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Abstract

Automated planning is the field of Artificial Intelligence (AI) that focuses on identifying sequences of
actions allowing to reach a goal state from a given initial state. The need of using such techniques in
real-world applications has brought popular languages for expressing automated planning problems to
provide direct support for continuous and discrete state variables, along with changes that can be either
instantaneous or durative. PDDL+ (Planning Domain Definition Language +) models support the encod-
ing of such representations, but the resulting planning problems are notoriously difficult for AI planners
to cope with due to non-linear dependencies arising from the variables and infinite search spaces. This
difficulty is exacerbated by the potentially huge fully ground representations used by modern planners in
order to effectively explore the search space, which can make some problems impossible to tackle.

This paper investigates two grounding techniques for PDDL+ problems, both aimed at reducing the
size of the full ground representation by reasoning over the lifted, more abstract problem structure. The
first method extends the simple mechanism of invariant analysis to limit the groundings of operators
upfront. The second method proposes to tackle the grounding process through a PDDL+ to classical
planning abstraction; this allows us to leverage the amount of research done in the classical planning
area. Our empirical analysis studies the effect of these novel approaches over both real-world hybrid
applications and synthetic PDDL+ problems took from standard benchmarks of the planning commu-
nity; our results reveal that not only the techniques improve the running time of previous grounding
mechanisms but also let the planner extend the reach to problems that were not solvable before.

1 Introduction

Automated planning is a prominent Artificial Intelligence (AI) challenge, which is concerned with the
problem of finding a sequence of actions that can bring the agent into some goal state from a given
initial condition. Automated planning is exploited in many real-world applications as it is a common
capability requirement for intelligent autonomous agents (McCluskey et al., 2017). Example application
domains include drilling (Fox et al., 2018), urban traffic control (McCluskey & Vallati, 2017), smart
grid (Thiébaux et al., 2013), UAV control (Ramírez et al., 2018; Kiam et al., 2020), e-learning (Garrido
et al., 2012), machine tool calibration (Parkinson et al., 2014), human–robot interaction (Petrick & Foster,
2013), and mining (Lipovetzky et al., 2014).

The nature of real-world applications often necessitates the capability of expressing aspects of the
environment with a high level of precision, and it is popular to do so through the exploitation of mixed
representations providing both continuous and discrete variables along with changes that can be both
instantaneous (turn on the motor) and/or continuous evolution of the system (a moving car). Following on
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2 E . S CALA AND M. VALLAT I

from this, a dedicated language called PDDL+ (Planning Domain Definition Language +) was designed
to support compact encoding of what are called hybrid models (Fox & Long, 2006).

The exploitation of AI planning in real-world applications is supported by the availability and con-
tinuous development of domain-independent planners providing ‘off the shelf’ technology that can be
quickly used: since they accept the domain and problem description in a standardised interface language
(PDDL+) and return plans using a standardised format, they can easily be exploited as embedded com-
ponents within larger frameworks, as they can be interchanged without modifying the rest of the system.
Automated planning can therefore be part of complex architectures, and the planning component—being
modular itself—can immediately benefit from improvements in the field by swapping the corresponding
internal modular components for a more advanced version of them.

Notably, hybrid PDDL+ models are amongst the most advanced models of systems, and the result-
ing problems are notoriously difficult for domain-independent planners to cope with due to non-linear
behaviours and immense search spaces. To support the maintenance and readability by human experts,
PDDL+ models allow the specification of the domain model using a lifted representation, therefore dele-
gating to the planning engine the task of grounding the structures (actions, processes, and events) against
a finite set of objects. More precisely, grounding is the task that, given some universe of objects, identifies
lists of objects for each action/process/event that fully instantiate the structures. For non-toy problems,
each given structure can be instantiated with millions of such lists, giving rise to an enormous amount of
actions, processes, and events, which can make realistic problems impossible to tackle, even when just a
handful of them is actually necessary to solve the problem.

Unfortunately, despite the importance and complexity of grounding for hybrid PDDL+ planning,
there is a lack of studies focusing on investigating approaches that can limit the number of the generated
structures. Most of the research on hybrid PDDL+ planning focuses on the design of domain-independent
planning engines, such as DiNo (Piotrowski et al., 2016), UPMurphi (Della Penna et al., 2009), and CASP
(Balduccini et al., 2017), where the emphasis has been mostly given to the search module of such engines.
The limited work available in the area of efficient PDDL+ grounding focused on reformulating the input
models in order make them more amenable to planning engines (Franco et al., 2019), or on modifying
the internal behaviour of planning engines to adapt them to the specific application domain (Vallati
et al., 2016; McCluskey & Vallati, 2017), rather than on designing principled grounding modules for
domain-independent planning engines. In several real-world hybrid PDDL+ applications, the grounding
phase has to be done externally or manually. This not only produces a lengthy problem description but
also complicates debugging and model reuse, basically invalidating some of the principles of knowledge
engineering for planning (Biundo et al., 2003).

While grounding for PDDL+ has been scarcely investigated, a significant amount of work has been
dedicated to designing efficient grounding approaches for classical planning. Classical planning provides
a much less expressive formalism and has been studied for decades. Further, the International Planning
Competition (Vallati et al., 2018) supported and fostered the development of highly engineered classical
planning systems. In this context, the question that naturally arises is Can we leverage the extensive work
on classical planning grounding to obtain efficient modular grounders for PDDL+ engines? To answer
this question, in this paper, we investigate two grounding techniques for PDDL+ planning engines. The
first grounding technique exploits a static analysis that is aimed at removing groundings that can never
be reached because some conditions can never be satisfied. This is based on a first overapproximation of
the problem. The second method deals with the above-mentioned question by constructing an abstracted,
classical planning version of a PDDL+ model and feeds such a representation to off-the-shelf classical
planning grounders. Also this technique exploits an overapproximation, but does so through approxi-
mations developed for classical planning. Both techniques have been designed in a modular fashion, to
foster and support their integration into off-the-shelf planning engines, and, in particular for the sec-
ond one, in a way that any advancement in classical planning can be reflected into PDDL+ planning.
To assess the introduced grounding approaches, we consider two real-world hybrid planning applica-
tions, urban traffic control, and robotic manipulation, and we show empirically the impact that different
grounding techniques can have in realistic conditions. Further, we consider two synthetic domains from
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the International Planning Competition (IPC), to provide an encompassing overview of the performance.
Our findings show that it is possible to leverage the work done on classical planning grounding to obtain
PDDL+ grounders that are more efficient and more modular than solutions at the state of the art. Last
but not least, we observe that the adoption of the new technique enables the solving of several real-world
problems whose resolution was not possible before this work.

Summarising, the main contributions of this work are as follows:

• the introduction and algorithmic specification of two modular grounders for PDDL+ hybrid planning;
• the deployment of such grounders as part of the state-of-the-art planning engine ENHSP (Scala et al.,

2016b);
• an empirical evaluation and validation of the proposed grounders on a range of real-world and synthetic

benchmarks.1

The remainder of this paper is organised as follows. First, in Section 2, we provide the necessary back-
ground. Then, in Section 3, we introduce and formalise the two grounding approaches. The experimental
analysis is provided in Section 4. Then, in Section 5, we discuss related works. Finally, conclusions are
given.

2 Background

Our work focuses on the language of hybrid planning with autonomous processes, also known as
PDDL+, short for Planning Domain Definition Language Plus (Fox & Long, 2006). In this section,
we report on the PDDL+ formalisation and define its semantics to provide only those accounts that are
necessary to explain our contribution. A complete description of the language and its semantics is out of
the scope of this paper, but can be found in the seminal work by Fox and Long (2006) who define it via
mapping into hybrid automata (Henzinger, 1996).

