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A One-Dimensional Family of K3 Surfaces
with a Z4 Action

Michela Artebani

Abstract. The minimal resolution of the degree four cyclic cover of the plane branched along a GIT

stable quartic is a K3 surface with a non symplectic action of Z4. In this paper we study the geometry

of the one-dimensional family of K3 surfaces associated to the locus of plane quartics with five nodes.

Introduction

Let V ⊂ |OP2 (4)| be the space of plane quartics with five nodes and V be the one-
dimensional family given by the quotient of V for the action of PGL(3,C). The mini-

mal resolution XC of the degree four cyclic cover of the plane branched along a quar-

tic C ∈ V is a K3 surface equipped with a non-symplectic automorphism group
GC

∼= Z4. Since the isomorphism class of XC only depends on the projective equiv-

alence class of C, this construction gives a one-dimensional family X of K3 surfaces.

Moreover, as proved in [1], it defines an injective period map P : V −→ M, where M

is a moduli space for pairs (XC ,GC) (as defined in [6]).

This paper describes the geometry of the family X by studying the structure of

the moduli space M, the behavior of the period map on the closure of V, and the

occurrence of singular K3 surfaces i.e., with maximal Picard number.

In the first section we introduce the K3 surface associated to a GIT stable plane
quartic according to the construction given by S. Kondō [9].

The period domain of polarized K3 surfaces associated to plane quartics with five
nodes is isomorphic to the complex one-dimensional ball; the second section shows

that their moduli space M is the Fricke modular curve of level two.

Any K3 surface XC carries an elliptic fibration induced by the pencil of lines

through one node of C. In Section 3 we prove that the fibration is isotrivial and
the generic fiber is isomorphic to the elliptic curve E = C/Z[i]. In fact, after a base

change and a normalization, the fibration is the product BC × E where BC is a genus

two curve with splitting Jacobian J(BC) = EC × EC .

In Section 4 we describe the behavior of the period map on the closure V of V.

We prove that the period map can be extended to V, giving an isomorphism with the
projective line.

The last section shows that there is a correspondence between XC and the Kum-

mer surface Km(E × EC ). In particular, the occurrence of singular K3 surfaces in

Received by the editors October 19, 2006.
This work is partially supported by PRIN 2005: Spazi di moduli e teoria di Lie; Indam (GNSAGA), and

the NSERC Discovery Grant of Noriko Yui at Queen’s University.
AMS subject classification: Primary: 14J28; secondary: 14J50, 14J10.
Keywords: genus three curves, K3 surfaces.
c©Canadian Mathematical Society 2009.

493

https://doi.org/10.4153/CMB-2009-051-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2009-051-8


494 M. Artebani

the family is due to the existence of isogenies between the elliptic curves E and EC .
This is also connected to the existence of certain rational “splitting curves” for C (see

[2]). Finally, we give a partial characterization of transcendental lattices of singular
K3 surfaces in the family. In particular we prove that the Fermat quartic, the Klein

quartic, and Vinberg’s K3 surface (see [24]) belong to the family.

1 Plane Quartics and K3 Surfaces

Let C be a GIT stable plane quartic, i.e., having at most ordinary nodes and cusps (see

[11]). The degree four cyclic cover of the plane branched along C has at most rational
double points, hence its minimal resolution XC is a K3 surface with an order four

automorphism group GC (see [1] and [9]). In this paper we consider the locus V of

stable plane quartics with five nodes. By taking the quotient of V by the natural action
of PGL(3,C) we get a one-dimensional family V. The isomorphism class of the cover

only depends on the class of the quartic in V, hence this construction defines a period
map P : V −→ M, [C] 7−→ [(XC ,GC )], where M is a moduli space parametrizing

pairs (XC ,GC) (the precise definition is given in Subsection 2.2).

We now choose a parametrization for V. Consider the plane quartic Cα, α ∈ P1

which is the union of the following conic and two lines:

Q : y2 − xz = 0, L : y = 0,Mα : αx + 2y + z = 0.

This gives a one parameter non-constant family of plane quartics with five nodes,

hence the general point in V is represented by a curve in this family.

We denote by πα the degree four cyclic cover of the plane branched along Cα,

πα : Yα −→ P2 and with Xα the minimal resolution of Yα. By the previous remark,

the general Xα is a K3 surface. Let Gα
∼= Z4 be the automorphism group of covering

transformations on Xα induced by πα.

2 The Period Domain

In this section we describe the moduli space parametrizing pairs (Xα,Gα), where Xα
is a K3 surface associated to a plane quartic with five nodes and Gα is the correspond-
ing order four covering transformation group.

Let σα be a generator of Gα and σ∗
α be the induced isometry on the cohomology

lattice H2(Xα,Z). In [1] it is proved that σ∗
α acts as a primitive 4-th root of unity on

H2,0(Xα). In fact we can assume σ∗
α(ωα) = iωα, where ωα 6= 0 is a holomorphic two-

form on Xα. In particular, the invariant lattice of the involution τα = σ2
α is contained

in the Picard lattice of Xα. In fact we will show that the invariant lattice is the Picard

lattice of the generic K3 surface Xα.

2.1 The Generic Point

Let T and N be the transcendental lattice and the Picard lattice of the generic K3

surface Xα, respectively.
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Lemma 2.1 The isomorphism classes of T and N are given by

T = A⊕2
1 ⊕ A1(−1)⊕2, N = U ⊕ E⊕2

7 ⊕ A⊕2
1 .

Moreover, in the natural basis of T, the action of the isometry σ∗
α is given by the matrix

J = A ⊕ A, where A =
(

0 −1
1 0

)
.

