quence {wj} for which d(qnjfi, Gnj, qnjy) ^ 0; since / i is A-proper, we obtain 
the desired result. 

(b) The hypothesis ensures that the three degrees are defined and 

D(fi,G,y) = {d(qnfuGn,qny)} 

= {d(qnfuGn KJ Gn'.qny)), Gn', Gn" are disjoint and open 
in Xn 

= {d(qnfu Gn', qny) + d(qnfu G»"f qny)\ by the sum formula for 
the Brouwer degree 

= {d(gn/i, Gn',qny)) + {d(qnfuGn",qny)} 
= D(fl,G',y) + D(f1,G",y). 

(c) S i n c e / f Kfol) C G', we have {n\ (qnfi)~l{qny\ C Gn') € i^oi therefore 

{n| dfenfi, Gn, gwy) = d(î*/i» Gn', gwy)} G J S , 

which completes the proof. 
(d) By Proposition 3 (b), it is sufficient to show that for n sufficiently large, 

qny £ qnF(dGn X [0, 1]), where qnF is the homotopy between qnfi and qnf2. 
Suppose that this is not the case; then there exists an infinite sequence {n^, 
nj —» oo , such that 

(*»;, tnj) G (dGnj) X [0, 1] and qnjF(xnj, tnj) = gwiy. 
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Because [0, 1] is compact, we may assume without loss of generality that 
{tnj} converges to t for some t 6 [0, 1]. By hypothesis, 

\\F(xnj,tnj) - F(xnj, OH < € 

if Uj is sufficiently large, whence {qnjF(xnj, t)} converges to y and since F( , t) 
is A-proper, this implies the existence of an x £ dG such that F(x, t) = y 
which contradicts hypothesis (ii). 

Let us note that Theorem 1 is an improvement of [2, Theorem 1] as we 
have the sum formula with this representation of the degree. We now compare 
the definition of Browder and Petryshyn in [2] with ours. If / : cl G —* F is 
A-proper, let us denote by Dr(f,G,y) the degree defined in [2]; then 
D'(f,G,y)CZV{-co,+cQ}. 

PROPOSITION 5. Suppose thatf: cl G —> Y is A-proper and thatD' (/, G, y) C Z; 
if n G Df (/, G,y), there exists a filter Ĵ ~ ' ^ J S such that 

D(f,G,y) = {n,n,n,...} G * Z ( J F ' ) . 

Proof. Since 0 ^ £>'(/, G, 3>) C Z, we have £>'(/, G, y) = [nx, n2, . . . , n*}. 
Let J8* = {j| d(gy/, Gy, q$) = w^}, i = 1, 2, . . . , k, and construct the filter 

^~i generated by^" 0 and Bt. Then £>(/, G, y) = {nt, n i f . . .} G * Z ( J r 7 ) . 

To end this section let us compute the degree of linear injective A-proper 
maps. In [12], Petryshyn has shown the following. 

PROPOSITION 6. If f is a linear injective A-proper map from X to F, then there 
exists a constant c > 0 and an integer N such that for each n ^ N we have 
\\qnfx\\ ^ c||x|| jfor each x G Xn. 

COROLLARY 2. If f is bounded, linear, A-proper, and injective, then for any 
bounded open set G in X, D(f, G,y) = {=bl, ± 1 , . . .} for any y G f(G). 

COROLLARY 3. Under the same conditions as in Corollary 2, fis onto. For a proof 
see [12, Theorem 5]. 

4. Fixed-point indices of P-compact maps. Before defining the fixed-
point index, the following theorem is quoted from [13] to show that A-proper 
maps are essentially proper maps. 

THEOREM 2. Let G be an open bounded subset of X and fa continuous A-proper 
map from cl G into F. Then for any closed subset M C G, the subset M P \ / _ 1 (L ) 
is compact if L is compact in F. 

Proof. See [13, p. 141, Lemma 1]. 

We obtain the following as an easy corollary. 

COROLLARY 4. Iff: cl G —•> X is V-compact and if the fixed points of f are in G 
and are isolated, then they are finite in number. 
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Let G be an open bounded subset of X, f:c\G—>X a P-compact map 
having x0 as isolated fixed point, and suppose that x0 £ G. Let Uxo be an open 
neighbourhood of x0 in G such that UXQ contains no other fixed point of / . 
Then we define the fixed-point index of/ at x0 to b e ! (/, Xo) = D(f — I, UXQ1Q). 
Because of Theorem 1(c), this definition is independent of the UXQ chosen, 
provided it is small enough. 

In [8], Leray and Schauder calculated explicitly the fixed-point index in 
the compact, differentiate case. Here we give an analogous theorem for the 
P-compact case. 

