J. Austral. Math. Soc. 20 (Series B) (1978), 280-284

DISCRETE LIAPUNOV FUNCTIONS WITH $\triangle^2 V > 0$

PHIL DIAMOND

(Received 16 May 1977)

(Revised 13 April 1978)

Abstract

Consideration of functions whose second difference along the trajectories of a difference equation is positive gives a stability theorem for autonomous discrete-time systems. Such functions can be used to estimate domains of nonglobal stability.

1. Introduction

Recently Yorke [2] and Chow and Dunninger [1] have used conditions on the second derivative of Liapunov functions to establish stability theorems for autonomous differential equations. The main condition was that $\ddot{V}>0$, along trajectories, except at the origin. This note proves a discrete analogue of these results for systems

$$x_{k+1} = f(x_k), \quad k = 0, 1, 2, \dots,$$
 (1)

where $f: \mathbb{R}^n \to \mathbb{R}^n$ and f(0) = 0. The result is used to estimate local stability regions and a simple example of the technique is given. A feature is that no assumption on the definiteness of the Liapunov function is required.

2. Stability theorem

Let p(k, x) denote the orbit of (1) for which $x_0 = x$. By $\Delta^2 V(x_k)$ is meant the second difference

$$V(x_{k+2}) - 2V(x_{k+1}) + V(x_k)$$

along the trajectories of $x_{k+1} = f(x_k)$.

280

Phil Diamond

THEOREM 1. Suppose that $V: \mathbb{R}^n \to \mathbb{R}$ is a continuous function and that $\Delta^2 V(x_k) > 0$ for $x_k \neq 0$. Then for any $x \in \mathbb{R}^n$:

either p(k, x) is unbounded, or $p(k, x) \rightarrow 0$, as $k \rightarrow \infty$. Likewise if

 $\Delta^2 V(x_k) < 0 \text{ for } x_k \neq 0.$

PROOF. Since $\Delta^2 V(x) > 0$, it follows that V(p(k, x)) is a monotone function of k, provided that k is sufficiently large. To see this, observe that

$$V(x_{k+2}) - V(x_{k+1}) > V(x_{k+1}) - V(x_k).$$

If there exists an integer K so that $V(x_{K+1}) - V(x_K) \ge 0$, then, $V(x_{k+1}) > V(x_k)$ for k > K. On the other hand, if there is no such integer K, $V(x_{k+1}) < V(x_k)$ for all $k \ge 0$.

Suppose $V(x_k)$ is nonincreasing as $k \to \infty$. The details for the nondecreasing case are very much the same. Define

$$L(x) = \{u: p(k, x) \rightarrow u \text{ for some sequence } k_i \rightarrow \infty\}.$$

If L(x) is empty, the Bolzano–Weierstrass theorem implies that p(k, x) is unbounded as $k \to \infty$. If $L(x) \neq \phi$, for any $u \in L(x)$,

$$\lim_{k\to\infty} V(p(k,x)) = \lim_{i\to\infty} V(p(k_i,x)) = V(u).$$

since V(p(k, x)) is monotone in k and V continuous. It follows that V(u) is a constant for all u in L(x). But

$$\lim_{i\to\infty} p(j+k_i, x) = \lim_{i\to\infty} p(j, p(k_i, x)) = p(j, u),$$

and so p(j,u) is contained in L(x) for all j. Hence V(p(k,u)) = V(u). Since $\Delta^2 V(p(k,u)) > 0$, for p(k,u) = 0, then $L(x) = \{0\}$. The proof for $\Delta^2 V < 0$ is very similar.

As an example, consider the second-order difference equation:

If $\begin{aligned} x_{k+2} &= x_k + f(x_{k+1}).\\ \Delta(x_k f(x_k)) > 0, \end{aligned}$

then either x_k is unbounded as $k \to \infty$ or $x_k \to 0$ as $k \to \infty$.

To see this, put $y_k = x_{k+1}$, rewrite the system as

$$x_{k+1} = y_k, \quad y_{k+1} = x_k + f(y_k),$$

and define V(x, y) = xy. Then $\Delta^2 V(x_k, y_k) = \Delta(y_k f(y_k)) > 0$ and Theorem 1 applies. Observe that the Liapunov function V is indefinite.