Proof Let L±(α) ⊂ H2(Xα,Z) be the eigenspaces of the involution τ∗α . It can be
easily seen that the fixed locus of τα is the disjoint union of eight smooth rational

curves. By [13, Theorem 4.2.2] this implies r(L+(α)) = 18, ℓ(L+(α)) = 4, where
r( · ) denotes the rank of a lattice and ℓ( · ) the minimal number of generators of its

discriminant group. Note that L+(α) is a primitive sublattice of N.

It can be easily seen that the period map P is not constant, i.e., the family {Xα}α∈P1

is one dimensional, hence the Picard number of the generic Xα is not maximal. More-

over, by [12, Theorem 3.1], the rank of the Picard lattice is even. This implies that

the Picard number of the generic Xα is 18 and N = L+(α), T = L−(α). Theorem 3.1
in [12] also gives the existence of an isomorphism of Z[i]-modules: T ∼= Z[i]⊕ Z[i].

Notice that an even symmetric lattice Λ which is a free Z[i]-module of rank one
with i ∈ O(Λ), i2

= −id is of the form: Λ ∼= A1(n) ⊕ A1(n), n ∈ Z, where the

action of the isometry i is given by the matrix A. Hence, in a suitable integral basis,

the transcendental lattice T has intersection matrix:

B =

(
A1(n)⊕2 C

C A1(m)⊕2

)
,

where C =
(

b c
−c b

)
. Since T is a 2-elementary lattice with ℓ(T) = 4, we have

det(B) = 24. Moreover, its signature is (2, 2). This implies b = c = 0 and nm = −1.

Hence T ∼= A⊕2
1 ⊕ A1(−1)⊕2. In particular, the Picard lattice is an even hyperbolic

2-elementary lattice with the invariants (s+, s−, ℓ, δ) = (1, 17, 4, 1). By [14, Theo-

rem 3.6.2] it is isomorphic to the lattice U ⊕ E⊕2
7 ⊕ A⊕2

1 .

2.2 The Moduli Space

Let L be the abstract K3 lattice and σ∗, τ∗ be the isometries of L induced by the

generic σ∗
α, τ

∗
α . We still denote by N and T the positive and negative eigenlattices of

τ∗ in L respectively. By the remarks in the previous section it follows that the period
domain for pairs (Xα,Gα) in the family is given by:

D = {z ∈ P(T ⊗C) : σ∗(z) = iz, (z, z̄) > 0}.

Since T has rank 4, it can be easily seen that D is a one-dimensional complex ball. By

taking the quotient for the arithmetic group Γ = {γ ∈ O(T) : γ ◦ σ∗
= σ∗ ◦ γ}, we

get the moduli space M = D/Γ. Let T−2 = {δ ∈ T : δ2
= −2}, Hδ = δ⊥ ∩ D and

∆ =
⋃
δ∈T

−2
Hδ .

Proposition 2.2 The quotient (D\∆)/Γ parametrizes isomorphism classes of pairs

(Xα,Gα), where Cα ∈ V . Moreover, the period map P : V −→ (D\∆)/Γ is an isomor-

phism.
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Proof See [1, Theorem 3.5] and [6, Theorem 11.3].

Lemma 2.1 allows us to describe in detail the structure of the moduli space M.

Consider the following subgroups of SL(2,C):

G0 = SU (1, 1) ∩ M(2,Z[i]),

H0 =
{(

a b
c d

)
∈ SL(2,Z) : a + d ≡ b + c ≡ 0 (mod 2)

}
,

where M(2,Z[i]) is the group of 2 × 2 matrices with entries in Z[i].

Proposition 2.3 We have the isomorphisms

M ∼= B/G ∼= S/H,

where B = {z ∈ C : |z| < 1} is the complex 1-ball, S = {z ∈ C : Im(z) > 0} is the

Siegel upper half space, and

G = G0 ∪ LH0, H = H0 ∪ MH0

where

L =

(
e−iπ/4 0

0 eiπ/4

)
, M =

1√
2

(
1 −1
1 1

)
.

Proof The period domain D is given by points z = (z1, . . . , z4) ∈ P(T ⊗ C) such
that:

(1) t zTz̄ > 0
(2) Jz = iz.

Hence z is of the form:

z = (iz2, z2, iz4, z4), |z2|2 − |z4|2 > 0.

Thus we get the isomorphism:

ψ1 : D −→ B = {w ∈ C : |w| < 1}, z 7→ z4/z2.

We are interested in the following subgroup of the isometries of T:

Γ = {M ∈ O(T) : M J = JM}.

Under the identification Z[ J] ∼= Z[i] we have the isomorphism T ∼= Z[i]2 as

Z[i]-modules. It can be easily seen that in the natural basis for Z[i]2 the intersec-
tion form on T is given by Q(z,w) = 2(zz̄ − ww̄). Then we get

Γ = U (Q) ∩ M(2,Z[i]) ∼= U (1, 1) ∩ M(2,Z[i]).

Let M ∈ Γ: M =
(

a b
c d

)
, where a, b, c, d ∈ Z[i]. The action of M on D induces an

action of M on B which is given by the Möbius transformation

w 7→ ψM(w) =
c + dw

a + bw
.
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Since two matrices in M(2,C) give the same Möbius transformation if and only if
they are the same up to multiplication for a nonnegative scalar, the group of Möbius

transformations of C is isomorphic to the quotient T ∼= SL(2,C)/±I. Consider the
homomorphism:

Φ : GL(2,C) −→ T M 7→ 1√
det(M)

M.