2.1 Logical foundations

PDDL+ uses first-order logic to define formulae over a set of Boolean and numeric predicates called
fluents 2. Boolean and numeric fluents are function symbols, each of which is accompanied with a list
(possibly empty) of objects and/or typed variables. Objects are finite and typed entities modelling some
aspect of interest. Variables are devices by which one can represent generic fluents. A fluent is said to be
ground if the associated list does not contain variables; unground otherwise. A ground Boolean fluent can
be true or false. A ground numeric fluent can instead take on any value from the set of real numbersR plus
the special symbol ⊥. For instance, the Boolean fluent (on A B) can be used to model the fact that some
object A is on object B; the numeric fluent (distance C D) can be used to model the numeric distance
between city C and D. Or, alternatively, (distance C ?x) can be exploited to define a numeric property
with the free variable ?x. Partially instantiated fluents are used as a means to compactly represent actions.
Importantly, the value of a fluent can be determined only when it is ground.

A first-order formula over some universe of fluents is defined recursively using the standard logical
connectives:

• p= {�,⊥} where p is a Boolean fluent is a formula
• 〈{≥, >,=}, ξ, 0〉 where ξ is an arithmetical expression over some numeric fluents is a formula
• if ψ is a formula, so is ¬ψ
• if ψ and φ are formulae, so is ψ ∧ φ
• if ψ and φ are formulae, so is ψ ∨ φ
1 The present work significantly extends, both theoretically and experimentally, a recent conference paper in which
the grounding techniques have been presented (Scala & Vallati, 2020).
2 The logical pillars of the language resemble those used in Satisfiability Modulo Theory languages (Barrett &
Tinelli, 2018).

https://doi.org/10.1017/S0269888921000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888921000072


4 E . S CALA AND M. VALLAT I

We hereinafter call numeric condition the atomic formula of the form 〈{≥, >,=}, ξ, 0〉. With a little
abuse of notation, we use literals to refer to a Boolean fluent that is required true (i.e., the positive literal
(on a b) for (on a b) = �) or false (i.e., the negative literal (not (on a b)) for (on a b) = ⊥);
we also allow the notation v ∈ ξ to refer to some element v in the numeric expression ξ . Finally, let f be
a fluent, with σ( f ) we denote the list of typed objects and variables of f .

PDDL+ uses formulae with the purpose of postulating constraints over assignments to Boolean or
numeric fluents. For instance, we can use a formula ψ = (on A B) to express that (on A B) needs
to hold true in order for a goal to be reached, or we can predicate that the battery level of some robot
((battery ?r)) has to be larger than 10 by a formula φ = (> (battery ?r) 10). As we will see next,
this can be used in any precondition of transitions and in the goal specification.

2.2 PDDL+ domain model and problem

Intuitively, A PDDL+ Domain Model defines the context of our planning problem, together with all the
transitions that can happen.

DEFINITION 1 (PDDL+ DOMAIN MODEL). A PDDL+ planning domain model is defined by the tuple
〈T,C, F, X, A, E, P〉:

• T (Types) is a set of types.
• C (Constants) is a set of typed objects, each of which is simply a name given to the object, and
its type.

• F and X are sets of Boolean and numeric fluents, respectively.
• A (Actions), E (Events), and P (Processes) are sets of transition schemata. A transition schema is the
tuple 〈σ , pre, eff 〉 where:
– σ̄ is a sequence of objects from C or variables typed in T
– pre is a first-order formula.
– eff is a set of Boolean and numeric effects. Boolean effects are assignments 〈p, {�,⊥}〉 with p ∈ F
where numeric effects are assignments 〈p, ξ 〉, with ξ being an arithmetical expression.

– Both pre and eff only mention fluents from σ̄ or objects from C.

Given some universe of typed Objects�, we define the groundings of F, X and all transitions (actions,
processes, and events).

DEFINITION 2 (GROUNDING OF F AND X). The groundings of F(X) is the set of Boolean (numeric)
fluents obtained by replacing, for each f ∈ F(X), all variables in σ( f ) with concrete and suitable (with
respect to their type) objects from �.

DEFINITION 3 (GROUNDING OF A TRANSITION). A transition is ground if the parameters list only
involves objects. The groundings of a transition schema a over� is denoted by σ(a, �) and corresponds
to the set of all ground transitions obtained by substituting the parameter list σ̄ of a, with a list of
compatible objects taken from �, and then substituting each occurrence of the variables which were in
σ̄ in the structure of a (preconditions and effects) with the newly introduced objects. Actions, processes,
and events are all transitions; therefore, we will also talk about ground actions/processes/events when
needed.

The set of atoms for a planning domain model is the set of all ground fluents obtained by grounding F
and X using objects from�. Such a set is referred by atoms(�). Analogously, the set of ground transitions
obtained from � is referred by transitions(�)= ⋃

a∈A∪E∪P
σ(a, �).

A PDDL+ planning problem is defined by combining a planning domain model D with a specific set
of typed objects O, an initial state I, and a goal G. Intuitively, a planning problem asks whether, given a
planning domain model, a set of objects, an initial state, and a goal there is a plan, that is, a set of actions
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(:action switchPhase
:parameters (?p - phase ?i - intersection)
:precondition (and

(controllable ?i)
(activePhase ?p)
(contains ?i ?p)
(> (phaseTime ?i) (minPhaseTime ?p) ))

:effect (and (trigger ?i) )
)

(:event triggerCatcher
:parameters (?p - phase ?i - intersection)
:precondition (and

(trigger ?i)
(activePhase ?p)
(contains ?i ?p))

:effect (and
(not (trigger ?i))
(not (activePhase ?p))
(activeIntergreenAfter ?p)
(assign (phaseTime ?i) 0) )

)

(:process flowrun_green
:parameters (?p - phase ?r1 ?r2 - link)
:precondition (and

(activePhase ?p)
(> (occupancy ?r1) 0.0)
(> (turnrate ?p ?r1 ?r2) 0.0)
(< (occupancy ?r2) (capacity ?r2)))

:effect (and
(increase (occupancy ?r2) (* #t (turnrate ?p ?r1 ?r2)))
(decrease (occupancy ?r1) (* #t (turnrate ?p ?r1 ?r2))))

)

Figure 1 An example of PDDL+ action, process, and event taken from the Urban Traffic Control domain model
(McCluskey & Vallati, 2017; Antoniou et al., 2019)

allocated along a timeline that lets the agent achieves the goal from I considering the constraints imposed
by D. We will see later what we mean by plan and what we mean by valid plan. More formally:

DEFINITION 4 (PDDL+ PLANNING PROBLEM). Let D be a PDDL+ domain model, a planning problem
is the tuple � : 〈D, O, I, G〉 where:

• is a set of typed objects.
• I is an assignment to all Boolean and numeric fluents that belong to atoms(O∪C)
• G is a first-order formula over ground Boolean and numeric fluents.

For the sake of compactness, the initial state can be specified in closed world assumption using the
so-called set-theoretic formulation (Ghallab et al., 2004). That is, the initial state can be given as a set
of literals for some subset of Boolean fluents and a set of assignments for some subset of numeric flu-
ents. Everything that does not belong to this assignment is assumed to be false (for Boolean fluents) or
undefined (for numeric fluents).

Hereinafter we subscript every conjunctive structure in the problem with B and N to isolate the com-
ponents that deal only with Boolean (B) or numeric (N) fluents. This gets applied to the structure of
formulae and in the initial state. As we will see, this is useful for mapping numeric into classical planning
problems.

Figure 1 shows an example of a PDDL+ action, a process, and an event taken from the Urban Traffic
Control domain model (McCluskey & Vallati, 2017) that will be considered in the experimental analysis.
The action switchPhase allows to model the decision of the planning engine to stop early a traffic light
phase; the continuous effects of the movement of traffic on a green light are modelled by the process
flowrun_green. The shown triggerCatcher event is used for triggering a phase change.
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[...]

130.00: ( switchphase J6014-p2 J6014) [0.000]

130.00: ( switchphase J1349-p1 J1349) [0.000]

135.00: ( switchphase J1867-p2 J1867) [0.000]

140.00: ( switchphase J1353-p0 J1353) [0.000]

[...]