THEOREM 3. Let X be a Banach space with property (w)i, f:c\G—>X a 
P-compact map, differentiable at x0 £ G such that the derivative fxo' is also 
P-compact. Suppose that x0 is a fixed point of f and that + 1 is not an eigenvalue 
of fxQf- Then x0 is an isolated fixed point of f and I(f, x0) = {(—1)^} £ *Z, 
where /3n is the sum of multiplicities of the eigenvalues of pnfxz'- Xn —* Xn which 
are greater than 1. 

Proof. The fact that x0 is an isolated fixed point was proved in 
[17, Theorem 6.3]. 

The idea of the proof of the second part is to prove that / ( / , xo) = I(fXQ', 0) 
and then compute I(fxo

f, 0). Since + 1 is not an eigenvalue oifxo', we see that 
fxo

f — / : X —» X is infective, linear, and A-proper. By Proposition 6, there 
exists a c > 0 and an integer N0 such that n ^ No implies that 

WPnfxo'x — x\\^c\\x\\ for x Ç Xn. 

Since pnx —» x, taking limits we have H/zo'x ~~ x | |^c | |x | | for every x Ç X. 
Consider 

||/(*o + A) " (*o + A)|| = ||/(*o + A) - / ( * o ) "Al l 
= ||/(*o + *) -f(x0) -fXQ'(h)+fXQ'(h) -h\\ 
^ \\(f*,'-i)m\-\\f(x* + h)-f(*o) 
- /«o ' (* ) | | *c\\h\\-\\e(xo,h)\\, 

where ||e(x0, h)\\ \\h\\~l —> 0 if ||fe|| —> 0. Therefore there exists a ô > 0 such 
that ||fe|| < Ô implies ||e(x0, h)\\ < 2~1c\\h\\. 

Thus | | / (x 0 + h) - (x0 + h)\\ ^ 2~1c\\h\\ when \\h\\ < Ô. Let UXQ be the 
ball with centre x0 and radius ô. Then 

I(/,*o) =D(f-I, ^ 0 , 0 ) = {d(pn(f-I), Uxor\Xn,0)}. 

Choose an integer N ^ No such that 

\\PNXO - xoll ^ min[8ri«, Sr^cS, 8"1 (II/«oil + l ) " 1 ^ ] . 

Note that pNXo G UXQ C\ Xn if n ^ N. Define the translation g: UXQ —» X by 
g(x) = x — pNXo, and note that g(UXQ Pi Xn) C Xn if n ^ N. Let us con­
sider the map Hn: (UXQ H Xn) X [0, 1] —> Xn for n à N given by 

Hn(x + xo, / ) = ( ! - t)[pn(fxo' -I).g](x + xo) + tpn{f - ! ) ( * + xo). 
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Hn is a homotopy between pn(fxo' ~ I) g a n d Pnif — I)- If we prove that for 
n ^ N, 0 € Hn(d(UXQ H Xn) , 0 for every / G [0, 1], then we can conclude 
that 

d(pn(fXof - I)g, Uxor\Xn, 0) = d(pn(f - / ) , Uxo r\ Xn, 0) for n è # • 

But since g is a translation, it is easy to see that if n ^ N, then 

d(pn(fxo -i)-g, uxo n xn, o) = <*(/>» (/,0' - / ) , B n xw, o), 
where 5 is a ball of radius 5 and centre at the origin. Thus we would obtain: 
I(f, #o) = I(fxo'* 0). We now prove that Hn(x + x0, t) j* 0 for 

(x + x0) G d(UtonXn),tÇ: [0,1] 
and n ^ N. 

| |#»(* + *o,OII = HlA(/*o' ~ I) • g](x + xo) - #»[(/*o' - I)-g 

- ( / - / ) ] ( * + *o)|| 
è ||/>n(/*o' ~ / ) ( x + X0 ~ ptf*o)|| 

- || (fxo
f - 7)(x + xo - pNxQ) - ( / — / ) ( * + x0)| | , 

since \\pn\\ g 1 and / G [0, 1]. 

\\Pn(fxo' — I) (X + X0 — pNX0)\\ ^ c\\x + Xo ~ ^ ^ o | | 

è c||x — (^Xo — Xo)\\ 

è c||x|| - cô/8 

è 7 (cô/8) 

if (x + Xo) G d(£/*o ^ Xn). On the other hand, if (x + x0) G d(UX0 Pi Xw), 

then ||x|| = ô and | | ( /r0 ' — i~)(x + x0 — PNX0) — ( / — 7)(x + x0)| | 

= | | ( - x 0 + PN(X0)) + Xo -fix + xo) +fxo'(x) + fxo'(x0 — PNXO)\\ 

â ||X0 - pN(Xo)\\ + ||€(X0, X)|| + ||/ro'H 11*0 - PN(X0)\\ 

^ 8-^0 + 2-V5 + 8-^0 

= 8"1 • 6cô. 