Notice that the kernel of Φ is isomorphic to C∗. Let Φ|Γ be the restriction of Φ

to Γ, then ker(Φ|Γ) is isomorphic to the group of 4-th roots of unity. Notice that
G = Im(Φ|Γ) ⊂ SU (1, 1)/±I is given by:

G = {M ∈ SU (1, 1)/±I | ∃ǫ ∈ C
∗ : ǫM ∈ M(2,Z[i])}.

Let Γ0 = SU (1, 1)∩M(2,Z[i]) ⊂ G and let G0 be its image in T. Let L ′
=

(
1 0
0 i

)
∈ Γ,

then Φ(L ′) = [L], where

L =

(
e−iπ/4 0

0 eiπ/4

)
.

Notice that L−1G0L = G0 and L2 ∈ G0. In fact, if M ∈ G then LM ∈ G0. Hence,

G = G0 ∪ LG0.

A biholomorphic map between B and S = {z ∈ C : Im(z) > 0} is given by the
Möbius transformation ψ2 = ψK :

ψK : B −→ S z 7→ i + z

1 + iz

associated with the matrix K =
(

1 i
i 1

)
. The map ψK induces the isomorphism be-

tween the groups of automorphisms:

ΨK : Aut(B) −→ Aut(S) φ 7→ ψKφψ
−1
K .

Let ψM be the Möbius transformation corresponding to a matrix M ∈ SU (1, 1):

M =
(

a b
b̄ ā

)
, where a, b ∈ C. Then the map ΨK(ψM) is the Möbius transformation

associated to the matrix KMK−1 ∈ SL(2,R):

KMK−1
=

(
Re(a) + Im(b) Re(b) + Im(a)

Re(b) − Im(a) Re(a) − Im(b)

)
.

Conversely, let N ∈ SL(2,R): N =
( α β
γ δ

)
. Then N = KMK−1 where M ∈ SU (1, 1)

is given by:

a =
1

2
[α + δ + i(β − γ)], b =

1

2
[β + γ + i(α− δ)].

This gives an isomorphism between the groups of Möbius transformations associ-
ated to SU (1, 1) and that associated to SL(2,R). The image of G0 is the following

subgroup of H:

H0 =
{( α β

γ δ

)
∈ SL(2,Z) : α + δ ≡ β + γ ≡ 0 (mod 2)

}
.

The image of L in SL(2,R) is given by ΨK(L) =
1√

2

(
1 −1
1 1

)
. Then we have

H = H0 ∪ ΨK(L)H0.
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Consider the level 2 congruence subgroup

H[2] = {
(

a b
c d

)
∈ SL(2,Z) | c ≡ 0 (mod 2)}.

The order two element F =
(

0 −1/
√

2√
2 0

)
∈ SL(2,R) lies in the normalizer of H[2]

in SL(2,R) and it is called Fricke involution. The group

H[2]+
= H[2] ∪ FH[2] ⊂ SL(2,R)

is called Fricke modular group of level 2 and the quotient C(2)+
= S/H[2]+ is the

Fricke modular curve of level 2.

Corollary 2.4 We have the isomorphisms:

M ∼= C(2)+ ∼= A
1.

Proof The group H0 is conjugated to H[2] in SL(2,Z):

TH0T−1
= H[2], T =

(
1 0
1 1

)
.

Besides, it can be easily proved that T(Υ(L)H0)T−1
= FH0. Hence the group H is

isomorphic to the Fricke modular group of level two and M is isomorphic to C(2)+.

The last isomorphism follows by [5, Proposition 7.3 and Corollary 7.4].

Remark 2.5 In [5] it is proved that the Fricke modular curve of level 2 is also the
moduli space for the mirror family of degree 4 polarized K3 surfaces. It would be

interesting to determine if there is any geometric correspondence between the two
families.

3 An Elliptic Pencil

In this section we show that Xα carries a natural elliptic fibration induced by the

pencil of lines through one of the nodes of Cα.

3.1 Definition

Note that the conic Q intersects the line L in p1 = (0 : 0 : 1) and p2 = (1 : 0 : 0).

Proposition 3.1 The pencil of lines through the point p1 induces an isotrivial elliptic
fibration Eα : Xα −→ P1. After a base change Bα −→ P1 and a normalization, the

fibration is the trivial fibration E × Bα −→ Bα, where E = C/Z[i] is the elliptic curve
with j = 1728 and Bα is a genus two curve.

Proof The pencil of lines through the point p1 ∈ Q ∩ L is given by the equation

y = λx, where λ ∈ P1. We substitute y = λx in the equation of Cα and we restrict
to the affine subset where x = 1: λ(z − λ2)(z + (2λ + α)) = 0. In general we have:

(z − a)(z − b) = z2 − (a + b)z + ab = (z − 1
2
(a + b))2 − ( 1

2
(a − b))2.
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Introducing a new variable z1 by z =
1
2
(a − b)z1 + 1

2
(a + b), we get

(z − a)(z − b) =
1
4
(a − b)2 (z2

1 − 1).

In our case a = λ2, b = −(2λ + α), so

λ(z − λ2)(z + (2λ + α)) =
1
4
λ(λ2 + 2λ + α)2(z2

1 − 1).

Thus we are considering the the fibration on Yα:

Yα −→ P
1
λ, w4

=
1
4
λ(λ2 + 2λ + α)2(z2

1 − 1).

This induces an elliptic fibration on Xα with fibers isomorphic to the elliptic curve

E : w4
= z2

1 − 1. Notice that E ∼= C/Z[i] since E has an automorphism of order 4

which fixes a point (z1,w) 7−→ (z1, iw), (the point (z1,w) = (1, 0) is fixed).
To get the trivial fibration, we first make the base change

P
1
ρ −→ P

1
λ, ρ 7−→ λ = ρ2,

which gives the equation

w4
=

(
1
2
ρ(ρ4 + 2ρ2 + α)

) 2
(z2

1 − 1).

