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ABSTRACT 

We present the first results of time-dependent two-fluid cosmic-ray (CR) modified MHD shock simulations. 
The calculations were carried out with a new numerical code for one-dimensional ideal MHD. By coupling this 
code with the CR energy transport equation we can simulate the time-dependent evolution of MHD shocks, 
including the acceleration of the CR and their feedback on the shock structures. We report tests of the combined 
numerical method including comparisons with analytical steady state results published earlier by Webb, as well as 
internal consistency checks for more general MHD CR shock structures after they appear to have converged to 
dynamical steady states. We also present results from an initial time-dependent simulation which extends the 
parameter space domain of previous analytical models. These new results support Webb's suggestion that equilib
rium oblique shocks are less effective than parallel shocks in the acceleration of CR. However, for realistic models 
of anisotropic CR diffusion, oblique shocks may achieve dynamical equilibrium on shorter timescales than 
parallel shocks. 

Subject headings: cosmic rays — methods: numerical — MHD — shock waves 

1. INTRODUCTION 

Nonlinear theories of diffusive shock acceleration have dem
onstrated the importance of cosmic-ray (CR) feedback on the 
evolution of shock structures (e.g., Blandford & Eichler 1987). 
Using two-fluid models it has been shown (e.g., Drury & Volk 
1981; Achterberg, Blandford, & Periwal 1984; Kang & Jones 
1990) that CR pressures can become large enough to smooth 
shocks, eliminating the entropy generating gas subshock. More 
generally, the CR feedback modifies the efficiency of energy 
transfer from gas to CR in the shock. Recent numerical simula
tions (e.g., Drury & Falle 1987; Falle & Giddings 1989; Jones 
& Kang 1990; Kang & Jones 1991; Kang, Jones, & Ryu 1992) 
have also shown the importance of time-dependent effects in 
the determination of CR modified shock properties. For the 
most part, past studies of CR modified shocks have focused on 
pure hydrodynamical (or parallel, sonic mode) models of the 
shock dynamics. Magnetic fields, however, will generally be 
dynamically important in many environments where particle 
acceleration occurs. It has been suggested that components of 
the magnetic field which are aligned perpendicular to the 
shock normal (tangent to the shock face) can alter the effi
ciency of the acceleration process. Jokipii (1987) has pointed 
out that, for standard models of CR anisotropic diffusion (see 
eq. [4.1] below) perpendicular components of the field will 
decrease the shock crossing time for a CR particle, increasing 
the rate at which individual particles gain energy from the 
shock. On the other hand, Baring, Ellison, & Jones (1993) 
have shown that the efficiency of thermal particle injection 
into the CR population can be dramatically decreased by per
pendicular magnetic field components. From these examples 
it is clear that to understand the fundamental nature of shock 

acceleration in more realistic astrophysical settings, full MHD 
calculations are needed. Two-fluid models of CR transport 
along the lines introduced by Drury & Volk (1981) are an 
efficient means to begin such explorations. Such models en
able one to calculate economically the dynamical features of 
flows within the constraints imposed by the need to estimate a 
priori some closure parameters for the CR. Equilibrium MHD 
CR-modified shock structures have been calculated by Webb 
(1983) using these methods for the case where the gas is cold 
and its pressure can be ignored. Webb's calculations demon
strated that, as for the CR-modified gas dynamic flows, both 
subshock and smoothed, CR-dominated solutions to the 
MHD CR shock equations were possible. However, his solu
tions suggested that, in the limited range of conditions he could 
consider, shock acceleration of cosmic-rays was less effective 
when the upstream tangential components of the field were 
strong. Among other consequences this appears to expand the 
portions of the shock parameter space that lead to subshock 
solutions. That could impact on such issues as low-energy in
jection processes and the momentum distribution of the CR. 

Some subsequent steady state two-fluid analyses, consider
ing a wider parameter space support the above impressions 
(Kennel etal. 1985; Webb, Drury, & Volk 1986). In this paper 
we report the first results of time-dependent MHD CR two-
fluid simulations. We present tests of a new numerical code 
against Webb's analytical models as well as more general inter
nal checks on the code's ability to evolve shocks to self-consis
tent steady state MHD CR structures. Our simulations con
firm Webb's calculations. Our numerical models also allow us 
to extend Webb's calculations by lifting the cold gas, (Pg = 0), 
restriction to examine the effects of a full range of initial param
eters on CR-modified MHD shock structures. 
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2. METHODS 

We solve the equations of ideal MHD for one-dimensional 
flow in Cartesian coordinates (e.g., Jeffrey 1968). As with two-
fluid gas dynamic models the conservation equations are modi
fied to include momentum and energy source terms from CR 
feedback (e.g., Drury & Volk 1981; Jones & Kang 1990). The 
MHD equations are written in conservative, vector form as 