Therefore Hn{x + x0, t) 9* 0 for (x + x0) G d(Uxon Xn) and / G [0, 1]. The 
proof of the theorem is completed by applying [7, p. 133, Theorem 4.6] to 
p^o'iXn-tXnlorn ^ N. 

We now prove a theorem concerning the effect of a slight perturbation of 
a P-compact operator on its fixed points and the result is analogous to 
[7, Theorem 4.8]. In this theorem, full use is made of the sum formula. 

Definition 6. If / is a continuous and differentiable map from cl G into X, 
then the derivative / ' defines a map from G into the space of linear maps 
L(X, X). If/7 is continuous, we say t h a t / is continuously differentiable. 

THEOREM 4. Suppose that the hypotheses of Theorem 3 are still valid and, 
furthermore, let f be continuously differentiable on a neighbourhood U of the fixed 
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point XQ, with fy P'-compact for every y G U. Then there exists a neighbourhood 
V of x0 and an e0 with 0 < e0 < 1 such that if \e\ g e0, then (1 + e)f has a 
unique fixed point in V. 

Proof. Since 1 is not an eigenvalue of fXQ'y we have, as before, a constant 
c > 0 such that \\fZQ'(x) ~ x\\ = c\\x\\ f° r every x G X. Because of the 
hypotheses, we can choose an open ball V of radius 50 and centre Xo such that 
the following statements are true: 

(1) Xo is the only fixed point of/ in cl F, 
(2) H / / -/xo'll S 3 - ^ and \\fx'\\ ^ \\fso'\\ + 1 = K for any x G cl F, 
(3) | | / (x ) | | S | | /(*o)| | + 1 = I N I + 1 = M, x G cl F, 
(4) ||(x + xo) - / ( x + xo)|| ^ 2-^| |x| | if (x + xo) G cl F. 
Let 0 < €o < 1 be such that €0 g min((4ikT)-1cô0, ( 3 ^ ) " ^ ) . If |e| < e0, 

consider H{ , t) = Ht = f + tef - I: cl V -* X. Then 
(a) Hi is A-proper for each t G [0, 1], 
(b) Given £ > 0, there exists r\ > 0 such that ||fl"tl(x) - 77,2(x)|| < { 

whenever \ti — t2\ < rj lor every x G cl F, 
(c) 77 (x, 0) = ( / - 7)(x) for x G cl F, 

If (x, 1) = ( / + ef - 7) (x) for x G cl F, 
(d) If t G [0, 1] and x G dV, then 

l|ff(*,0ll = \\(f+tef-I)(x)\\ 
^ | | ( / _ / ) ( x ) | i - ||e/(x)|| 
^ 2 - ^ 0 - | € | | | / ( x ) | | 
à 2 - ^ 0 - (±M)-l(cb,)M\ 

thus ||i7(x, OH > 0. 
Whence D(f + tef - 7, F, 0) = Dtf - 7, F, 0) = 7 ( / , x0), 

(**) P ( / + / e / - 7 , F , 0 ) = 7 ) ( / - 7 , F , 0 ) = 7 ( / , x 0 ) = T ^ 0 ( b y Theorem 3), 

i.e. there exists y G F such that (1 + e)/(;y) = 3/. Let y0 be such a point. The 
derivative of (1 + e)f at y0 is (1 + e)fvo' and it is easily verified that 1 is not 
an eigenvalue of (1 + e)fyQ

f. 
We can then use Theorem 3 to conclude that y0 is an isolated fixed point of 

(1 + e)f and that 7((1 + e)f, y0) = 7((1 + e )/,</, 0). Next, it is easily shown 
that for n large, pn(fx0' — I) and pn[(l + c)fyo

f — 7] are homotopic and satisfy 
the conditions of Theorem 1(b), which implies that 

I([l+e]fyo',0) = 7 ( / ^ , 0 ) = T . 
Thus 

I ( ( l + €)/, Jo) = K ( l + e)/M 'f 0) = y. 
By Corollary 4, the fixed points of (1 + e)/ in F are finite in number, let 
yu . . . , yT be these fixed points; then 

D((l + e)f - 7, F, 0) = £ 7([1 + e] / , yt) 

= ry 
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but D((l + e)f ~ I> V, 0) = 7; see (**). Therefore r = 1. We can conclude 
that (1 + e)f has only one fixed point in V. 
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