Next we consider the genus two curve Bα : τ 2
= ρ(ρ4 + 2ρ2 + α)). We make the

base change Bα −→ P1
ρ, (ρ, τ) 7−→ ρ and we define w = τw1/

√
2, so we get

w4
1 = z2

1 − 1. Hence the normalization of the pull-back of the family is the product

Bα × E.

Remark 3.2 The construction in the proof gives a rational map of degree four from
Bα × E to the quartic surface Yα ⊂ P3. In coordinates it is given by:

Υ : Bα × E −→ Yα ⊂ P
3,

((ρ, τ), (z1,w1)) 7−→





x = 1,

y = ρ2,

z =
1
2
(ρ4 + 2ρ2 + α)z1 + 1

2
(ρ4 − 2ρ2 − α),

w = τw1/
√

2i.

3.2 The Weierstrass Model

We now determine the Weierstrass model for the isotrivial elliptic fibration defined

in Proposition 3.1.

Lemma 3.3 The Weierstrass form for the elliptic fibration Eα is given by

Yα −→ P
1
λ, v2

= u3 − λ3(λ2 + 2λ + α)2u.
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Proof Recall that Eα is given by w4
=

1
4
λ(λ2 + 2λ + α)2(z2

1 − 1). We will apply the

algorithm from [3] to find its Weierstrass form. Let β =
(

1
4
λ(λ2 + 2λ+α)

)−2
. Then

the fibration can be rewritten as z2
1 = βw4 + 1. Introducing the new coordinates

w = 1/s, z1 = t/s2 we get

t2
= s4 + β =⇒ (t − s2)(t + s2) = β.

Next we put x = t + s2
=⇒ t − s2

= β/x, 2s2
= x − β/x. Multiply the last equation

by x2 and put y = sx:

2v2x2
= x3 − βx =⇒ 2y2

= x3 − βx.

We finally put x = u/2, y = v/4 and multiply the equation by 8, giving

v2
= u3 − 4βu, where u = 2

z1 + 1

w2
, v = 4

z1 + 1

w3
.

Hence the family is

v2
= u3 − 16

λ(λ2 + 2λ + α)2
u.

The transformation to the form w4
=

1
4
λ(λ2 + 2λ + α)2(z2

1 − 1) is given by

u =

( λ(λ2 + 2λ + α)

w

) 2 z1 + 1

2
, v =

( λ(λ2 + 2λ + α)

w

) 3 z1 + 1

2
.

The original variables x, y, z, and w can be obtained from

z1 = 2z − λ2 − 2λ− α

λ2 + 2λ + α
.

3.3 Singular Fibers

The singular fibers in a Weierstrass fibration with equation

v2
= u3 − f (λ)u, f ∈ C[λ],

correspond to the values λ where f (λ) = 0 and to λ = ∞ if deg( f ) is not divisible

by 4. Let f = (λ − a)kg with g(a) 6= 0, then we may always assume that 0 ≤ k ≤ 3
and we have bad reduction in a only if k 6= 0. Thus we get three types of bad fibers

for k = 1, 2, 3. We list their Kodaira types and corresponding Dynkin diagrams:

• k = 1: type III, A1,
• k = 2: type I∗0 , D4,
• k = 3: type III∗ , E7.

It is now easy to find the bad fibers in our case:

v2
= u3 − λ3(λ2 + 2λ + α)2u.
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Lemma 3.4 The elliptic fibration Eα has the following configuration of singular fibers:

• type III over λ = ∞,
• type I∗0 over the solutions λ1, λ2 of λ2 + 2λ + α,
• type III∗ over λ = 0.

Notice that, for λ = 0 we get the line L and for λ = ∞ we get the line x = 0,

which is tangent to the conic Q in p1. Finally, the values λi , i = 1, 2 correspond to

lines through the intersection points of Q and Mα.

Remark 3.5 It follows from the Shioda–Tate formula [19, Corollary 1.5] that the

Mordell–Weil group of the elliptic fibration Eα has order 2. In fact, the two sections
are given by the line Mα and the conic Q, which intersect each fiber in the two fixed

points of the order 4 automorphism (defined by (z1,w) = (±1, 0) or (u, v) = (0, 0)

and ∞).

4 Compactification

If the quartic Cα is not GIT stable, then Xα is not a K3 surface. However, we show that

in some cases proper modifications of the family still give K3 surfaces in the limit. In
other words, we study the behavior of the period map P on the closure V of V.

Note that Mα (see Section 1) is the pencil of lines through the point (0, 1,−2) and

the curve Cα is not stable if and only if Mα is tangent to Q or if it contains a point of
Q∩L. The line M∞ is tangent to Q in the point p1 ∈ Q∩L. Furthermore, the line M1

is tangent to Q in the point (1,−1, 1), hence C1 has a tacnode in this point. Finally,

the line M0 passes through the point (1, 0, 0) ∈ Q ∩ L, hence C0 has a triple point.
Thus there are three quartics in the family which are not GIT stable: α = 0, 1,∞.

Note that C1 is semistable while C0,C∞ are not even semistable.

Lemma 4.1 There exists a modification X ′
α of the family Xα such that the fiber X ′

∞ is
a K3 surface with

(i) an elliptic fibration with the same configuration of singular fibers of Lemma 3.4;

(ii) an automorphism of order eight acting as the multiplication by a primitive 8-th
root of unity on the holomorphic two-form;

(iii) Picard number 18.