Figure 2 An excerpt of a valid plan for a benchmark of the Urban Traffic Control domain

2.3 Semantics, plans, and validity

The semantics of a PDDL+ planning problem can be defined using the theory of hybrid automata
(Henzinger, 1996; Fox & Long, 2006). We will hereby report the basic semantics, the notion of a plan,
and its validity. We say that a formula is satisfied in a state if such a state is a model for the formula. A
ground action is applicable in a state if its precondition formula evaluates to true on that state. Events and
processes are said to be active in a state if their preconditions are satisfied. Actions are decisions that can
be taken by the agent. Processes and events are responses of the environment and cannot be controlled
directly by the agent.

The application of an action in a state s instantaneously updates those numeric and Boolean fluents
which are modified by its effects. Active processes initiate flows of continuous changes for subsets of
numeric variables. The numeric effect of a process is to be understood as the time derivative of some
variable x. Events trigger instantaneous changes on the state if their preconditions are satisfied.

A plan is a set of pairs 〈ti, ai〉 where ti ∈R and action ai ∈ transitions(C ∪O). A plan is valid if each
action is applicable at its associated time. Plan validation corresponds to the task of evaluating whether
each action precondition is satisfied in the trajectory of states induced by the active processes (that can
change over time), the events that have been triggered, and the actions executed. A plan is a solution of
the considered PDDL+ problem if the last state of the trajectory induced by all actions, processes, and
events is a goal state for the problem, that is, a state in which the goal formula is satisfied.

An example excerpt of a valid plan for a benchmark from the Urban Traffic Control domain is provided
in Figure 2. In this domain model, the only available action for the planning engine is to switch red the
current traffic light phase. The action considers the current phase and the affected junctions. For instance,
the first line of the strategy shown in Figure 2 means that the currently active phase 2 of intersection 6014
has to be stopped at time 130. Between each pair of actions, the system evolves for the effect of the active
processes and events modelling the flow of vehicles and the switching of the traffic lights.

Several approaches have been investigated for solving hybrid planning problems; see, for instance
(McDermott, 2003; Shin & Davis, 2005; Della Penna et al., 2009; Bryce et al., 2015; Scala et al., 2016b;
Cashmore et al., 2020). All these approaches have been conceived to work over representations that are
variable-less. However, it is much more convenient to express the problem using the full power of the
language of PDDL+. For instance, looking at our example of Figure 1, it is much more convenient to
say that there is a generic switch phase among two types of objects and leave to the system the task of
understanding which of the ground transitions need to be generated in order to get to the goal.

Albeit automatic grounding is desirable, this comes with the disadvantage that we move into the plan-
ning engine the burden for performing such an operation that, if not done with proper care, can represent
an insurmountable barrier. Indeed, the naive grounding strategy requires blindly exploring each list of
parameters of all open structures combinatorially, with a worst case that is exponential on the number of
free variables in each such list (Helmert, 2009). A challenging aspect is that of understanding whether this
can be limited by excluding from groundings all structures that are never reachable or irrelevant, whilst
ensuring that the declarative representation and the desired semantics are kept consistent. In particular,
we want to have a grounding mechanism that does not produce all ground transitions, but only those that
are reachable. Note that, limiting the number of ground transitions directly translates into having to deal
with a restricted number of ground atoms, too. Indeed, we will only need to track the atoms that are not
left invariant by the actions; those which are unaffected by the actions can be removed and each formula
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that mentions them can be simplified with the value that such atoms have in the initial state. Because of
this, in the next sections, we focus on limiting the number of ground transitions only.

In Section 3, we show two general methods aimed at performing this process. These methods exploit
a relaxation principle, resulting in mechanisms that substantially depart from the naive approach of
Definition 3. The second approach that we present, in particular, exploits an abstraction from PDDL+ to
classical planning whose definition is necessary to understand the approach.

2.4 Classical planning

The classical planning problem differs from the PDDL+ problem in that:

• classical actions are not timed and are instantaneous; plans are just sequences of ground actions;
• there are no numeric fluents and therefore formulae cannot contain them;
• there are neither processes nor events that can change the state of the world autonomously; classical

planning only models the agent’s decision.

Everything that is not touched by the action effects remains unchanged (frame axiom). A classical
planning problem builds up on the logical foundations of the PDDL+ problem but for the absence of
numeric variables. More formally:

DEFINITION 5. A classical planning problem � is a tuple 〈T,C, F, A,O, I,G〉 where:

• T (Types) is a set of types
• C (Constants) is a set of typed objects, each of which is simply a name given to the object, and
its type.

• O (Objects) is a set of typed objects3

• F is a set of Boolean fluents
• A (Actions) is a set of actions, each described by the pair 〈pre, eff 〉 where:

– pre is a logical formula across F over variables from σ(a) and objects from C ∪O
– eff is a set of Boolean assignments of the form 〈f , {�,⊥}〉 with f being a Boolean fluent.

• I is the initial assignment for ground Boolean fluents
• G is a logical formula

As it is possible to observe, a classical planning problem is a subclass of a PDDL+ problem; many
of its components are indeed identical to PDDL+ (e.g., types, constants, and objects). Differently from a
PDDL+ problem though, plans in classical planning are just sequences of actions. Valid plans are such
that their sequence is a valid trajectory of states that transforms the given initial state I into a state in
which the goal G is satisfied. A plan is said to be valid if all action preconditions are satisfied along the
entire execution. For a more detailed description of classical planning, the interested reader is referred to
Ghallab et al., (2004).

3 Domain-independent PDDL+ grounding

This section is devoted to introduce two alternative routes for performing PDDL+ grounding in a domain-
independent fashion.

3.1 Static analysis method

The first approach that we present is based on the idea of exploiting a static analysis of the domain model
for focusing the generation of ground actions towards a reduced set of parameters. Such a subset of

3 The difference between constant and objects is historical, and we leave it here. It serves the purpose of decoupling
objects that are constant in any specification of the problem, from objects that depend on a particular instance.
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parameters is restricted leveraging from the necessary condition arising by looking at the static conjuncts
belonging to the transition schema precondition, and the hidden preconditions emerging from numeric
effects that need to be applied.

This idea has been already exploited in classical planning with great success since the earlier work
by Hoffmann and Nebel (2001) in the FF planning system using the preprocessor of IPP (Koehler &
Hoffmann, 2000). As we will see in this section, it is possible to straightforwardly extend this approach
to the case of hybrid PDDL+ planning. This boils down to (i) extending the static analysis to consider
not only actions but also processes and events as possible transitions that can change the value of some
predicate and/or fluent and (ii) consider the case of numeric condition separately to the case of literals4. In
a nutshell, the idea is to consider events and processes just as a ‘traditional’ actions. Notice that, by doing
so, we obtain a safe relaxation of our problem; indeed, we give to the agent the possibility of directly
controlling the environment through processes and events as well. This change of semantics enlarges the
set of possible solutions: if there is a problem solvable with the normal semantics, there always exists one
trajectory of actions in which all processes and events are replaced by actions controllable by the agent.
The contrary is not true: there may be a trajectory of actions that leads to the goal for which there is no
mapping of such a trajectory into a valid sequencing of actions, processes, and events5.

Our procedure implements this idea starting from the structure of the actions and is based on the
notion of a static fluent. More formally, let �= 〈T,C, F, X, A, E, P,O, I,G〉 be a PDDL+ planning
domain model. We say that a Boolean or a numeric fluent v is static iff ∀t ∈ A∪ E ∪ P is such that
abstract(v, t)∩ affected(t)= ∅ where:

• abstract(v, t) is the set of Boolean or numeric fluents (depending on whether v is a Boolean or numeric
fluent) obtained by getting abstracted versions of such a fluent through some transition t. This abstrac-
tion amounts to substituting the variables in the parameters of v (if any) with compatible variables taken
from the parameters of t. Note that there may be different substitutions also in this case, depending on
which variables from the parameters list are taken.

