M. Hara Nagoya Math. J. Vol. 56 (1974), 1-5

ON THE EXISTENCE OF VARIOUS BOUNDED HARMONIC FUNCTIONS WITH GIVEN PERIODS, II

MASARU HARA

1. Given a harmonic function u on a Riemann surface R, we define a *period function*

$$\Gamma_u(\gamma) = \int_{r} * du$$

for every one-dimensional cycle γ of the Riemann surface R. $\Gamma_X(R)$ denote the totality of period functions Γ_u such that harmonic functions u satisfy a boundedness property X. As for X, we let B stand for boundedness, and D for the finiteness of the Dirichlet integral.

In our former paper [1] we showed that there exists a plane region Ω^* such that the inequality $\Gamma_B(\Omega^*) < \Gamma_D(\Omega^*)$ (strict inclusion) holds. On the contrary, we will show in the present paper that there exists a plane region Ω_* such that the inequality $\Gamma_D(\Omega_*) < \Gamma_B(\Omega_*)$ holds. Therefore we have the following

THEOREM. There exist plane regions Ω^* and Ω_* such that $\Gamma_B(\Omega^*) < \Gamma_D(\Omega^*)$ and $\Gamma_D(\Omega_*) < \Gamma_B(\Omega_*)$.

Let Ω denote the strip $\left\{z = x + yi; -\frac{\pi}{2} < y < \frac{\pi}{2}\right\}$ and 1_n denote the interval $[3n \ 3n + 1]$. We put

$$\Omega_* = \Omega - \bigcup_{n=-\infty}^{\infty} 1_n .$$

Let γ_n be a simple curve oriented clockwise enclosing $\mathbf{1}_n$ so that γ_m and γ_n are disjoint if $m \neq n$. Then $\{\gamma_n\}_{n=-\infty}^{\infty}$ is a homology basis of the plane region Ω_* . A period function Γ_u is uniquely determined by values $\{\Gamma_u(\gamma_n)\}_{n=-\infty}^{\infty}$ and therefore, in order to study a period function Γ_u , it is sufficient that we pay attention only to values $\{\Gamma_u(\gamma_n)\}_{n=-\infty}^{\infty}$.

2. Let Δ_n denote the region $\Omega_* \cap \{z = x + yi; 3n - 1 \le x \le 3n + 2\}$

MASARU HARA

and ω_n denote the harmonic measure of the interval 1_n with respect to the region Δ_n .

LEMMA 1. If a harmonic function u belongs to the class $HD(\Omega_*)$, then

(1)
$$\int_{\tau_n} * du = (u, \omega_n);$$

(2)
$$\sum_{n=-\infty}^{\infty} \left| \int_{\gamma_n} * du \right|^2 \leqslant D(\omega_0) D(u) .$$

Proof. Observe that $\omega_n(z) = \omega_0(z - 3n)$. Consider an exhaustion $\{\mathcal{A}_{n,m}\}_{m=1}^{\infty}$ of the region \mathcal{A}_n . We may suppose that the region $\mathcal{A}_{n,m}$ are annuli, where we denote by $\alpha_{n,m}$ the boundary component of $\mathcal{A}_{n,m}$ the inside of which contains the interval $\mathbf{1}_n$ and by $\beta_{n,m}$ the other boundary component. Let $\omega_{n,m}$ denote the harmonic measure of the curve $\alpha_{n,m}$ with respect to $\mathcal{A}_{n,m}$. Then

$$D(\omega_{n,m}) = \int_{\alpha_{n,m}} * d\omega_{n,m} \ge \int_{\alpha_{n,m}} * d\omega_{n,m+1} = \int_{\alpha_{n,m+1}} * d\omega_{n,m+1} = D(\omega_{n,m+1}) .$$

Hence the harmonic functions $\omega_{n,m}$ converge to the harmonic function ω_n in the *CD*-topology [2], and

$$\int_{\gamma_n} * du = \int_{\alpha_{n,m}} * du = \int_{\alpha_{n,m}} \omega_{n,m} * du = (\omega_{n,m}, u) .$$