Proof We consider the elliptic fibration in Weierstrass form from Subsection 3.2

Eα : Yα −→ P
1
λ, v2

= u3 − λ3(λ2 + 2λ + α)2u.

We put
α := β−8, u := β−14u, v = β−21v, λ = β−4λ.

Then, after multiplying the equation by β−42, we get

Y ′
β : v2

= u3 − λ3(λ2 + 2β4λ + 1)2u.

This modified family has a good reduction for β → 0. The fibration Y ′
∞ −→ P1

λ has

4 bad fibers with the same configuration of the general case. Moreover, the surface
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Y ′
∞ has an extra automorphism ϕ given by

u := ζ2u, v := ζ3v, λ := −λ (ζ4
= −1).

Note that the holomorphic two form on X ′
∞ is locally given by ω = (dλ∧ du)/v and

ϕ∗ω = (−ζ2/ζ3)ω = −ζ−1ω. This implies that the transcendental lattice of X ′
∞

allows the action of the ring Z[ζ] (see [12, Theorem 3.1]), in particular its rank is a
multiple of 4.

Lemma 4.2 There exists a modification X ′ ′
α of the family Xα such that the fiber X ′ ′

0 is
“Vinberg’s K3 surface” and carries an elliptic fibration with two fibers of type III∗ and

one of type I∗0 .

Proof We consider again the elliptic fibration in Weierstrass form from Subsec-
tion 3.2

Eα −→ P
1
λ, v2

= u3 − λ3(λ2 + 2λ + α)2u.

When α → 0, we get λ5(λ + 2), and changing coordinates allows us to reduce to the

case λ(λ + 2), which no longer gives a K3 surface. We consider the fibration near

λ = ∞, so we put:
µ = λ−1, u := u/µ4, v := v/µ6

and multiply throughout by µ12:

v2
= u3 − µ(1 + 2µ + αµ2)2u.

We make a base change and a coordinate change:

α = β4, µ := µ/β4, u := u/β6, y := y/β9,

and multiply throughout by β18:

v2
= u3 − µ(β4 + 2µ + µ2)2u.

It is now obvious that for β → 0 we get an elliptic fibration on a K3 surface X ′ ′
0

associated to v2
= u3 − µ3(2 + µ)2u. Notice that there are 2 fibers of type III∗

over µ = 0,∞ and one of type I∗0 over µ = −2. It follows from the Shioda–Tate
formula [19, Corollary 1.5] that the rank of the Picard lattice of X ′ ′

0 is 20 and that

the discriminant of the transcendental lattice is equal to 4. This implies that the
surface X ′ ′

0 is “Vinberg’s K3 surface” i.e., the only K3 surface with transcendental

lattice isomorphic to A1(−1)⊕2 (see [24]).

Remark 4.3 The degree four cyclic cover of the plane branched along the curve C1

is a surface Y1 with an elliptic singularity of type Ẽ7. In fact, this surface is a degenera-

tion of K3 surfaces of type II (in the sense of Kulikov) i.e., the Picard–Lefschetz trans-

formation T has infinite order and N = log(T) satisfies N2
= 0,N 6= 0 (see [10]).

This implies that the corresponding point is mapped to the boundary by the pe-

riod map. By GIT theory there exists a modification of the family such that Y1 is
replaced by the cover of a plane quartic in a minimal orbit. Such a surface has two

elliptic singularities and it is birational to a ruled surface with elliptic base curve (see

[18, Theorem 2.4]).
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Let V be the closure of V in the GIT quotient of the space of plane quartics.

Proposition 4.4 The period map P can be extended to an isomorphism P : V −→ M,

where M = M ∪ {∞} ∼= P1 is the Baily Borel compactification of M. The stable
reduction of C0 is mapped to D/Γ, that of C∞ to (D\∆)/Γ and the point C1 to ∞.

Proof It follows from [1, Theorem 3.5] that P gives an isomorphism between the

closure of V in the GIT quotient of the space of plane quartics to the Baily Borel
compactification of M. Moreover, it is proved that points which are not GIT stable

are mapped to the boundary. Lemmas 4.1 and 4.2 show that the family Cα has a stable
reduction in α = ∞, 0. In particular, it follows from Lemma 4.2 and [24] that the

stable reduction of C0 is the plane quartic with six nodes i.e., the union of four lines.

This implies that X0 has a period point in ∆ since the extra node gives a (−2) curve
in T ∩ Pic(X0). By Lemma 4.1, X∞ is a K3 surface with Picard number 18, hence its

period point is not in ∆ (i.e., the stable reduction of C∞ has only 5 nodes). Finally,

since C1 is not GIT stable, it is mapped to the boundary (see Remark 4.3).

Remark 4.5 The quotient D/Γ parametrizes pairs (Xα,Gα), where Xα is a K3 sur-

face associated to a plane quartic with at least 5 nodes (see [6]). The divisor ∆/Γ
contains only one point, corresponding to the union of four lines.

5 Singular K3 Surfaces and Isogenies

We recall that a K3 surface is called singular if it has maximal Picard number (equal to

20). In this section we study the occurrence of singular K3 surfaces in the family, and
we prove that this is connected to the existence of isogenies between certain elliptic

curves.

5.1 The Curve Bα

We consider the genus two curve in Proposition 3.1:

Bα : τ 2
= ρ(ρ4 + 2ρ2 + α).

It is convenient to take α = β−8.
Now we define ρ := β−2ρ, τ := β−5τ and the equation for Bα becomes

Bβ : τ 2
= ρ(ρ4 + 2β4ρ2 + 1).