• affected(t) is the set of Boolean or numeric fluents that are affected by the transition. That is
affected(t)= {v1 | 〈v1, ξ 〉 ∈ eff (t)} ∪ {v1 | 〈v1, {�,⊥} ∈ eff (t)〉}

Intuitively, given a set of static Boolean and numeric fluents, and an action t, the set of possible
substitutions for the variables belonging to t parameters, that is, σ̄ (t), can be constrained looking at
the necessary static precondition conjuncts that need to be true for that transition to be applicable and
looking at those numeric effects that need the evaluation of some numeric fluents to be applicable. We
start from the universal substitution Sub : V →O∪C that maps every variable to a set of objects by
making sure to get only those which are compatible type wise. Then, we iterate over all conditions that
involve static fluent (in case of numeric condition), or are themselves static (literals), and reduce the
objects to be mapped only towards those generating conditions (numeric or literals) that are not statically
unreachable.

The grounding reduction process for a transition is described in Algorithm 1. The main function of the
algorithm is Reduce. This function takes the input of some transition and the initial state and produces
a reduced set of substitutions for the transition parameters. As hinted at above, the procedure first sets
each variable in the parameters of the action to the whole universe of objects and constants that are
compatible with the variable at hand (Line 3). In this line, the function Con simply filters out those
objects which are not consistent with the variable at hand. Then the algorithm iterates over all necessary
numeric expressions and the precondition of the action. Notice that this algorithm here works under the
assumption that the action precondition has been normalised to a conjunction of literals and numeric

4 Note that a method for taking numeric condition into account has been also hinted at in the Metric-FF planning
system (Hoffmann, 2003). However, to the best of our knowledge, no detail has been provided on how actually
take into account hidden preconditions in the action numeric effects and undefined values that frequently occur in
planning domains. More details in Section 5.
5 A similar relaxation schema has been implemented by the AIBR relaxation heuristic presented by Scala et al.
(2016b).
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Algorithm 1 Static Analysis-Based Grounding

1: Function REDUCE(t - Transition, I – Initial State)
2: output: S - Substitution
3: S= ⋃

v∈σ(t)
{〈v, con(C,O, v)〉}

4: for all p ∈ pre(t)∪Necessary(eff (t)) do
5: if p is a Numeric Condition of the form (ξ, {≥, >,=}, 0) then
6: ReduceExpression(ξ, S, I)
7: if p is a Literal then
8: ReduceSat(p, S, I)
9: if p is an Expression then

10: ReduceExpression(p, S, I)
11: return S

Algorithm 2 Auxiliary Procedures

1: Procedure REDUCEEXPRESSION(e - Expression, S - Substitution, I - Initial State)
2: for all p ∈ e do
3: ReduceNum(p, S, I)
4: procedure REDUCESAT(p - Literal, S - Substitution, I - Initial State)
5: if IsStatic(p) then
6: Objs= {l= 〈v0, · · · , vm〉|l ∈Con(O,C, p) and I[ground(p, l)] = �}
7: S[p] = S[p] ∩Objs
8: Procedure REDUCENUM(p - Numeric, S - Substitution, I - Initial State)
9: if IsStatic(p) then

10: Objs= {l= 〈v0, · · · , vm〉|l ∈Con(O,C, p) and I[ground(p, l)] �= ⊥}
11: S[p] = S[p] ∩Objs

conditions6. The necessary numeric expressions (Necessary in the algorithm) are those expressions that
need to be checked for being sure that none of its numeric fluent is irreversibly undefined.

Algorithm 1 makes use of a number of auxiliary procedures, that is, ReduceExpression, ReduceSat,
and ReduceNum whose descriptions are reported separately in Algorithm 2. The algorithm activates the
appropriate function considering the type of precondition or necessary condition at hand, which can be
either a numeric expression, a literal, or a numeric condition. These functions make use of the operator
S v which is a way to access all the tuples where v is the first element. The intersection with some new
tuples objs filters out those mappings that are not possible. Additional auxiliary procedures are presented
in Algorithm 3 and are used in Algorithm 1 to check whether a considered fluent is static or not.

Having defined what the reduction process is, the entire grounding process boils down to calling the
reduce function for each action, event, and process and ground them only across the reduced set of objects
that have been identified.

To explain the algorithm in practice, let us consider the situation of Figure 1. The (trigger ?i)
Boolean fluent is not a static one because its truth value may depend on whether the action (switch-
Phase) (with compatible parameters) is applied or not. Different is the situation for the (turnrate
?p ?r1 ?r2) numeric fluent. The value of this fluent cannot be changed by any action in the prob-
lem, so whether this may ever be true or not, solely depends on the initial state of the problem. This
is indeed a static numeric predicate. In particular, if some grounding of this predicate is less than (or
equal to) 0.0, the parameters used for that grounding cannot be used in the flowrun_green parameters’

6 This can be obtained by transforming all transition preconditions in Disjunctive Normal Form and then replacing
the complex action with a number of copies, one for each disjunct of the formula. All actions will share the same
effects, but will differ on the employed disjunct they have been generated from Koehler and Hoffmann (2000).
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Algorithm 3 Checking for Static Fluent

1: function ABSTRACT(v - Fluent, t - Transition)
2: output: V - Set of Lists of Variables/Objects
3: V = ∅
4: for all l ∈ 2σ(t)∪constants(t) do
5: if σ(v) is an instance of l then
6: V = V ∪ {l}
7: return V
8: function ISSTATIC v - fluent
9: output: Boolean
10: for all t ∈ A∪ E ∪ P do
11: if Abstract(v, t)∩ Affected(t) �= ∅ then
12: return False
13: return True

list. Our static analysis method will not even try to ground the actions associated to those parameters
for which (turnrate ?p ?r1 ?r2) leads to (> (turnrate ?p ?r1 ?r2) 0.0) being unsatisfied.
This indeed reduces the number of groundings to only those combinations of parameters that do satisfy
(> (turnrate ?p ?r1 ?r2) 0.0); a brute force grounding will require the Cartesian product of all
objects compatible with variables ?p ?r1 ?r2. In other words, assuming 100 objects of each kind, it
will require 1 000 000 of groundings. As we will see in our real-world use cases, this situation is not rare
and does happen due to the inherent weakness of relational representation in several benchmarks from
the international planning competition, too Vallati et al. (2018).

This method may reduce the number of substitutions substantially, and therefore limit to some extent
the combinatorial explosion of groundings caused by the cross-product of all universes of objects. Yet,
it does not really exclude the groundings of some actions that could be easily detected as unreacheable.
Let us come back to our example of Figure 1. Note that, although we do not know in general whether
(trigger ?i) will ever be satisfied, we do know that only some of them can eventually be reached.
Those are the ones obtained by applying the action swithcPhase with some parameter. Many of these
actions are indeed not reachable, and this can be easily detected by noticing that the predicate (contains
?i ?p) is itself a static predicate.

To exploit this intuition in a systematic fashion, the next section shows how to make use of a classical
planning abstraction, and therefore leverage on relaxed reachability grounding mechanisms present in
state of the art classical planning engines.

3.2 Abstracting PDDL+ problems into classical problems

In this section, we show how to leverage on grounding systems developed for classical planning. Please
refer to Section 2.4 for a discussion about the differences between hybrid PDDL+ planning and classical
planning.

For the sake of clarity, let us omit names of structures (e.g., actions, events) when obvious from the
context and refer to Boolean and numeric predicates using the simpler terms proposition and numeric.
Let us further note that for convenience we have directly denoted the classical planning problem as the
merge of an instance of a classical planning problem with the classical domain model.

