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We conduct direct numerical simulations for turbulent Rayleigh–Bénard (RB)
convection, driven simultaneously by two scalar components (say, temperature and
concentration) with different molecular diffusivities, and measure the respective fluxes
and the Reynolds number. To account for the results, we generalize the Grossmann–
Lohse theory for traditional RB convection (Grossmann & Lohse, J. Fluid Mech.,
vol. 407, 2000, pp. 27–56; Phys. Rev. Lett., vol. 86 (15), 2001, pp. 3316–3319;
Stevens et al., J. Fluid Mech., vol. 730, 2013, pp. 295–308) to this two-scalar
turbulent convection. Our numerical results suggest that the generalized theory
can successfully capture the overall trends for the fluxes of two scalars and the
Reynolds number without introducing any new free parameters. In fact, for most of
the parameter space explored here, the theory can even predict the absolute values of
the fluxes and the Reynolds number with good accuracy. The current study extends the
generality of the Grossmann–Lohse theory in the area of buoyancy-driven convection
flows.

Key words: convection

1. Introduction
Rayleigh–Bénard (RB) convection serves as a commonly used system for studying

natural convection, which is ubiquitous in many nature and engineering environments.
RB convection refers to a fluid layer which is heated from below and cooled from
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Two-scalar RB convection 649

above, and is subject to an external gravitational field. Such system has been
extensively studied in recent years, e.g. see the reviews of Ahlers, Grossmann &
Lohse (2009), Lohse & Xia (2010) and Chillà & Schumacher (2012). One key
question is how the scalar flux and flow velocity depend on the control parameters.
The unifying theory for the flux and flow velocity (‘GL theory’ Grossmann & Lohse
2000, 2001, 2002, 2004), which are measured respectively by the Nusselt number Nu
and the Reynolds number Re, has achieved great success for RB flows (Ahlers et al.
2009; Stevens et al. 2013), and now has predictive power for the absolute values of
Nu and Re for given control parameters, i.e. the Rayleigh number Ra and the Prandtl
number Pr.

However, in many cases the convection flow can be more complex than in the
idealized RB system, e.g. as in the case of external rotation (e.g. King et al. 2009;
Horn & Shishkina 2015; Wei, Weiss & Ahlers 2015), inhomogeneities of the top and
bottom boundaries (e.g. Wang, Huang & Xia 2017; Bakhuis et al. 2018), or wall
roughness (e.g. Roche et al. 2001; Shishkina & Wagner 2011; Salort et al. 2014;
Wagner & Shishkina 2015; Xie & Xia 2017; Zhu et al. 2017; Jiang et al. 2018). In
this study we will investigate another type of complexity, i.e. RB convection driven
by two different scalar components. Multiple-component convection is commonly
encountered in natural environments. For instance, the density of seawater is
mainly determined by temperature and salinity, and chemical reaction flows usually
have more than one species. In the ocean, the vertical convection flow driven by
both temperature and salinity gradients is usually referred to as double diffusive
convection (DDC) (Turner 1985; Radko 2013). Our previous study on DDC was
confined in the so-called fingering regime, where the fluid layer experiences an
unstable salinity gradient and a stable temperature gradient (Yang et al. 2015; Yang,
Verzicco & Lohse 2016). DDC can also happen in an electrodeposition cell with heat
and ion concentration as two scalars (Hage & Tilgner 2010; Kellner & Tilgner 2014).

Here we will focus on convection flow driven simultaneously by two scalar
components with different molecular diffusivities. Our previous study showed that
the original GL model can be used to describe the salinity transfer in fingering DDC
flow (Yang et al. 2015, 2016). The theory has also been applied to DDC in the
diffusive regime, in which the fluid layer is subjected to an unstable temperature
gradient and a stable salinity gradient (Hieronymus & Carpenter 2016). In the
present study the RB convection is driven by two scalar components which are both
unstably stratified. Recall that the key idea of the GL theory is to divide both the
momentum and thermal fields into their own boundary layer and bulk regions. Then
scaling relations are developed for the two respective contributions to the respective
dissipation rates, leading to Nu(Ra, Pr) and Re(Ra, Pr). It is straightforward to
generalize this type of argument to multiple scalar fields. We will validate this
generalization of the GL theory by direct numerical simulations. We stress that not a
single new fitting parameter is introduced; we simply take those determined in Stevens
et al. (2013).