It is now easy to see that Bβ carries the involution

ι : Bβ −→ Bβ , (ρ, τ) 7−→ (ρ−1, τρ−3).

The quotient by ι is the elliptic curve Eβ : v2
= u(u2 + 4u + 2(1 + β4)) with quotient

map

f : Bβ −→ Eβ , (ρ, τ) 7−→ (u, v) =

( 2(1 + β4)ρ

(ρ− 1)2
,

2(1 + β4)τ

(ρ− 1)3

)
.

This formula shows that the hyperelliptic involution (ρ, τ) 7−→ (ρ,−τ) on Bβ in-

duces the involution (u, v) 7→ (u,−v) on Eβ .
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Lemma 5.1 The Jacobian of Bβ is isogenous to the product Eβ × Eβ .

Proof The reducibility of the Jacobian of Bβ follows from [4, Theorem 14.1.1, Ch.14]

since it is clear that Bβ is equivalent to a curve of the form

y2
= x(x − 1)(x + 1)(x − b)(x + b).

In fact, the curve Bβ has the automorphism ι′: ι′(ρ, τ) = (−ρ, iτ). This gives an-
other map f ◦ ι′ : Bβ −→ Eβ . Notice that H1,0(Bβ) = 〈dρ/τ, ρdρ/τ〉. We have

H1,0(Bβ) = 〈dρ/τ + ρdρ/τ〉 ⊕ 〈dρ/τ − ρdρ/τ〉,

= f ∗H1,0(Eβ) ⊕ ( f ◦ ι′)∗H1,0(Eβ).

Hence the Jacobian is isogenous to the product Eβ × Eβ .

5.2 The Elliptic Curve E

Notice that we have the isomorphism of genus one curves

E ′
= (y2

= x3 − x)
∼=−→ E = (w4

1 = z2
1 − 1),

(x, y) 7−→ (w1, z1) = (y/(
√

2x), (x + x−1)/2)).

Moreover, the automorphism of order four on E (z1,w1) 7−→ (z1, iw1) is induced
by the automorphism on E ′, (x, y) 7−→ (x−1, i yx−2). We call standard involution the

automorphism (x, y) 7−→ (x,−y) on E ′ ∼= E (sometimes we simply write p 7−→ −p

for this map).

5.3 Isogenies

In Remark 3.2 we defined a map Υ from Bβ × E to Yβ ⊂ P3. It can be proved that

the image of Bβ × E in P3 is the quotient by the order four automorphism

φ : Bβ × E −→ Bβ × E,
(

(ρ, τ), (z1,w1)
)
7−→

(
(−ρ, iτ), (z1,−iw1)

)
.

Note that the square of the automorphism is the product of the hyperelliptic involu-

tion on Bβ and the standard involution on E.

Remark 5.2 The rational map Υ has 9 base points, one of multiplicity 4 and 8 of
multiplicity 2.

We now consider the Kummer surface associated to the abelian surface Eβ × E:

Kβ = Km(Eβ × E).

https://doi.org/10.4153/CMB-2009-051-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2009-051-8


A One-Dimensional Family of K3 Surfaces with a Z4 Action 505

From the previous remarks it follows that we have the diagram

(Bβ × E)/φ2

/ι

zzuuuu
uuuuu

u /φ

$$
IIIII

IIIII

Kβ Xβ

where the left arrow is the quotient by the involution ι and the right arrow is the
quotient by φ (composed with birational maps). We now prove the following.

Theorem 5.3 The K3 surface Xβ is singular if and only if Kβ is singular (i.e., Eβ is

isogenous to E).

Proof Let ω = dρ/τ ∈ H1,0(Bβ), ωi = dw1/z1 ∈ H1,0(E). Notice that

(H1(Bβ) ⊗ H1(E))φ = 〈ω ⊗ ωi, ρω ⊗ ω̄i , ω̄ ⊗ ω̄i , ρω ⊗ ωi〉.

Let B̃β × E be the blow up of Bβ × E along the indeterminacy locus of Υ and Υ̃ be

the map B̃β × E → Xβ induced by Υ. We have

Υ̃
∗(Tβ) ⊂ (H1(Bβ) ⊗ H1(E))φ ⊂ H2(B̃β × E),

and the first inclusion is an equality for general β ∈ P1. The transcendental lat-

tice Tβ has rank two if the space (H1(Bβ,Q) ⊗ H1(E,Q))φ contains a cycle of type

(1, 1). It can be proved by easy computations that H1(Bβ,Q)⊗H1(E,Q) is the direct
sum of the eigenspaces (with respect to the eigenvalues ±1) of the automorphism φ.

Moreover, the involution ι interchanges the eigenspaces of φ. This implies that if

H1(Bβ ,Q) ⊗ H1(E,Q) contains a (1, 1) cycle, then the same is true for the positive
eigenspace of φ. Notice that

H1(Bβ) ⊗ H1(E) ∼= H1(Bβ)∗ ⊗ H1(E) ∼= Hom(H1(Bβ),H1(E)).

Hence we can associate to each element ω ∈ H1(Bβ) ⊗ H1(E) a homomorphism

ψω : H1(Bβ) → H1(E). Moreover ω is of type (1, 1) if and only if ψω preserves
the Hodge decomposition i.e., ψω(H1,0(Bβ)) ⊂ H1,0(E) (see [23]). By Lemma 5.1

J(Bβ) ∼= Eβ × Eβ , hence this existence is equivalent to the existence of a homo-
morphism ψ ′

ω : H1(Eβ ,Q) −→ H1(E,Q) preserving the Hodge structure i.e., of an

isogeny between Eβ and E. It is known that the Kummer surface associated to the

product of two elliptic curves is singular if and only if the two curves are isogenous
with complex multiplication [20, 21], and thus the result follows.