We are now in the position to formalise the abstraction operation. Intuitively, we want to obtain
a formulation of a classical planning problem that overestimates the behaviour of a given PDDL+
problem. We construct such an abstraction by means of a problem transformation. More precisely, we
denote with τ the abstraction from a PDDL+ problem to a classical planning problem. τ is formally
a mapping from a PDDL+ problem � : 〈T,C, F, X, A, E, P,O, I,G〉 to the classical planning problem
�′ : 〈T,C, F′, A′,O, I′,G′〉 where the primed components are defined in a way that the following holds:
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• F′ = F ∪ X
• I′ = I′B ∪ ⋃

〈fi,ki〉∈IN
fi

• A′ = ⋃
t∈A∪E∪P

〈preN→F(t), effN→F(t)〉 where
– preN→F(t)= abs(pre(t))∧ ∧

fi∈ξ.〈fi,ξ〉∈effN (t)
fi

– effN→F(t)= effB(t)∪ ⋃
fi.〈fi,ξ〉∈effN (t)

fi

• G′ = abs(G)

where abs(ψ) is the abstraction of a general formula ψ given in negation normal form7, defined as
follows:

abs(ψ)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ if ψ is a literal∧
fi∈ξ.(ξ,{≥,>,=},0)=ψ

fi if ψ is a numeric condition

abs(α)∧ abs(β) if ψ = α ∧ β
abs(α)∨ abs(β) if ψ = α ∨ β
¬abs(α) if ψ = ¬α

(1)

Coming back to our example of Figure 1, take for instance the formula (< (occupancy
?r2)(capacity ?r2)). This formula involves two numeric fluents, that is, (occupancy ?r2) and
(capacity ?r2). These two numeric fluents will be reinterpreted as two new fresh Boolean predicates
by Equation (1) with the same name. They will be made true only if some other action, process, or event
use them somehow.

Ultimately, as we hinted at in the previous section, our approach focuses at identifying only those
actions (processes, events in the case of PDDL+) that are reachable for the problem at hand. To precisely
see how this is achieved through our mapping into classical planning, we need to define what a set of
reachable ground actions is for classical planning more formally.

DEFINITION 6 (REACHABLE GROUND ACTIONS). The reachable ground actions set for a classical
planning problem � is the set of ground actions that can be eventually reached by iteratively applying
actions starting from the initial state up-to saturation. That is, up to the point that no new state can be
discovered.

It can be proved that our transformation is complete in the sense that if an action, event, or process is
reachable in the PDDL+ formulation, it is reachable in the generated classical planning problem, too.

PROPOSITION 1 (OVER-APPROXIMATION OF PDDL+ THROUGH τ ). Let � be a PDDL+ planning
problem, the set of reachable ground actions, processes, and events is a subset of the ground actions
reachable in τ(�) (with the proper transformation from actions to processes and events).

Proof.We can prove this by observing that each atom in some formula of� that is achievable implies
that the same atom, or its abstraction in case we are dealing with numeric condition, is achievable in
τ(�). If the set of atoms that is reachable is the same, we can safely observe that all those actions in τ(�)
that have their precondition reachable will become themselves reachable. This observation is trivial for
Boolean conditions, and only a bit more involved for numeric conditions. For this latter case indeed, if
some numeric condition is reachable in �, this means that there is an action that can eventually satisfy
its abstraction by interacting with some numeric variable in it. If we look at the abstraction operator of
Equation (1), we observe that it suffices to have all numeric predicates evaluated in the numeric condition.

7 Any logical formula be transformed in polynomial time in an equivalent negation normal form formula. This
can be done by pushing negation down to atomic Boolean term and substituting negated numeric constraints with
disjunctions.
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Algorithm 4 Classical Planning Abstraction-Based Grounding

1: function ABSTRACTION BASED GROUNDING(� : 〈T,C, F, X, A, E, P,O, I,G〉)
2: output: A fully ground version of �, 〈T,C, F, X, Ag, Eg, Pg,O, I,G〉
3: 〈T,C, F′, A′,O, I′,G′〉 = τ(�)

4: Acg = classicalGrounder(〈T,C, F′, A′,O, I′,G′〉)
5: Ag = ∅
6: Eg = ∅
7: Pg = ∅
8: for all a= 〈σ , pre, eff 〉 ∈ Acg do
9: if a is the abstraction of an action a′ in A then
10: Ag = Ag ∪ {ground(a′, σ )}
11: if a is the abstraction of an event e′ in E then
12: Eg = Eg ∪ {ground(e′, σ )}
13: if a is the abstraction of a process p′ in P then
14: Pg = Pg ∪ {ground(p′, σ )}
15: return 〈T,C, F, X, Ag, Eg, Pg,O, I,G〉
And this is indeed the case if there is some action operating on it, or the initial state setting them to some
value. Analogous is the consideration for the right-hand side of all effects in the transitions. �

Calculating the exact number of reachable ground actions is, however, unfeasible because it would
require unrolling the complete transitions system, which, in the case of a PDDL+ problem may imply
visiting an infinite transition system. Fortunately, thanks to the fact that we have a finite abstraction of
the problem, we can limit this worst-case behaviour by adopting approximations that are used in classical
planning problems. As matter of facts, in order to overcome the problem of detecting all reachable actions,
modern classical planners use relaxed reachability grounding, based on ideas borrowed by Answer Set
Programming (Helmert, 2009; Lifschitz, 2008)8. This gives us a superset of reachable actions in that the
transition system is itself approximated with one where the validity of conditions grows monotonically.
Thanks to Proposition 1 then, we know that the set of reachable actions for the abstraction of a PDDL+
problem is a subset of the actions reachable in classical planning. By transitivity, we can hence use the
classical ground actions as a way to overapproximate the reachable grounding for all events, actions,
and processes for the concrete PDDL+ problem. Of course, once this approximation is done, we can use
reachability analysis on numeric problems (such as Scala et al., 2016a) and refine the set of ground action
even further. Yet, this refinement is already done on a smaller set (the one computed by the classical
planning abstraction), so it is expected to be done much faster. To some extent, this method can be seen
as a two-level reachability analysis. The former is dealt with using classical planning. The latter using
techniques that are aware of the numeric structure of the problem.

Algorithm 4 summarises the main steps for grounding a whole PDDL+ problem using the abstraction
mechanism as per above. As a first step, the algorithm calls transformation τ , and then a classical grounder
on the arising classical planning problem. Once a ground of the classical planning problem is generated,
and actions are stored in Acg, line 4, we iterate over all the generated actions and for each of them identify
whether the action was an abstraction of a PDDL+ action, an event, or a process. For each of this, we
then populate the new structures Ag, Eg, and Pg that will only contain ground versions of the original
transitions. Function ground accomplishes the task of substituting the objects found by grounding the
classical planning action relative to each transition throughout the structure of the transition at hand.

The abstraction-based mechanism has the obvious advantage of capturing deeper causal dependencies
between actions. However, it introduces a bit of overhead. The system indeed needs to make use of an
external classical planner, and there may be delays caused by encoding and decoding information from
and to the PDDL+ representation. Next section studies this aspect empirically.

8 Note that solving the problem exactly is impractical in classical planning too, as it would imply exploring an
exponential number of states, and checking for possible substitutions for each encountered state. Techniques based
on overestimation of the state space are necessary to avoid this combinatorial explosion.
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Figure 3 Grounding and Search Data flow in ENHSP. FDI, Static, andNaive represent the different grounding mech-
anisms implemented in ENHSP to evaluate our proposal. The module in yellow is the classical planning grounder,
while the remaining modules are within the ENHSP planning system (parsing, grounding, and search)

4 Experimental analysis

This section reports on an experimental analysis aimed at evaluating the impact and the importance of
the proposed domain-independent PDDL+ grounding techniques for solving hybrid planning instances.
In particular, we measure the size of the generated ground version of each benchmark instance with the
methods presented in this paper (measured in terms of number of actions, processes, and events) and
the computational time spent to perform the operation. We also measure the overall planning time to
understand how (and if) grounding affects the search process as well. Our experiments use a variety of
benchmarks took from standard benchmarks and real-world problems. More details below.