The paper is organized as follows. In § 2 we will provide the governing dynamical
equations of the system and the details of our simulations. In § 3 we will present
the generalization and application of the GL theory to the two-scalar RB convection.
Finally § 4 concludes the paper.

2. Governing equations and numerical simulations
The flow under consideration is incompressible and the density ρ is determined

by two scalar components, say temperature θ(x, t) and concentration field s(x, t).
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650 Y. Yang, R. Verzicco and D. Lohse

The Oberbeck–Boussinesq approximation is adopted, i.e. the fluid density depends
linearly on both scalars as ρ(θ, s)= ρ0[1−βθθ +βss]. ρ0 is a reference density, while
θ and s are the temperature and concentration relative to their respective reference
values. βζ is the positive expansion coefficient respectively for temperature (ζ = θ )
and concentration (ζ = s). From now on the subscript ζ = θ or s stands for a quantity
associated with scalar ζ . The signs before the two terms indicate that the density is
bigger for either lower temperature or higher concentration, which are the usual cases
in practice.

The governing equations consist of the momentum equation and the advection–
diffusion equations for two scalars, which read

∂tui + uj∂jui =−∂ip+ ν∂2
j ui + gδi3(βθθ − βss), (2.1a)

∂tθ + uj∂jθ = κθ∂
2
j θ, (2.1b)

∂ts+ uj∂js= κs∂
2
j s. (2.1c)

Here ui with i=1, 2, 3 are the three velocity components, p is the kinematic pressure,
ν is the kinematic viscosity, g is the gravitational acceleration and κζ is the molecular
diffusivity, respectively. The dynamic system is further constrained by the continuity
equation ∂iui = 0.

The fluid layer is between two parallel plates which are perpendicular to gravity
and separated by a height H. At each plate both the temperature and concentration
are kept constant. The scalar difference between two plates is denoted by ∆ζ . The
top plate has lower temperature and higher concentration, thus the flow is driven by
both scalars. The flow has four control parameters, namely two Prandtl numbers and
two Rayleigh numbers,

Prζ =
ν

κζ
, Raζ =

gβζ∆ζH3

κζν
. (2.2a,b)

Another useful parameter, which is borrowed from the DDC community, is the density
ratio

Λ=
βθ∆θ

βs∆s
=

PrsRaθ
PrθRas

. (2.3)

Λ measures the relative strength of the buoyancy force induced by the temperature
difference to that induced by the concentration difference. Λ < 1 indicates that the
buoyancy force of the concentration difference is stronger than that of the temperature
field, which we refer to as the ‘concentration-dominant’ (CD) regime. Accordingly,
Λ > 1 is referred to as the ‘temperature-dominant’ (TD) regime. The three key
responses of the system are the scalar fluxes and the flow velocity, which are
measured by the two Nusselt numbers and the Reynolds number

Nus =
〈u3s− κs∂3s〉h
κs∆sH−1

, Nuθ =
〈u3θ − κθ∂3θ〉h

κθ∆θH−1
, Re=

urmsH
ν

. (2.4a−c)

Here 〈·〉h represents the average over time and a horizontal plane at arbitrary height.
In this work we calculate the two Nusselt numbers by the scalar gradients on the two
plates. urms is the root-mean-square value of the velocity magnitude calculated over
the entire domain.

The governing equations (2.1) are numerically solved by a highly efficient
code developed in our group (Ostilla-Mónico et al. 2015), which has been used

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

37
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.378


Two-scalar RB convection 651

Prs Raθ Ras Λ Γ nx (mx) nz (mz) Nuθ Nus Re

10.0 106 105 100.0 4.0 240(3) 128(2) 18.5± 0.3 8.28± 0.15 221.2± 4.9
10.0 106 106 10.0 4.0 240(3) 128(2) 18.7± 0.3 8.36± 0.16 223.0± 4.4
10.0 106 107 1.0 4.0 240(4) 192(2) 20.8± 0.3 8.97± 0.16 238.6± 4.6
10.0 106 108 0.1 4.0 288(4) 192(2) 31.7± 0.2 12.4± 0.1 395.8± 5.2
10.0 106 109 0.01 4.0 512(4) 384(2) 60.8± 0.3 22.8± 0.3 1083± 24