Therefore, letting $m \to \infty$, we obtain $\int_n * du = (u, \omega_n)$. Since

$$\left|\int_{\tau_n} * du\right|^2 = |(u, \omega_n)|^2 \leqslant D_{\mathfrak{a}_n}(u)D(\omega_n) = D_{\mathfrak{a}_n}(u)D(\omega_0) ,$$

we conclude that

$$\sum_{n=-\infty}^{\infty} \left| \int_{T_n} * du \right|^2 \leqslant \sum_{n=-\infty}^{\infty} D_{d_n}(u) D(\omega_0) = D(u) D(\omega_0)$$

3. Let b_n denote the harmonic measure of the interval 1_n with respect to the region Ω . The harmonic measure b_n has a property that $b_n(z) = b_0(z - 3n)$. We also consider the harmonic measure b_n as a potential, so that we have the following representation

$$b_n(z) = \int_{1_n} G(z, t) d\mu(t)$$

 $\mathbf{2}$

HARMONIC FUNCTIONS

where the function $G(z,t) = \log \left| \frac{e^z + e^t}{e^z - e^t} \right|$ is the Green's function for the region Ω with pole at t.

LEMMA 2. The function
$$b(z) = \sum_{n=-\infty}^{\infty} b_n(z)$$
 belongs to the class $HB(\Omega_*)$.

Proof. Consider the function b(z) on the region Ω . Then b(z + 3n) = b(z). Therefore in order to prove the lemma it is sufficient to show that the function b(z) is bounded on the region Δ_0 . Since $b_0(z) = b_0(\frac{1}{2} - z)$, using the representation of the function b_n as a potential, we see, for $n \ge 1$, that

$$b_n(z) \leq b_n(3) = b_0(3-3n) = b_0(\frac{1}{2}-3+3n) \leq b_0(3n-3);$$

 $b_{-n}(z) \leq b_{-n}(-2) = b_0(-2+3n) \leq b_0(3n-3).$

Hence

$$b(z) = \sum_{n=1}^{\infty} b_n(z) + \sum_{n=1}^{\infty} b_{-n}(z) + b_0(z) \leq 2 \sum_{n=1}^{\infty} b_0(3n-3) + 1.$$

We will show that $\sum\limits_{n=1}^{\infty} b_0(3n-3) < \infty.$

By the function $w = e^z$, the region is mapped onto the right half plane of the complex plane, and the interval 1_0 is mapped onto the interval [1 e]. The function $b_0(\log w)$ is the harmonic measure of the interval [1 e] with respect to the right half plane. We put

$$u[1 \ e](w) = \int_{1}^{e} \log \left| \frac{w+t}{w-t} \right| dt .$$

Then by lemma 1 of [1], for any point x on the interval 1_0 ,

$$u[1 \ e](x) \ge (e-1)\log(1+e) \ge 1$$
.

Therefore, since

$$b_0(\log w) \leq [1 \ e](w)$$
,

we obtain

$$\sum_{n=1}^{\infty} b_0(3n-3) \leqslant \sum_{n=2}^{\infty} u[1 \ e](e^{3n-3}) + 1$$
$$= \sum_{n=2}^{\infty} \int_1^e \log \left| \frac{e^{3n-3} + t}{e^{3n-3} - t} \right| dt + 1$$

MASARU HARA

$$\begin{split} &= \sum_{n=2}^{\infty} \int_{1}^{e} \log \left| 1 + \frac{2t}{e^{3n-3} - t} \right| dt + 1 \\ &\leq \sum_{n=2}^{\infty} \int_{1}^{e} \frac{2e}{e^{3n-3} - e} dt + 1 \\ &= (e-1) \sum_{n=2}^{\infty} \frac{2e}{e^{3n-3} - e} + 1 < \infty \; . \end{split}$$

4. Given a harmonic function u on the region Ω_* , we can construct a sequence $\{\Gamma_u(\gamma_n)\}_{n=-\infty}^{\infty}$. A period function Γ_u and the associated sequence can be considered identical. We will show that $\Gamma_B(\Omega_*) = \ell^{\infty}$ and $\Gamma_{BD}(\Omega_*)$ $= \Gamma_D(\Omega_*) = \ell^2$. It follows that $\Gamma_D(\Omega_*) < \Gamma_B(\Omega_*)$.