4.1 Experimental settings

For the sake of fairness, we implemented the considered grounding techniques as a modular component
of the state-of-the-art planning engine ENHSP (Scala et al., 2016a, 2016b). This provides us a way for
isolating the impact of the grounder on the overall planning process. ENHSP is a well-known Java-based
planning engine that includes a wide range of domain-independent search techniques and heuristics for
solving PDDL+ planning instances and is modular in nature. The results reported in this analysis have
been obtained by running ENHSP tuned to maximise coverage. The classical planning abstraction of our
PDDL+ problem is given to the Fast-Downward Grounding mechanism took from the last release of the
planner9. Once the mechanism is done grounding the classical planning problem, we collect all the ground
actions and remap them in the original actions/processes/events they have been generated from. Figure 3
reports the overall process and highlights the main modules of the ENHSP planning engine. Note that,
in the figure, it is possible to go along with grounding using one from three different grounders: Naive,
Static, and FDI. We use all of them for our experiments.

The Naive grounder is our baseline: it naively grounds everything without any sort of pre-processing.
The Static grounder refers to the approach introduced in Section 3.1, while FDI, short for Fast Downward
Inference, is the term used to indicate the approach described in Section 3.2.

All the experiments were performed on an Intel i7-4750HQ CPU, 8 GB of RAM, and Linux operating
system. A 15 CPU-time minutes cut-off time limit was enforced.

9 http://www.fast-downward.org/.
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4.2 Considered benchmarks

Wewant to assess the importance of grounding on realistic and complex hybrid problems. For this reason,
following the approach exploited by Franco et al. (2019), the experimental evaluation is performed by
considering four benchmark domains: two that have been used to models real-world applications, and
two that are derived from well-known benchmarks exploited in past International Planning Competitions
(Vallati et al., 2018).

As real-world benchmarks, we consider the Baxter and the Urban Traffic Control domains.

• The Baxter domain, recently introduced by Bertolucci et al. (2019), exploits planning for sup-
porting robots in dealing with articulated objects manipulation tasks. The available domain
model has been extended by adding events for preventing movements wider than 360 degrees.
Problems consider articulated objects composed by between 5 and 15 links and between 2 and
10 grippers.

• The Urban Traffic Control (UTC) domain has been originally introduced by Vallati (2016). It models
the use of planning for generating traffic light signal plans, in order to de-congest an area of a urban
region. In this analysis, we considered the problems introduced by McCluskey and Vallati (2017),
which involved a large urban network of 10 junctions, part of the Manchester metropolitan area, and
we extended it by considering problems with 20 and 30 junctions, obtained by connecting identical
regions together. For stressing the grounding component, here we consider a slightly extended version
of the domain. In particular, we make use of an event-driven mechanism to enable the processes
tracking the traffic occupancy of the links. On benchmarks from this domain, ENHSP has been run
with a delta (-d) value of 50.0 and using the -s GBFS parameter (GBFS specifies the use of a Greedy
Best First Search).

As synthetic benchmarks, we considered the Rovers and Tetris domains, which appeared in past
editions of the International Planning Competition.

• The Rovers domain is a well-known model introduced in IPC-3 (Long & Fox, 2003). Inspired by
planetary rovers problems, this domain requires that a collection of rovers navigate a planet surface,
finding samples and communicating them back to a lander. This was originally designed as a tem-
poral domain model that extends classical planning by considering temporal aspects; we extended it
using a PDDL+ formulation where continuous processes model the movements of the rovers and the
energy generation via solar power. Each of the mentioned processes can be driven by the planning
engine using two actions and is constrained, where appropriate, via dedicated events. On bench-
marks from this domain, ENHSP has been run with the following configuration: -s GBFS -h hadd
(the hadd option specifies the heuristic used by the planner, which corresponds to the ĥaddhbd heuristic
Scala et al., 2016a).

• Finally, we include the well-known Tetris domain model introduced in IPC-8 (Vallati et al., 2018). In
this simplified version of the game, the goal is to clear an area of the grid, by moving pieces away. The
original classical planning domain model has been extended in PDDL+ by modelling as continuous
processes the movements of the pieces that consumes energy (that is limited) and requires a different
amount of time to complete, according to the size and shape of the piece. The planning engine can
decide when to start to move a piece, and in which direction; the actual movements are then modelled
by processes. As in the Rovers case, processes are constrained, where appropriate, via events. On
benchmarks from this domain, ENHSP has been run with the following configuration: -s GBFS -
h hmrp (the hmrp option specifies the heuristic used by the planner, which corresponds to the hmrpmax

heuristic Scala et al., 2016b).

For all domains, we collected a total of 10 instances, obtained by varying the number of objects, and
the size of maps/boards.
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Table 1 Results, in terms of ground size, CPU-time needed by the grounding process, and runtime, achieved by
ENHSP when using the three introduced grounders on the real-world benchmarks. ‘–’ indicates that the grounding
process run out of memory. A runtime value of 900.0 indicates timeout. Avg indicates average values. Average

Runtime (Grounding) is calculated by considering only instances solved (ground) by all the considered approaches.
Bold is used to indicate best results with regard to the considered metric

Baxter

Ground size Grounding time Overall runtime
Naive Static FDI Naive Static FDI Naive Static FDI

1 16425 2796 276 0.6 0.6 0.6 251.5 70.3 29.0
2 4100 1097 297 0.3 0.2 0.4 900.0 160.1 50.2
3 17632 2864 342 0.7 0.6 0.6 349.1 89.7 43.2
4 23652 3533 345 0.5 0.3 0.5 459.7 101.0 46.9
5 8100 1457 621 0.6 0.4 0.6 900.0 900.0 344.2
6 5225 1004 756 0.6 0.4 0.6 900.0 900.0 900.0
7 13700 1961 1089 0.5 0.2 0.8 900.0 867.0 627.6
8 7425 1356 1092 0.4 0.2 0.8 900.0 900.0 900.0
9 29700 3401 2457 0.7 0.3 1.3 900.0 900.0 900.0
10 65700 6640 5589 0.8 0.6 0.6 900.0 900.0 900.0
Avg 19165 2611 1286 0.7 0.4 0.7 353.4 87.0 39.7

Urban traffic control

Ground size Grounding time Overall runtime
Naive Static FDI Naive Static FDI Naive Static FDI

1 160560 73226 448 3.4 0.9 0.8 32.7 24.4 1.9
2 160560 73226 448 3.6 1.0 0.8 29.0 24.5 1.8
3 160560 73226 448 3.4 0.8 0.7 30.3 23.9 2.4
4 160560 73226 448 3.6 0.9 0.9 31.2 24.5 2.4
5 1232702 563043 896 14.2 4.9 1.0 900.0 900.0 3.1
6 1232702 563043 896 14.2 5.3 1.4 900.0 900.0 3.2
7 – – 1344 – – 1.3 – – 4.4
8 – – 1344 – – 1.3 – – 4.3
9 – – 1344 – – 1.2 – – 7.0
10 – – 1344 – – 1.5 – – 5.6
Avg 517940 236498 896.0 7.1 2.3 0.9 27.5 24.2 2.2

4.3 Experimental results

Table 1 compares the results achieved by ENHSP using the three considered grounding techniques on
benchmarks from the real-world domains. Results are presented in terms of grounding size, that is, the
sum of instantiated actions + processes + events, the CPU-time needed by the grounding process, and
the overall CPU-time needed by the planning engine to solve the considered planning problem. The
overall CPU-time includes all the steps needed by the planning engine, and therefore includes parsing,
grounding, pre-processing, search, and post-processing. The table also reports the averages obtained by
the considered grounding techniques, in terms of ground size, ground CPU-time, and overall CPU-time.
Averages are calculated by considering only instances for which all the 3 considered systems provided a
value for the considered metric.