Pc = {yc-\)EC, (2.7) 

dt dx 
(2.1) 

with 

(2.2) 

and 

pux 

pu\ + P*~ B\ 
puxuy - BxBy 

puxuz - BXBZ 

ByUX - Bjiy 

Bzux - Bxuz 

\(E + P*)ux ~ Bx(Bxux + Byuy + Bzuz) 

while the CR source term vector is 

(2.3) 

(2.4) 

The CRs are themselves treated as a massless, diffusive fluid 
through a conservation equation for the CR energy, Ec, de
rived from the diffusion-advection equation (Skilling 1975); 
namely, 

8EC duxEc d I dEc\ „ duY „ ,„ , , 
~ + * =^r\K^-£\- Pc^ + Se. (2.4) 
dt dx dx\ dxj c dx e 

In these relations 

P* = P, + {{B\ + By + B2
Z), 

E = ̂ p(u2
x+u2

y + u\) + l_ P 

1 

(2.5) 

+ -(B2
X + By + Bj), (2.6) 

and the magnetic field components are expressed in rational
ized units 

B 
B 

V4ir' 
(2.8) 

In the expressions presented above the following definitions 
hold: p is the mass density; ux, Bx, and uy,uz,By, Bz are the 
components of velocity and magnetic field parallel and perpen
dicular to shock front; Pg, yg, and Pc, yc are the gas and cos
mic-ray pressures and adiabatic indices, and K is the energy 
weighted spatial diffusion coefficient for the CR parallel to the 
shock normal. The quantity Se is a term that allows direct 
energy transfer from the gas to the CR, such as through the 
low-energy injection of thermal particles into the CR popula
tion (e.g., Jones & Kang 1990). This is introduced for com
pleteness, but for the present, we set Se = 0. In this discussion 
we set yg = 5/3, while yc, which depends upon the mix of 
nonrelativistic and relativistic particles in the CR population, 
will be treated as an input parameter. In general, both yc and K 
are properties of the solution, so the need to specify their prop
erties a priori is the major drawback of the two-fluid model. 

In the interest of simplicity we will not consider here flows 
with tangential magnetic field rotations, although the numeri
cal code is quite capable of handling such features. Thus, with
out further loss of generality we can place the magnetic field in 
the X-Z plane, B = (Bx, 0, Bz). We will also restrict ourselves 
to flows with no upstream tangential velocity, uy= uz = 0. All 
of the simulations discussed here are essentially piston driven 
shock tubes. We establish the flows by projecting magnetized 
fluid with embedded CR in from the right boundary, using an 
open boundary condition and reflecting it off a wall (piston) at 
the left boundary. The tangential magnetic field at the left 
boundary is "mirrored" in the same manner as the gas density. 
Previous simulations of CR modified shocks have shown that 
their time to evolve to dynamical equilibrium scales with the 
so-called diffusion time, td(e.g., Jones & Kang 1990), which in 
the present case is conveniently expressed as 

h = ,2 ' 
(2.9) 

where us is the shock speed (see eq. [3.2]). In our discussion 
below we will express simulation times in units of td, appro
priate to that simulation. The width of a CR-modified shock 
transition scales with the related diffusion length scale, xd, 

xd = — = tdus. us 
(2.10) 

To obtain accurate numerical results with the methods we em
ploy it is important that computation zones be small enough to 
resolve the diffusive shock features on this scale. For our dis
cussion we define, therefore, the resolution ratio of each simu
lation to be 

Ax ' 
(2.11) 
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Our numerical method solves equation [2.1] through the 
second-order finite difference "total variation diminishing" 
(TVD) gas dynamics method of Harten (1983) extended to 
MHD (Ryu & Jones 1994). The pure MHD ( 5 = 0) form of 
the equation is solve with the aid of an approximate Riemann 
solver, used to estimate the fluxes, F. CR source corrections, S, 
are then added in a manner preserving second-order accuracy. 
Shocks and other discontinuities are generally resolved within 
a few zones. The CR energy equation is solved using a second-
order combined monotone advection and Crank-Nicholson 
scheme. Further details of the method will be presented else
where (Frank, Jones, & Ryu 1994). A pure gas dynamical 
version of the code was tested against both analytical steady 
state solutions and numerical time-dependent models calcu
lated with our well-tested PPM code (Jones & Kang 1990), 
with excellent agreement. The pure MHD code was tested 
against a variety of one-dimensional shock tube problems in
volving all three families of MHD waves using a nonlinear 
MHD Riemann solver (Ryu & Jones 1994). 