10.0 107 105 1000.0 4.0 384(4) 192(2) 35.6± 0.3 15.8± 0.2 682± 11
10.0 107 106 100.0 4.0 384(4) 192(2) 35.7± 0.4 15.8± 0.2 681± 12
10.0 107 107 10.0 4.0 384(4) 192(2) 36.1± 0.4 15.9± 0.2 688± 12
10.0 107 108 1.0 4.0 384(4) 192(2) 40.1± 0.3 17.1± 0.2 744± 11
10.0 107 109 0.1 2.0 288(4) 288(2) 64.0± 0.6 24.9± 0.3 1208± 26

10.0 104 107 0.01 4.0 256(2) 192(1) 16.3± 0.1 6.04± 0.09 99.6± 1.5
10.0 105 107 0.1 4.0 256(2) 192(1) 16.7± 0.2 6.53± 0.10 119.8± 1.8
10.0 106 107 1.0 4.0 240(4) 192(2) 20.8± 0.3 8.97± 0.16 238.6± 4.6
10.0 107 107 10.0 4.0 384(4) 192(2) 36.1± 0.4 15.9± 0.2 688± 12
10.0 108 107 100.0 2.0 384(4) 384(2) 72.4± 1.4 31.5± 0.6 1921± 73

0.1 107 104 100.0 4.0 384(1) 144(1) 5.10± 0.13 15.8± 0.2 690± 13
0.1 107 105 10.0 4.0 384(1) 192(1) 5.41± 0.15 16.4± 0.2 778± 15
0.1 107 106 1.0 2.0 288(1) 192(1) 7.93± 0.23 21.6± 0.4 1390± 49
0.1 107 107 0.1 2.0 512(1) 256(1) 13.6± 0.4 37.9± 0.7 3358± 98
0.1 107 108 0.01 1.0 512(1) 384(1) 26.2± 1.5 76.7± 2.1 7611± 530

0.1 107 107 0.1 2.0 512(1) 256(1) 13.6± 0.4 37.8± 0.7 3352± 98
1.0 107 107 1.0 4.0 384(1) 192(1) 19.3± 0.2 19.3± 0.2 950± 20
2.0 107 107 2.0 4.0 384(2) 192(1) 22.7± 0.3 17.3± 0.2 779± 17
5.0 107 107 5.0 4.0 384(3) 192(2) 29.4± 0.3 16.2± 0.2 706± 11
10.0 107 107 10.0 4.0 384(4) 192(2) 36.1± 0.4 15.9± 0.2 688± 12
30.0 107 107 30.0 2.0 384(6) 385(2) 52.6± 1.2 16.5± 0.4 692± 18

TABLE 1. Summary of the control parameters, numerical details and the global responses.
For all cases Prθ = 1. Columns from left to right: Prandtl number of concentration field,
Rayleigh numbers of temperature and concentration, density ratio, aspect ratio of domain
(horizontal length over height), horizontal resolution of base mesh (refinement factor of
refined mesh), vertical resolution of base mesh (refinement factor of refined mesh), two
Nusselt numbers and Reynolds number. Note that some cases appear repeatedly for the
completeness of each group.

intensively in our previous DDC studies (Yang et al. 2015, 2016). The code employs
a multiple-grid method, which solves different flow quantities on either a base mesh
or a refined mesh. Specifically, momentum and scalars with Pr 6 1 are always solved
on the base mesh. Scalars with Pr > 1 usually require higher resolution and are
solved on the refined mesh. The flow quantities are non-dimensionalized by the
height H, the free-fall velocity defined by concentration difference Us =

√
gβs∆sH

and the scalar differences ∆ζ , respectively. At two plates no-slip boundary conditions
are applied and both scalars are kept constant. In the two horizontal directions
the periodic boundary conditions are employed. We fix Prθ = 1 and change Raθ ,
Ras and Prs. For Prs < Prθ (Prs > Prθ ) concentration diffuses faster (slower) than
temperature.

The simulated cases are summarized in table 1. All cases are sorted into five groups,
as shown in table 1. Within each group we only vary one control parameter and fix all
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(a) (b)

(c) (d)

(e) ( f )

0 0.5 1.0 0 0.5 1.0

FIGURE 1. Three-dimensional volume rendering of the temperature (a,c,e) and the concen-
tration (b,d,f ) for three runs with different control parameters. The control parameters
(Prs, Prθ , Ras, Raθ , Λ) are (10, 1, 107, 105, 0.1) for the (a,b), (10, 1, 107, 107, 10) for
the (c,d) and (0.1, 1, 105, 107, 10) for the (e,f ), respectively. Note that given Prs, Prθ ,
Ras and Raθ , giving the value for Λ (by 2.3) is redundant information, but useful for the
interpretation of the figures.