It is easy to notice that the two domains have different characteristics in terms of ground size. Baxter
instances tend to be more compact, in terms of naive ground size, but have a significant percentage of
relevant actions, processes, and events. In other words, the ground instances are not huge, but in order to
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solve the encoded problem it is necessary to take into account a significant number of components. The
UTC benchmarks are instead very different: the naive approach leads to a huge ground size that can even
be too large to be generated at all, but the relevant elements that are identified by the FDI approach are
very few. By no mean we are suggesting that this can be taken as an indicator of relative complexity of the
problems; this is only a characteristic of the corresponding models, with no direct relation to complexity.
Naive is the technique that is consistently delivering the worst possible performance both in terms of

ground size, and in terms of time needed to solve the planning instance. When compared to the other
grounders, Naive can lead to a ground problem that is orders of magnitude larger: this is then reflected in
the much higher CPU-time needed to solve the planning instances. Despite the fact that such results are
quite intuitive, this analysis provides clear evidence of the detrimental impact that an inefficient grounder
can have on the performance of an otherwise efficient planning system. In both UTC and Baxter domains,
the use of the FDI grounder allows the planning engine to deliver the best runtime performance. In other
words, the reduced grounding size is positively affecting also the subsequent steps. When analysing the
provided output, we observed that the lower runtime is not only due to the reduced time needed by
actually generating the ground problem, but the smaller grounding size is having an impact also on the
search engine in general; we advocate this to the much larger size of the data structures needed to actually
solve the problem in memory.

In a sense, the Naive results give a measure of how important grounding is for hybrid PDDL+ plan-
ning. The presented results suggest that the grounding approach can determine if a problem will be
solved at all or not. Where this is a problem that happens often in classical planning (Corrêa et al., 2020),
to the best of our knowledge, this is the first time that this aspect has been neatly assessed over PDDL+
problems, particularly on different real-world application benchmarks.

Table 2 shows the experimental results achieved on the considered synthetic benchmark domains:
Rovers and Tetris. Instances from the Tetris domain provide a clear and coherent picture, that is, aligned
with the observations made when considering the results achieved on the real-world benchmarks: FDI
reduces by orders of magnitude the size of the ground problem, and is allowing the search step to find
a solution within the 15 CPU-time minutes runtime. Both Static and Naive systematically provide much
larger ground problem instances that do not allow the search engine to effectively explore the search
space in order to find a solution. In fact, out of the considered instances, ENHSP has been able to solve
only 3 (5) by using theNaive (Static) grounder. On the contrary, the use of FDI allows ENHSP to solve all
the instances. Interestingly, FDI can lead to a longer grounding CPU-time, when compared to the other
techniques: while this is not having a noticeable impact on the overall performance of the planner, it may
be due to the additional pre-processing that is needed by this approach. Taking a different perspective,
one may say that by investing a bit more CPU-time in pre-processing for grounding, a significant amount
of CPU-time can be saved for the search step.

The Rovers benchmarks present some interesting aspects. In this domain, there is a huge difference
in the ground size obtained by Naive and Static. This is particularly true for instances 6-10, where the
number of objects is very large, but only a few of them are needed to solve the corresponding planning
problem. Under such conditions, the benefits of using FDI are significant. In some other instances, Static
and FDI are able to provide groundings of very similar size, even though this is limited to the smallest
instances. Rovers is also the only domain among the considered where on easy instances—in terms of
overall runtime—all the three grounding techniques allow ENHSP to deliver very similar performance.
This seems to suggest that there is a trade-off to consider with regard to grounding: a more sophisticated
grounding leads to a smaller ground size at the cost of a potentially higher CPU-time. This investment
pays off only if either the obtained ground is significantly smaller than those achieved with less sophis-
ticated techniques, or to find a goal space a large chunk of the search space has to be explored. In other
cases, represented by problems 1, 3, and 4 of Rovers, the initial investment in pre-processing does not
pay off.

With regard to quality and shape of the generated solutions, we observed no difference in the provided
plans. On our set of benchmarks, the use of a grounder has an impact on runtime and coverage—as it can
increase or reduce the number of options to consider and the size of each search state—but it does not
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Table 2 Results, in terms of ground size, CPU-time needed by the grounding process, and runtime, achieved by
ENHSP when using the three introduced grounders on the considered set of synthetic benchmarks. ‘–’ indicates that

the grounding process run out of memory. A runtime value of 900.0 indicates timeout. Avg indicates average
values. Average Runtime (Grounding) is calculated by considering only instances solved (ground) by all the

considered approaches. Bold is used to indicate best results with regard to the considered metrics

Rovers

Ground size Grounding time Overall runtime
Naive Static FDI Naive Static FDI Naive Static FDI

1 304 87 73 0.5 0.4 0.4 1.3 1.3 1.5
2 946 219 162 0.5 0.5 0.5 900.0 900.0 900.0
3 3048 399 279 0.6 0.3 0.5 1.5 1.1 1.4
4 3048 464 302 0.6 0.3 0.5 1.9 1.5 1.9
5 7956 752 495 0.7 0.4 0.9 900.0 900.0 900.0
6 42526 1065 96 0.5 0.6 0.5 11.6 5.4 2.5
7 42526 1065 96 0.5 0.6 0.5 11.5 5.6 2.4
8 472216 3255 96 2.3 0.6 0.6 47.5 13.2 3.0
9 472216 3255 96 7.3 0.7 0.6 47.2 14.0 3.2
10 472216 3255 96 7.4 0.8 0.6 48.9 14.1 3.4
Avg 151700 1382 179 2.1 0.5 0.5 21.4 7.0 2.4

Tetris

Ground size Grounding time Overall runtime
Naive Static FDI Naive Static FDI Naive Static FDI

1 127872 90872 2724 1.7 1.8 1.8 117.6 115.7 4.5
2 127872 90872 2724 1.7 1.7 1.8 900.0 352.3 123.8
3 127872 90872 2724 1.7 1.7 1.8 900.0 900.0 244.5
4 210816 149816 4236 2.5 2.1 2.6 316.1 308.9 6.0
5 210816 149816 4236 2.3 2.2 2.8 900.0 900.0 187.3
6 210816 149816 4236 2.8 2.2 2.7 306.0 303.4 7.0
7 210816 149816 4236 2.4 2.3 2.7 900.0 900.0 228.6
8 252288 179288 4992 3.3 2.3 3.0 445.5 446.8 5.7
9 402432 281912 5160 4.1 4.0 2.9 900.0 900.0 13.9
10 497664 348624 5904 3.6 3.5 3.3 900.0 900.0 235.3
Avg 237926 168170 4117 2.6 2.4 2.5 296.3 293.7 5.8

affect the way in which search is performed. We cannot exclude that in very different domains the use of
a grounder can also be reflected in a different shape of the provided solution, but our analysis suggests
that this may not be usually the case.

Summarising, our experimental analysis indicates that the FDI grounder has a major positive impact
on the performance of the state-of-the-art planning engine ENHSP, and the overhead coming from the
machinery to abstract the problem and interfacing ENHSP with Fast-Downward planning system is
largely compensated by the magnificent overall improvements. This behaviour is more marked in domain
models where there is a potentially huge ground size, due to the presence of PDDL+ constructs with a
large number of parameters, but the number of actually relevant ground constructs is limited.

4.4 Contextualisation of ENHSP’s performance

One may wonder about the performance of the selected ENHSP planning engine with regard to the other
systems at the state of the art. To contextualise the results presented in the previous section and to some
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extent to justify the use of ENHSP only, we run two additional domain-independent PDDL+ planning
engines on the considered benchmarks: UPMurphi (Della Penna et al., 2009) and DiNo (Piotrowski et al.,
2016). Following some previous work where these planners have been employed (McCluskey & Vallati,
2017; Franco et al., 2019), we run them using the suggested parameter --custom 5 4 4. Experiments
were run using the same machine and the same settings described in Section 4.1.