Lemma 3. $\Gamma_B(\Omega_*) = \ell^{\infty}$.

Proof. Put any function u belonging to the class $HB(\Omega_*)$. Suppose that $1 \le u \le M - 1$. Consider the set $\{z; tM\omega_n > u\}$. Then, for some $t, 0 \le t \le 1$, the set $\{z; tM\omega_n = u\}$ is a simple closed curve, which is denoted by δ_n and homologous to γ_n . Then

$$\int_{\tau_n} * du = \int_{\delta_n} * du \leqslant \int_{\delta_n} * d(tM\omega_n) \leqslant M \int_{\tau_n} * d\omega_n \; .$$

Also 1 < M - u < M - 1. We obtain

$$|\Gamma_u(\gamma_n)| = \left|\int_{\gamma_n} * du\right| \leqslant M \int_{\gamma_n} * d\omega_n \; .$$

Hence $\Gamma_B(\Omega_*) \subset \ell^{\infty}$. Note that $\int_{T_n} *db_n = \int_{T_0} *db_0$, and we denote the common value $\int_{T_0} *db_0$ by c.

Conversely, let $\{x_n\}$ be any sequence belonging to the space ℓ^{∞} . We consider

$$u=\sum_{n=-\infty}^{\infty}\frac{x_n}{c}b_n$$
.

Then the function u belongs to the class $HB(\Omega_*)$ and

$$\int_{r_n} *du = \frac{x_n}{c} \int_{r_n} *db_n = x_n \; .$$

Hence $\ell^{\infty} \subset \Gamma_B(\Omega_*)$.

LEMMA 4.
$$\Gamma_{BD}(\Omega_*) = \Gamma_D(\Omega_*) = \ell^2$$
.

https://doi.org/10.1017/S0027763000016317 Published online by Cambridge University Press

Rroof. It follows from Lemma 1 that $\Gamma_D(\mathcal{Q}_*) \subset \ell^2$. Let $\{x_n\}_{n=-\infty}^{\infty}$ be any sequence belonging to the space ℓ^2 . It follows from Lemma 3 that the function

$$u=\sum_{n=-\infty}^{\infty}\frac{x_n}{c}b_n$$

belongs to the class $HB(\Omega_*)$ and $\int_{T_n} * du = x_n$. Moreover

$$D\left(\sum_{n=-p}^{q} x_n b_n\right) = \sum_{-p \le i,j,k \le q} \int_{1_k} x_i b_i * d(x_j b_j) = \sum x_i x_j \int_{1_k} b_i * db_j .$$

Since $*db_j = 0$ on k_k if $k \neq j$, the last term of the above is equal to

$$\begin{split} \sum_{i,j=-\infty}^{\infty} |x_i| |x_j| \int_{1_j} b_i * db_j , \\ \sum_{i,j=-\infty}^{\infty} |x_i| |x_j| \int_{1_j} b_i * db_j \\ &< \sum |x_i| |x_j| \max_{t \in 1_j} b_i(t) \int_{1_j} * db_j \\ &< c \sum_{k=0}^{\infty} \sum_{i=-\infty}^{\infty} |x_i| |x_{i+k}| \max_{t \in 1_{i+k}} b_i(t) + |x_i| |x_{i-k}| \max_{t \in 1_{i-k}} b_i(t) \\ &< 2c \sum |x_i|^2 \sum_{k=0}^{\infty} \max_{t \in 1_k} b_0(t) + \max_{t \in 1_{-k}} b_0(t) \\ &< 4c \sum |x_i|^2 \max_{t \in 1} b(t) . \end{split}$$

Therefore the function u belongs to the class $HBD(\Omega_*)$, which proves the lemma.

REFERENCES

- [1] Hara, M.: On the existence of various bounded harmonic functions with given periods, Nagoya Math. J. (to appear).
- [2] Sario, L. and M. Nakai: Classification Theory of Riemann Surfaces. Springer (1970).

Applied physics