Assume now that β is such that there is an isogeny of elliptic curves g : Eβ −→ E.
Composing with the quotient map f (see Subsection 5.1) we have

h : Bβ −→ Eβ −→ E.

Let Γh be the graph of h. By the proof of Theorem 5.3, Γh is the (1, 1) cycle in

H1(Bβ) ⊗ H1(E) corresponding to g.
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Lemma 5.4 The image Υ(Γh) is a rational curve in P3.

Proof As observed in Subsection 5.1, the hyperelliptic involution i on Bβ induces
the standard involution on Eβ . Since g is an isogeny (so a homomorphism of groups)

the hyperelliptic involution on Eβ composed with g is the standard involution on E.
Thus if (p, h(p)) ∈ Γh

∼= Bβ , then also (i(p), h(i(p)) = (i(p),−h(p)) lies in Γh. This

means that the graph Γh is invariant under φ2, therefore the composition

Bβ ∼= Γh →֒ Bβ × E −→ Yβ ⊂ P
3

factors over Bβ/i ∼= P1. In particular, the image of the graph is a rational curve.

5.4 A Special Case

We now consider a special example where the isogeny g : Eβ −→ E is an isomor-
phism:

Example. We consider the curve Bβ from Subsection 5.1 with β̄4
= 7/9. Then we

have

Bβ̄ : τ 2
= ρ(ρ4 + 14

9
ρ2 + 1),

Eβ̄ : v2
= u(u + 4

3
)(u + 8

3
).

Notice that, by putting u =
4
3
x − 4

3
, we get an isomorphism with the curve E ′ : y2

=

x(x2 − 1).

We fix the isomorphisms Eβ̄
∼= E ′ ∼= E (the last one as in Subsection 5.2). We de-

note by Dβ̄ the projection to P2 of the image of Γh in P3. Then we have the following.

Lemma 5.5 The image of Γh ⊂ Bβ̄ × E in P3 is a rational curve of degree six. More-

over, the inverse image of the curve Dβ̄ splits in four components on the quartic surface

Yβ̄ ⊂ P3.

Proof An explicit computation gives that the curve Dβ̄ ⊂ P2 is the image of the
following map:

ψ : P
1
r −→ P

2, r 7−→






x = 49(r − 1)2,

y = 63r2(r − 1)2,

z = 3r2(48 − 32r + 75r2 − 54r3 + 27r4).

Recall that Yβ̄ totally ramifies over the plane quartic:

Q : (y2 − xz) · y · (ᾱx + 2y + z) = 0, ᾱ = 81/49.

Substituting for x, y, and z, we get:

(
−2352(r − 1)2r2(3 − 2r + 3r2)

)
·
(

63r2(r − 1)2
)
·
(

3(3 − 2r + 3r2)3
)
.

Thus this product is a fourth power in C[r], hence the 4:1 cover of the curve splits

into 4 components.
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We remark that the curve Dβ̄ defined in the previous section defines a 2-section
for the elliptic fibration Eβ̄ i.e, it meets every fiber in two points.

Consider the 2:1 base change Dβ̄ −→ P1
λ given by the projection of the 2-section

to the base. The pull-back Er of the Weierstrass fibration Eβ̄ −→ P1
λ along this base

change has two ‘new’ sections which are the irreducible components of the pull-back

of the 2-section Dβ̄ . The sum of these sections of Er −→ P1
r actually defines a section

of Eβ̄ −→ P1
λ.

Lemma 5.6 The elliptic fibration Eβ with β = β̄ has a new section. The inverse image

by πβ of the image of this curve in P2 splits in four components.

Proof The parameter λ was defined as y/x, (see Section 3), hence the base change

Dβ̄ −→ P1 is defined by λ = y/x = (9/7)r2. On the other hand, the coordinates

of the 2-section are polynomials in r, so we need to make a base change with
√
λ or,

equivalently, with r. Then the pull-back surface Er has the sections r 7−→ xi(r) and

r 7−→ xi(−r) (here xi = x, y, z,w or u, v in the Weierstrass model).

Let u1 = u(r), u2 = u(−r), v1 = v(r), v2 = v(−r). The coordinates (u3, v3) of the

sum of the two sections in the Weierstrass model can be found by using the formula

u3 = (v2 − v1)2/(u2 − u1)2 − u1 − u2

from [22] (the v3-coordinate is easy to find from the Weierstrass equation of Eβ).

The coordinate u3 is a function of r2 (since u1, v1 and u2, v2 are permuted under
r 7→ −r), hence we get a section of Eβ . Explicitly, the section of the fibration (note

ᾱ = 81/49)

v2
= u3 − 7−4λ3(81 + 98λ + 49λ2)2u,

is given by

u =
(27 + 7λ)2(81 + 98λ + 49λ2)

2477/2
,

v =
(81 − 7λ)(27 + 7λ)(81 + 98λ + 49λ2)2

26721/4
.

The equation of the corresponding curve in Yα can be easily found by using the

inverse transformations. The projection of this curve to P2 is given by (after having

replaced r2 by r throughout):

ζ : P
1
r −→ P

2, r 7−→





x = 49(−9 + r)2,

y = 63r(−9 + r)2,

z = 9r2(729 + 94r + 9r2).

Recall that Yα totally ramifies over

(y2 − xz) · y · (αx + 2y + z), ᾱ = 81/49.
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Substituting for x, y, and z, we get:

−283672r3(−9 + r)2 · 63r(−9 + r)2 · 81(r + 3)4.