Unfortunately, UPMurphi was not able to solve any of the considered benchmark instances. It either
ran out of time or memory. Similarly, DiNo was able to solve only problem 1 from the Rovers domain,
with a CPU-time of 140 seconds. As UPMurphi, in all the other cases, it ran out of either memory
or time.

5 Related work

In this section, we position our work with regard to the wider research context.
Other approaches to grounding planning problems have been investigated in the last decade or so

(for instance, Koehler & Hoffmann, 2000; Helmert, 2009). The very first systematic approach to this
problem has been proposed by Koehler and Hoffmann (2000). Very similarly to us, they present quite
a sophisticated method that analyses those Boolean variables that are inertial and do so for the purpose
of reducing the number of possible groundings for each operator. Their technique presents the same
limits as our static analysis-based method, which has to do with not being able to look into the deeper
dependencies between actions (see Section 3.1). In addition, their technique only focuses on classical
planning problems, that is, on Boolean conditions with neither processes nor events. As observed by
Helmert (2009), this grounding mechanism can be very fast, but is not optimal memory-wise. Indeed, as
in our case, it works by reducing some universe of groundings. Therefore, to make it fast enough, it relies
on building into memory very large data structures. For many instances of the planning competitions,
this results in having a planning system that cannot pass grounding even in problems that are actually
simple to be solved. Helmert’s work (Helmert, 2009), to the best of our knowledge, is the first work that
looked deeper into this problem and proposes a forward, marking procedure that establishes grounding
on a relaxation-based schema. However, as for the work by Koehler and Hoffmann (2000), Helmert’s
procedure only supports a classical planning representation. Our abstraction-based technique can exploit
any classical planning grounder, and we did indeed exploit the relaxed reachability procedure presented
by Helmert in our experiments. Note that in Helmert (2009), Helmert grounds the development of the
grounding phase into a Datalog program (Kaufmann et al., 2016). Despite the proposed implementation
is specific for planning problems, the same schema can likely be adopted to support more expressive
formalism of planning by mapping them directly into more expressive Answer Set Problems. This is
indeed an interesting line of research to pursue. More recently, Gnad et al. (2019) introduced an approach
for partial grounding of classical planning problems that takes advantage of machine learning techniques.
The approach proposed by Gnad et al. is domain-specific, and the idea is to train a machine learning model
on a large number of plans from a given domain, to capture the aspects that need to be ground to solve a
classical planning problem from such a domain. This is a valuable and innovative approach to grounding,
and it would be interesting to extend the approach to deal with more expressive planning formalisms.

Moving into more expressive representations we find the metric extension to Fast-Forward (Hoffman
& Nebel, 2001), Metric-FF (Hoffmann, 2003) that also supports an intelligent grounding mechanism as
we do (many other systems use the Metric-FF baseline as a pre-processor for parsing and grounding and
focus on documenting reasoning over ground representations instead, for example, Coles et al. (2010),
Coles and Coles (2011), Scala et al. (2016b). Metric-FF exploits an implementation that is similar to
our static-based method. The seminal paper in which Metric-FF is described puts unfortunately most
of the effort in describing the machinery for solving the resulting ground representation, leaving out
many details on how the grounding is actually implemented. As a difference with regard to our work,
from the description (Section 6.2), the grounding phase does not seem to support numeric variables
that can take unknown variables and does not seem to be sensible to the problem of having indirect
preconditions in the right-hand side of numeric effects. Moreover, as it builds on IPP implementation
(Koehler & Hoffmann, 2000), it does not leverage directly newly classical planning methods as we can
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do through our abstraction-based grounding. Moreover, Metric-FF schema does not support processes
and events, and even if the extension to support them would not be a huge problem, it still suffers from
the disadvantages of looking only over the static predicates, and therefore can blow up the memory. We
argue that our abstraction-based procedure is more robust of direct extensions of a specific mechanism
for numeric planning. We believe indeed that the price to pay in terms of overheard (calling different
systems) is substantially dominated by the great modularity and flexibility given by the decomposition
behind our abstraction method.

Grounding before planning is not the only way to initiate the solving of planning problems, even
though is the most commonly exploited approach. Plan space planners in particular (either based on SAT,
such as Robinson et al., 2008, SMT, like Bofill et al., 2016; Bit-Monnot, 2018, or more direct exploration
of the plan space Younes & Simmons, 2003) indeed were built with the idea of combining search and
grounding into a constraint satisfaction approach. Albeit this idea does not keep the pace with state-
of-the-art planners based on heuristic search (probably for the difficulty of exploiting heuristics), there
seems to be a revived interest in this direction that tries to combine lifted reasoning with heuristic forward
search planner altogether (Ridder & Fox, 2014; Corrêa et al., 2020). In particular, the work by Corrêa
et al. (2020) proposes a novel planning engine that uses a lifted-successor generation to make practical
the online generation of ground actions in a forward state space planners. The system shows interesting
results on some set of benchmarks. Whether this line of research will lead to new generation planners is
however still an open question, and so is the question of whether a similar mechanism can be adapted to
problems over metric spaces with processes and events as PDDL+.

Finally, an approach that is orthogonal to the exploitation of efficient grounding techniques is model
reformulation. Reformulation aims at making the problem model more amenable for automated solvers
by changing part of the model provided as input. A large number of reformulation techniques have
been introduced for classical planning models. Examples of reformulation techniques for classical PDDL
models include macro-learning (Newton et al., 2007), entanglements (Chrpa et al., 2018), bagged repre-
sentation (Riddle et al., 2015), action schema splitting (Areces et al., 2014), and configuration (Vallati
et al., 2015, 2020). Limited work has been carried out on reformulation of non-classical PDDL models.
Chrpa et al. (2015) extended the notion of entanglements to numerical planning, and Franco et al. (2019)
focused on PDDL+ reformulation to reduce the arity of predicates and fluents to limit the exponential
explosion of the ground problem size. A different line of work on reformulation investigated techniques
to reduce the performance of automated solvers, to identify aspects of the models to which existing
planning engines are sensitive to (Vallati and Chrpa, 2019).

6 Conclusions

Hybrid PDDL+ models are needed to correctly and accurately represent the dynamics of real-world
applications. PDDL+ models are amongst the most advanced symbolic planning models and are notori-
ously difficult for planning engines to cope with. Complexity is exacerbated by the potentially huge size
of the fully ground problems that are needed by planning engines in order to explore the search space.
Despite the importance of the grounding step for any domain-independent PDDL+ planning engine,
there is a lack of work devoted to the specific topic.

In this paper, we introduced two approaches for efficient and effective domain-independent PDDL+
grounding. In particular, we focused on investigating whether the vast amount of work done in the clas-
sical planning field could be exploited also for supporting PDDL+ grounding. The approaches have
been developed in a modular fashion and can be easily plugged into existing planning systems based on
forward search. Our experimental analysis, which includes large benchmarks derived from real-world
applications, showed that (i) regardless of the efficiency of the search approach exploited, the grounding
step alone can become so critical that it may determine whether a planning instance can be solved or
not; (ii) grounding everything and hoping that the search component will efficiently navigate through the
search space is the worst possible option, and (iii) it is indeed possible to fruitfully exploit grounding
techniques that have been originally designed for classical planning.
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We see several avenues for future work. First, we are interested in assessing whether a smart grounding
approach can support the validation of complex scenarios, where the problems tackled are of significant
size. Second, we plan to extend our methods by tailoring the grounding to some numeric aspect of the
PDDL+ formalism. This may have the potential of further decreasing the number of ground actions at
hand. Third, we envisage the exploitation of smart grounding techniques also in the context of knowledge
engineering of PDDL+models, in particular for providing support in terms of static and dynamic analysis
and validation; this can be particularly interesting when a domain modeller is investigating different
encoding of the problems and the impacts of such encoding on the size of the problem.
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