the others. To ensure the resolution is adequate, the mesh size is chosen to meet the
criteria proposed in Stevens, Verzicco & Lohse (2010), i.e. for momentum the mesh
size is smaller than the Kolmogorov length scale and for each scalar smaller than the
Batchelor length scale, respectively. Furthermore, for the case with Prs = 10, Ras =

Raθ = 107 we run another simulation with a higher resolution nx(mx) = 512(4) and
nz(mz) = 384(2) as a benchmark. Two different resolutions generate similar Nusselt
and Reynolds numbers, with differences smaller than 1 %. In the table we also give
the three responses of the flow, i.e. Nus, Nuθ and Re. The uncertainty is measured by
the standard deviation of temporal fluctuation.

In figure 1 we show the scalar fields for three runs with very different flow
morphologies. The case shown in figure 1(a,b) has (Prs, Ras, Raθ) = (10, 107, 105),
which corresponds to Λ= 0.1. Thus, the buoyancy force is dominated by the concen-
tration difference. However, for this case the molecular diffusivity of temperature is
ten times bigger than that of concentration, and the typical size of the temperature
plumes is much larger than the concentration ones due to the fast horizontal diffusion.
In figure 1(c,d) we show the case with (Prs, Ras, Raθ) = (10, 107, 107) and Λ = 10.
Now the temperature difference dominates the buoyancy force, and the temperature
plumes are very active. The concentration plumes become thin filaments embedded
within temperature plumes due to the slow diffusion. Figure 1(e,f ) displays the case
with (Prs, Ras, Raθ)= (0.1, 105, 107), or Λ= 10. Although the temperature difference
dominates the buoyancy force as is the case in figure 1(c,d), the concentration field
has larger molecular diffusivity and therefore the concentration plumes have bigger
horizontal size than the temperature plumes.
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FIGURE 2. (Colour online) Mean profiles of two scalars (a,c,e) and the root-mean-square
of scalars and one horizontal velocity component (b,d,f ) for the three cases shown in
figure 1(a–f ). For clarity of the near wall region and due to the symmetry about z= 0.5,
in (b,d,f ) we only show the lower half of the domain. The vertical lines mark the peak
locations.

Figure 2 displays the profiles of the flow quantities for the three cases shown
in figure 1. All profiles are calculated by averaging over time and two horizontal
directions. The mean profiles of the scalars suggest that both scalar fields have two
boundary-layer regions with high gradient adjacent to the plates, and in between
a well-mixed bulk region with nearly constant mean values (see figure 2a,c,e). In
figure 2(b,d,f ) we plot the root-mean-square (r.m.s.) profiles of the fluctuations of
the scalars and one horizontal velocity component near the bottom plate (the mean
profiles of two horizontal velocity components are very similar to each other). As
in the RB flow, the peak location in r.m.s. profile can be regarded as the height of
the boundary layers. For both figure 2(b,d), Prs = 10 and Ras = 107. Both scalar
boundary layers are always nested inside the momentum one. As Raθ increases from
105 in figure 2(b) to 107 in figure 2(d), all three boundary-layer thicknesses decrease
due to the stronger buoyancy force. Interestingly, the concentration boundary layer
also becomes thinner even though Ras is the same for the two cases. The cases of
panels figure 2(d,f ) have the same Raθ = 107 and Λ= 10, and temperature difference
dominates the buoyancy force. The temperature and momentum boundary layers have
very similar heights for the two cases. However, among the three fields the thickness
of the concentration boundary layer is the smallest for Prs = 10 (figure 2d) and the
largest for Prs = 0.1 (figure 2f ).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

37
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.378


654 Y. Yang, R. Verzicco and D. Lohse

3. Generalized Grossmann–Lohse theory
3.1. Key idea of the original Grossmann–Lohse theory

The GL theory was originally developed for RB flow (Grossmann & Lohse 2000,
2001, 2002, 2004) to provide an unifying theory to account for the dependences
Nu(Ra, Pr) and Re(Ra, Pr), and indeed successfully does so for most of the existing
experimental and numerical results (Ahlers et al. 2009; Stevens et al. 2013). Here
we will briefly describe the theory for completeness, and then discuss the extension
to the current two-scalar convection flow. For full details the readers are referred to
the original references.