3. RESULTS: COMPARISONS WITH ANALYTICAL MODELS 

In order to test the accuracy of our numerical method we 
first attempted to reproduce the analytical steady state solu

tions of Webb (1983). In that paper Webb demonstrated in 
addition to discontinuous gas "subshock" solutions with a 
smooth CR shock precursor, that one may obtain completely 
smooth "shock" solutions to the MHD CR equations if the 
downstream velocity remains super-Alfvenic and the up
stream CR pressure, Pc, is high. That behavior is analogous to 
smooth gas dynamic shock solutions identified earlier by 
Drury & Volk (1981). However, Webb was able to consider 
only flows in which the upstream gas was cold; i.e., in which 
Pg = 0. 

In Figures 1 and 2 we present the time-asymptotic shock 
structures formed in numerical simulations with upstream 
conditions corresponding to those in Webb's paper (his Figs. 7 
and 8). The upstream conditions for these simulations are 
given, as models 1 and 2, in Table 1. These simulations were 
performed with a constant CR diffusion coefficient, K = 0.01. 
The resolution ratios, nr, for models 1 and 2 are nr = 21 and 32, 
respectively. The Alfvenic Mach numbers for models 1 and 2 
are Ma = u^fpl Bx = 1 and 2, respectively, where up is the piston 
speed relative to undisturbed gas. In these models yc = 4/3. 
The simulations where carried out until the postshock state 
appeared steady; namely, t ~ 7>0td. The resultant shock trans
formations provide excellent agreement with our best esti
mates of the downstream states found by Webb. The largest 
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FIG. 1.—Model 1 in Table 1. MHD CR shock transition region for a piston-driven shock with upstream conditions taken from Fig. 7 of Webb (1983). 
Shown are the density, p, normal component of velocity, ux, tangential velocity, u2, tangential component of magnetic field, Bz, magnetic field orientation 
angle, 0 = tan~' (BJBX), and cosmic-ray pressure, Pc. See Table 1 for upstream flow conditions. The abscissa is given in units of diffusion length xd= K/US. 
The dashed lines are postshock values taken from Webb's Fig. 7, except in the plot of u2 where the value was calculated using eq. (3.2) and the MHD steady 
state jump conditions. 
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FIG. 2.—Model 2 from Table 1. MHD CR Shock transition region for a piston driven shock with upstream conditions taken from Webb's Fig. 8. 

uncertainties in the comparison are, in fact, the determination 
of the downstream states from Webb's figures. For model 2 the 
entropy, s = log (Pg/p

yg), (not shown in the figure) increases 
downstream of the shock, demonstrating that the flow con
tains an MHD fast mode subshock, as predicted by Webb. The 
entropy for the flow in Figure 1 shows no increase, again as 
predicted. Recall that these particular calculations were meant 
to be carried out under Webb's cold gas (Pg s» 0) restriction. 
For numerical reasons the upstream gas pressure was set in 
practice to be a small fraction (10"3) of the CR pressure. As an 
additional comparison we have also reproduced the pure per
pendicular (Bx = 0) smooth and MHD subshock models of 
Webb with the accuracy comparable to that shown in Figures 1 
and 2. 

Our previous simulations of CR-modified gas shocks, using 
similar methods required numerical grids that over resolved 
the CR shock precursor by roughly a factor of 10 to assure high 
accuracy (Jones & Kang 1990). In order to explore the depen
dence of the accuracy on numerical resolution for these MHD 
simulations we have run a series of tests with the upstream 

conditions of model 2, varying the numerical resolution. We 
ran simulations with nr = 4, 8, 16, 32. In Figure 3 we plot a 
measure of the fractional error in the downstream CR pressure 
(compared with the value for the highest resolution case, nr = 
32), 

ec = Pc{nr)-Pc{l>2) 
(3.1) 

The figure shows that the simulated shocks converge quickly 
once nr > 10. As mentioned above, that state is in good agree
ment with Webb's analytical result. The converged numerical 
postshock CR pressure that is ~4% higher than our estimate of 
Webb's result, although we attribute much of this error to un
certainties in reading final states from published figures rather 
than tables. These results agree well with previously mentioned 
gas dynamic behaviors found by Jones & Kang (1990). We 
believe the limiting factor to be the accuracy of the Crank-Ni
cholson method used for updating the diffusive CR energy 
equation. As a further test of the numerical method we have 

TABLE 1 

UPSTREAM CONDITIONS FOR MODELS 

Model Bz Transition 

1 . . . . 
2 . . . . 
3 . . . . 