Thus this product is a fourth power in C[r], hence the 4:1 cover of the curve splits

into four components in Yα.

Remark 5.7 (i) By [2, Theorem 4.5] one expects that, for any isogeny g, the curve
Υ(Γh) is a “splitting curve” for Cβ i.e., its inverse image by the cover πβ is the

union of four distinct curves.
(ii) The elliptic fibration Eᾱ on the K3 surface Xᾱ has a fiber of type III, one of type

III∗ , two of type I∗0 and a section. The Shioda–Tate formula [19, Corollary 1.5]

implies that the Picard number of Xᾱ is at least 19. Since the transcendental
lattice is a Z[i] module, the Picard number is an even integer, hence the K3

surface is indeed singular.

5.5 The Transcendental Lattice

In this section we prove the following.

Proposition 5.8 The intersection matrix of the transcendental lattice of a singular K3

surface Xα is of the form Tn =
(

2n 0
0 2n

)
, n ∈ Z, n > 0. Conversely, if n is a positive

integer with n 6≡ 2 (mod 4), then the rank two lattice Tn is the transcendental lattice of

a K3 surface Xα.

Proof Let Tα be the transcendental lattice of a singular K3 surface Xα in the family.

The surface Xα carries an order four automorphism σ such that the induced isometry

σ∗ on H2(Xα,Z) satisfies (σ∗)2
= −id on Tα. Moreover, the transcendental lattice is

isomorphic to Z[i] if we identify i with σ∗. It follows (as in the proof of Lemma 2.1)

that Tα ∼= A1(−n)⊕2 for some n positive integer.

Conversely, we now construct explicitly a period point in D such that the corre-
sponding K3 surface is singular.

We start by proving that for any positive integer n there exists a = (a1, . . . , a4) ∈
Z4 such that n = a2

1 + a2
2 − a2

3 − a2
4, with a1

2 + a2
2 > a3

2 + a4
2 and such that the

rank two lattice Λ(a) = 〈a, σ∗(a)〉 is primitive in Z4. This is equivalent to the request

that the rank two minors of the matrix
( a1 a2 a3 a4

a2 −a1 −a4 a3

)
have no common factors. Let

n = 2k + 1 be an odd integer, then we can choose a1 = (k + 1)2, a3 = k2, and

a2 = a4 = 0. For n = 2(k + 1) with odd k we can choose a2 = 1, a4 = 0, and a1, a3

as before. Assume that k = 2ℓ is even, then n = 2(2ℓ + 1) = 4ℓ + 2. Notice that
(a2

1 + a2
2) − (a2

3 + a2
4) ≡ 2 (mod 4). Since x2 ∈ {0, 1} for x ∈ Z4 we have only two

possibilities:

(a2
1, a

2
2, a

2
3, a

2
4) ≡ (1, 1, 0, 0) (mod 4),(1)

(a2
1, a

2
2, a

2
3, a

2
4) ≡ (0, 0, 1, 1) (mod 4).(2)

In case (1) we have that a1, a2 are odd and a3, a4 are even. Hence we immediately get

that Λ(a) is not primitive (all minors are even integers). The second case is analogous.

https://doi.org/10.4153/CMB-2009-051-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2009-051-8


A One-Dimensional Family of K3 Surfaces with a Z4 Action 509

We now assume that n 6≡ 2 (mod 4) and we choose a1, . . . , a4 as before. Define
z(a) ∈ T ⊗ C by (with respect to the usual basis):

z(a) = (a1 + ia2, a2 − ia1, a3 + ia4, a4 − ia3).

We consider the following sublattices of L: N(a) = z(a)⊥ ∩ LK3, T(a) = N(a)⊥.

Notice that T(a) is the lattice generated by a, σ∗(a) with intersection matrix given by:

T(a) ∼=
(

2(a1
2 + a2

2 − a3
2 − a4

2) 0

0 2(a1
2 + a2

2 − a3
2 − a4

2)

)
.

By the surjectivity of the period map the point z(a) is the period point of a K3

surface Xα(a) in the family (see Proposition 2.2). By construction the transcendental

lattice of Xα(a) is T(a).

We now give some examples of K3 surfaces with transcendental lattice isomorphic

to Tn:

(a) n = 1 for Vinberg’s K3 surface (see [24]),

(b) n = 3 for the K3 surface described in [7],

(c) n = 4 for the Fermat quartic (see [16]),
(d) n = 7 for the Klein quartic (see [17]).

Lemma 5.9 Let E ∼= C/Z + iZ and E ′ ∼= C/Z + miZ, then the Kummer surface
Km(E × E ′) has transcendental lattice of the form T2m, m ∈ Z, m > 0.

Proof This follows easily from the proof of [20, Theorem 4].

Lemma 5.10 The family {Xα} contains the K3 surfaces (a), (b), (c), d), and all

Kummer surfaces in Lemma 5.9 with even m. The surface Km(E × E) is not in the
family.

Proof The first assertion is a corollary of Proposition 5.8. Note that the transcen-
dental lattice of X = Km(E×E) is isomorphic to T2 (see also [8]), so Proposition 3.4

cannot be applied. Assume that X = Xα, α ∈ P1. Notice that X cannot correspond

to the fibers α = 0,∞, since it is singular and is not isomorphic to Vinberg’s K3
surface. Hence the elliptic fibration Eα on X has the same configuration of singular

fibers as the general case i.e., Lemma 3.4.

All Jacobian fibrations on X are classified in [15, Table 4.1]. In particular this table

shows that there exists no jacobian fibration on X with the configuration of singular

fibers given in Lemma 3.4. This gives a contradiction, hence X is not in the family.
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