Clearly the theorem is valid for both forward and backward differences.

3. Nonglobal stability domains

Suppose $\Delta^2 V(x) > 0$ is known to hold only in some open region H containing the origin. Then, in general, stability is not global but a finite stability domain exists. Set

$$\Delta_{\max} = \max\{\Delta V(x) \colon x \in bdy H\}$$

and define

$$E_j = \{x \in H: \Delta V(p(j, x)) > \Delta_{\max}\}, j = 0, 1, 2, \dots$$

THEOREM 2. If the regions E_i are bounded and nonempty, then they are domains of asymptotic stability for the system $x_{k+1} = f(x_k)$.

PROOF. If E_j is nonempty and $x \in E_j$, $p(j+k, x) \in H$ since $\Delta V(x)$ is nondecreasing along any trajectory of the system, in E_j . So

$$\Delta V(p(j+k+1), x) - \Delta V(j+k, x)) = \Delta^2 V(p(j+k, x)) > 0,$$

and $\Delta V(p(j+k,x)) > \Delta V(p(j,x)) > \Delta_{\max}$, $p(k,x) \in E_j$ and is thus bounded. By Theorem 1, $p(k,x) \to 0$ as $k \to \infty$.

Notes

1. A similar result holds for the regions

$$F_j = \{x \in H : \Delta V(p(j,k)) < \Delta_{\min}\},\$$
$$\Delta_{\min} = \min \{\Delta V(x) : x \in bdy H\},\$$

provided $\Delta^2 V < 0$ in H and F_i is nonempty and bounded.

2. If E_j is empty there may be no stability domain. Consider $x_{k+1} = y_k$, $y_{k+1} = x_k + f(y_k)$, where f(y) = y + 1 and V(x, y) = xy. Then

$$\Delta^2 V = (x+y+1)^2 + (x+y+1) - y(y+1)$$
$$= (x+y+1)^2 + x + 1 - y^2,$$

which is positive provided

$$y^2 > x + 1.$$

But the supremum of $\Delta V = y(y+1)$ on $y^2 = x+1$ is $\Delta_{\max} = \infty$, E_j is empty for all *j*, and $p(j, x) \rightarrow \infty$, as stated as one alternative in Theorem 1.

Phil Diamond

4. Example

Consider the two-dimensional system

$$x_{k+1} = y_k,$$

$$y_{k+1} = ax_k - y_k^2, |a| < 3^{-\frac{1}{2}},$$

and the Liapunov function

$$V(x, y) = \frac{2a^2 x^2}{(1 + a^2)} + \frac{y^2}{2}$$

This system arises in a biological context. The equations are associated with the stability analysis of the population dynamics of a single species, two age-class model (see [3]).

We observe that

$$\Delta^2 V(x, y) = \frac{y^2(1 - 3a^2 - 4ax - 2y^2)}{(1 + a^2) + (ay + (ax - y^2)^2)^2},$$

and $H = \{(x, y): 1-3a^2-4ax-2y^2>0\}$ contains the origin. For definiteness set $a = \frac{1}{4}$, and it is easy to show that $\Delta_{\max} = -0.0364$, whence

$$E_0 = \{(x, y): (y^2 - x/4)^2 - 2x^2/17 - 15y^2/17 > -0.0364\}.$$

The regions H, E_0 are shown in Fig. 1.

Fig. 1. Local stability region for the example. The region H is a domain where $\Delta^2 V > 0$ and E_0 is a finite stability domain as in Theorem 2.

References

- S. Chow and D. R. Dunninger, "Lyapunov functions satisfying V>0", SIAM J. Appl. Math. 26 (1974), 165-168.
- [2] J. A. Yorke, "A theorem on Liapunov functions using V", Math. Systems Theory 4 (1970), 40-45.
- [3] P. Diamond, "Domains of stability and resilience for biological populations obeying difference equations", J. Theor. Biol. 61 (1976), 287-306.

Department of Mathematics University of Queensland St Lucia, Qld, Australia 4067