The GL theory is built upon the exact relations between the dissipation rates and
the global fluxes. For convection flow driven by an active scalar (e.g. temperature),
these exact relations read (Shraiman & Siggia 1990)

εθ ≡
〈
κθ [∂iθ ]

2
〉
= κθ ∆

2
θ H−2 Nuθ , (3.1a)

εu ≡
〈
ν[∂iuj]

2
〉
= ν3H−4 Raθ Pr−2

θ (Nuθ − 1). (3.1b)

Here 〈·〉 represents the average over time and the entire domain. The key idea of the
theory is to split the flow domain into boundary-layer and bulk regions and thus

εθ = εθ,bl + εθ,bulk, εu = εu,bl + εu,bulk. (3.2a,b)

The individual contributions εbl and εbulk can be modelled for both momentum and
thermal fields. For the bulk region, by using the Kolmogorov’s energy-cascade picture,
εbulk can be estimated as the scaling laws of Re defined by a characteristic velocity
of the bulk flow. For the boundary-layer region, εbl can be estimated by assuming the
Prandtl–Blasius–Pohlhausen profiles in the boundary layers and by using the scaling
laws for the boundary-layer thicknesses. Then a cross-over function f is introduced to
model the transition from the regime where the kinetic boundary layer is nested in
the thermal one to the regime where the thermal boundary layer is thinner than the
kinetic one. Another cross-over function g is employed to account for the saturation
limit at small Re when the kinetic boundary-layer thickness is of the order of the
domain height. By combining all the modelling, one obtains the original GL theory

(Nuθ − 1)RaθPr−2
θ = c1

Re2

g
(√

Rec/Re
) + c2Re3, (3.3a)

Nuθ − 1 = c3Re1/2 Pr1/2
θ

{
f

[
2aNuθ
√

Rec
g

(√
Rec

Re

)]}1/2

+ c4Re Prθ f

[
2aNuθ
√

Rec
g

(√
Rec

Re

)]
. (3.3b)

The model has five free coefficients a and ci with i = 1, 2, 3, 4. Rec can be
calculated as 4a2. Stevens et al. (2013) explained in detail how these coefficients
were fitted based on only four (experimental or numerical) data points Nu(Raθ,j,Prθ,j),
j= 1, 2, 3, 4 and one measure of Reynolds number, giving

c1 = 8.05, c2 = 1.38, c3 = 0.487, c4 = 0.0252, a= 0.922. (3.4a−e)

Stevens et al. (2013) also showed that the theory successfully accounts for most
of the existing RB results. Since for different flow configurations the Reynolds
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number can be defined by different characteristic velocities, to correctly predict the
Reynolds number a transformation coefficient α needs to be determined and the
procedure is described in Grossmann & Lohse (2002) and in Stevens et al. (2013).
Such transformation does not change the theoretical prediction of the Nusselt number
and merely accommodates the specific definition of Reynolds number in the flow
investigated.

3.2. Extension to two-scalar convection and rational of the coefficients
Extend the GL theory to the current two-scalar RB flow is straightforward. First of
all, exact relations similar to (3.1) still exist and read

εθ ≡
〈
κθ [∂iθ ]

2
〉
= κθ ∆

2
θ H−2 Nuθ , (3.5a)

εs ≡
〈
κs[∂is]2

〉
= κs∆

2
s H−2 Nus, (3.5b)

εu ≡
〈
ν[∂iuj]

2
〉
= ν3H−4

[
Raθ Pr−2

θ (Nuθ − 1)+ Ras Pr−2
s (Nus − 1)

]
. (3.5c)

They can be readily obtained from the dynamic equations of s2, θ 2 and u2/2−gβθzθ +
gβszs by the procedure given in Shraiman & Siggia (1990). We then notice that for the
current flow the momentum and both scalar fields can still be divided into boundary-
layer and bulk regions, as supported by figures 1 and 2. Thus for each field the
dissipation rate can be modelled separated for the boundary-layer and bulk regions as
in the original theory. Intuitively we assume that in the current flow the same scaling
relations still hold for the dissipation rates in each region. By following the same
arguments as in the original theory, one readily obtains the GL theory for the turbulent
two-scalar convective flow, namely

(Nus − 1)RasPr−2
s + (Nuθ − 1)RaθPr−2

θ = c1
Re2

g
(√

Rec/Re
) + c2Re3, (3.6a)

Nuθ − 1= c3Re1/2 Pr1/2
θ

{
f

[
2aNuθ
√

Rec
g

(√
Rec

Re

)]}1/2

+ c4Re Prθ f

[
2aNuθ
√

Rec
g

(√
Rec

Re

)]
, (3.6b)

Nus − 1= c3Re1/2 Pr1/2
s

{
f

[
2aNus
√

Rec
g

(√
Rec

Re

)]}1/2

+ c4Re Prs f

[
2aNus
√

Rec
g

(√
Rec

Re

)]
. (3.6c)

Equations (3.6a) without the first term and (3.6b) form the GL theory for the single-
scalar RB flow, e.g. see (3.3). Comparing to the original theory, the first terms of
(3.6a) and (3.6c) are introduced due to the existence of the second scalar.