1 0.2 
1 0.2 
1 0.2 

0.32 
0.32 
0.05 

0.45 
0.32 
0.03 

0.0 
0.0 

1.49 X 10~3 

0.25 
0.075 

1.49 X 10~3 

0.01 
0.01 
K(B) 

Smooth 
Subshock 
Smooth 
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frame; namely, 

FIG. 3.—Fractional error (eq. [3.1] in the computed value of the post-
shock CR pressure, Pc, in model 1 as a function of resolution, n, = xd/Ax. 

performed tests of the self-consistency of more general steady 
state MHD CR shock solutions. This was done by testing the 
accuracy of various MHD jump conditions for apparently 
steady shocks in the shock frame. For example, the various 
momentum components of the full flux vector, F, in equation 
(2.3) should be the same across the shock when measured in 
that frame (with F2 corrected to include Pc). The shock veloc
ity for this exercise was determined from the conservation of 
mass equation for a steady shock transformed into the piston 

[pu] 

[p] ' 
(3.2) 

where angle brackets refer to differences across the shock. We 
find that for the simulations with nr > 10 the jump conditions 
were satisfied to better than one part in 1 X 104. 

4. FINITE GAS TEMPERATURE MHD SHOCKS 

Since our numerical code solves the full MHD CR two-fluid 
equations there is no need to restrict investigations to those 
cases where Pg = 0. In Figure 4 we present the results from a 
simulation of an MHD CR shock formed from gas of finite 
upstream pressure, Pg. The upstream conditions for this simu
lation, model 4, is presented in Table 1. We note that the sonic 
Mach number in this case is Ms = 4. The Alfvenic Mach num
ber MA = 12. Standard weak scattering models of particle dif
fusion lead to differences in diffusion across and along field 
lines. Thus K, which controls diffusion along the shock normal 
should depend on the angle between field and the shock nor
mal, ($> = tan"1 —- . Thus we adopt K of a form (e.g., Webb 
1983; Jokipii 1987; Zank et al. 1990), 

K = K|| cos2 0 + K± sin2 </>, (4.1) 

where the directions || and 1 refer to the magnetic field direc
tion. Note, of course, that $ is generally a changing function of 
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FIG. 4.—Model 3 from Table 1. This model has an upstream field orientation, #0 = 30°. Results are shown at t = 12, 24, and 36/rf. 
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space and time. For this initial exploration we arbitrarily set 
K, =0 .01 = 10X/C±. 

In general Pc develops more rapidly for a stiffer CR equation 
of state (Jones & Kang 1990). Thus, in order to keep the com
putational costs low for these first tests we used yc = 5 / 3 in the 
following model. This would influence the detailed properties 
of the steady state flow, but will not alter the qualitative charac
ter in ways that are important to the present discussion. 

In Figure 4 we illustrate the evolution of a time dependent, 
finite gas pressure simulation. In this model the upstream mag
netic field angle is </>0 = 30°. We present results at three differ
ent times: t = 12,24, and 36/rf. Since K is not a constant in space 
or time in this simulation, we define td here in terms of K = 
0.01. Figure 4 shows a strong fast-mode shock driven by the 
piston. That shock has become almost smoothed by the CR 
pressure. Comparisons of this model with an analogous paral
lel field (0 = 0°) simulations show a number important differ
ences. First, the parallel shock model reaches a dynamical 
steady state more slowly than the oblique shock case. That is 
simply because, according to equation (4.1) the diffusion coef
ficient, K, in the parallel case is greater, so that energy gain by 
the CR is slowed (e.g., Jokipii 1987). On the other hand, while 
the dynamical steady state may be reached more quickly in 
oblique shocks than in parallel shocks the effectiveness of the 
acceleration in the oblique case is reduced. The downstream 
value of Pc in the oblique shock case is decreased by 8% from 
what is obtained in the parallel shock model. It is reasonable to 
expect that in the oblique models the upstream momentum 
flux which would have gone into accelerating CR is being used 
to do work on the tangential magnetic field. We note that be
hind the fast mode shock a weaker slow mode shock com
presses the CR-driven transition density spike (see Jones & 

Kang 1990 for a discussion of this feature). Close examination 
also shows that CR particle acceleration is taking place as that 
slow mode shock develops. Modification of the density spike, 
which can only be seen in time-dependent models, is an exam
ple the additional complications which arise due to the multi
ple wave families present in MHD. 

5. CONCLUSIONS 

1. The numerical code we have developed accurately com
putes two-fluid models of CR-modified MHD shocks. If the 
resolution ratio defined in the text, nr > 10, then the time 
asymptotic properties of the simulations appear to converge to 
analytically predicted steady states. The time asymptotic nu
merical shocks are also internally consistent in terms of con
servation laws expected to be satisfied across steady shocks to 
at least one part in 104. 

2. Because of the work done on tangential fields within the 
shocks, time asymptotic particle acceleration will tend to be 
more efficient in parallel shocks than in oblique shocks. How
ever, the oblique shocks reach dynamical steady states more 
quickly for a given diffusion coefficient parallel to the mag
netic field. 

3. Transient features develop from the MHD fast-mode CR 
shocks similar to those seen in pure CR hydrodynamical 
shocks. However, these transients are modified and made 
more complex by the development of MHD slow mode 
shocks. 
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