Note that (3.6b) and (3.6c) have the same coefficients. The physical reason for this
necessity is that, as explained in Yang et al. (2015), when either of the two scalar
differences decreases to zero, the flow must still reduce to the traditional RB flow with
one scalar and the theory must degenerate to the original form. Thus the generalized
theory still has the very same five coefficients ci with i= 1, 2, 3, 4 and a, and not two
extra ones for the second scalar field, as one may naively (but erroneously) expect.
Furthermore, the values of these coefficients can directly be taken from Stevens et al.
(2013), i.e. those given in (3.4).
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3.3. Application to the current numerical results
We now apply the theory to the current numerical results. As we explained before, a
transformation coefficient α needs to be determined to correctly predict the Reynolds
number for the current flow. Here we fix α = 1.453 by using the Reynolds number
of the case with Prs = 10, Raθ = Ras = 107. Figure 3 shows both the theoretical
predictions and the numerical measurements for the five groups of the cases listed in
table 1. The overall trends of all three global responses, namely Nuθ , Nus and Re, are
very well captured by the theory. Moreover, the theory can even predict the absolute
values for most of the cases with good accuracy. Specifically, the relative error of Nuθ
prediction is always smaller than 20 %. For the Re prediction over 90 % of all cases
have a relative error smaller than 20 %. The theory has the least accuracy for the Nus

prediction, but still the relative error for over 50 % of all cases are smaller than 20 %.
The largest error is always smaller than 50 % for both Nus and Re.

Among the three global responses, the theoretical prediction for the concentration
flux Nus exhibits the biggest deviation from the numerical results, especially in the
deep TD regime (with large Λ) for Prs > 1 (see the left panel of figure 3a–c,e). In
this regime the flow is mainly driven by the temperature difference, such as the case
shown in figure 1(c,d). All the concentration plumes are very thin and stay in the
core regions of the temperature plumes, therefore the buoyancy anomaly associated
with concentration and its effects on the momentum field are confined inside the
temperature plumes due to the slow sideward diffusion. The morphology and dynamics
of such thin concentration plumes are very different from the traditional RB plumes,
thus the original scaling arguments of the GL theory become less accurate.

For the opposite reason in the deep CD regime (with small Λ), although the
buoyancy force is mainly generated by the concentration component, the temperature
anomaly diffuses faster in the lateral direction and is not confined inside the
concentration plumes. The temperature anomaly can directly interact with the
momentum field and thus more similar to the situation in the RB flows. Therefore
the GL theory performs better in the CD regime than in the TD regime, as shown in
figure 3(a–c).

4. Conclusions and discussion

In summary, we conducted direct numerical simulations of the RB convection driven
by two scalar components. The flow morphology changes for different ratios of the
buoyancy forces associated with the two scalar differences. We have generalized
the GL theory for the single-scalar RB convection to the current problem. The
results show that the theory captures the overall trends of the dependences of scalar
fluxes and flow velocity on the control parameters. For most of the cases the theory
predicts the absolute values with good accuracy. This comparison demonstrates the
applicability of the GL theory to multiple-component convection flows. The accuracy
of the theory decreases when temperature difference dominates the buoyancy force,
i.e. in the TD regime, and when the concentration has large Prandtl number. We
argue that in this regime, the structures of the concentration plumes are different
from those in the traditional RB flows, and the argument in the original GL theory
becomes less accurate. A more refined generalization of the GL theory should assume
that the coefficients are not constant but some functions of the density ratio Λ, and
they recover the original GL values when the system degenerates to a single-scalar
RB flows.
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FIGURE 3. (Colour online) Comparison of the GL theory (lines) to the numerical results
(symbols). Each plot shows a group of cases listed in table 1. The error bars are
comparable or smaller than the size of symbols. The vertical grey line indicates the
location Λ= 1, which separates the CD and TD regimes.
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