R.C. Gunning, "Connections for a Class of Pseudo-group Structures."'
H. Hironaka, "A Fundamental Lemma on Point Modifications."
H. Rohrl, "Transmission Problems for Holomorphic Fiber Bundles. "

H. Rossi, "Attaching Analytic Spaces to an Analytic Space Along a
Pseudoconcave Boundary."

A. Morimoto, '"Non-compact Complex Lie Groups without Non-
constant Holomorphic Functions. "

E. Bishop, "Uniform Algebras."
B. Maskit, "Construction of Kleinian Groups."

L.V. Ahlfors, "The Modular Function and Geometric Properties of
Quasiconformal Mappings. "

E. Kallin, "Polynomial Convexity: The Three Spheres Problem."

The volume ends with a list of twenty-six problems posed by
members of the Conference.

George Springer, Indiana University

Number Theory, by Z.I. Borevich and I.R. Shafarevich.
Academic Press, New York, 1966. x + 435 pages. $12.95.

Theorie des nombres, par Z.I. Borevitch et I.R. Chafarevitch.
Traduit par M. et J.-L. Verley; Monographies internationales de
mathematiques modernes, sous la direction de S. Mandelbrojt. Gauthier-
Villars, Paris, 1967. vi + 489 pages. Price: 78 F.

With the following notation and terminology of the authors' it is
possible to state the aims of this book fairly simply. Let k denote the
rational field and let K be any finite extension of k of degree n . Let
By CPSREREY (m<n) be linearly independent elements of K over k

m =
with conjugates piJ (1<i<m, 1<j<n) over k and define a form
F(x1, e Xm) of degree n over k[x1, e xm] by taking the norm:

n

J J
N +... = A
(1) (xip.1 X ) j?1 (x1pL1 + +x p 7))

of xu +...+x p_ . Then the number-theoretic questions are mainly
11 m m

concerned with the rational integral solutions, for given a ¢k, of the
diophantine equation

(2) F(x ,¢:0.,X )=a,
1 m

the existence or non-existence of such solutions and, generally, the
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structure of the set of solutions. We may distinguish two categories in
the treatment of (2), namely:

(I) m=n(a#0) , (II) m<n

Briefly, in (I) the existence of a solution is shown to lead to an infinity
of solutions (and to a characterization of the set of solutions) by means
of the celebrated theorem of Dirichlet on the structure of the group of
units * (i.e., integers £ ¢ K with N(£) =+ 1) of K and the treatment
here follows the usual lines. However, in (II), where Fermat's equation
< Y Y < Y
1 2 3 =0

resides, the apparatus required for a modern treatment is elaborate and
the results are by no means as complete as in category (I).

Firstly, let us note that, in either category, the solvability of (2)
is clearly impossible unless it is solvable as a congruence to every
modulus and the first chapter is devoted to an account of polynomial
congruences (in several variables) and to the closely related question
of p-adic integral solutions of (2), where the notion of a discrete valuation
is first broached.

The main problem is investigated by means of the properties of
the module M belonging to F , thatis, the Z-module defined as the

set of numbers {x1p +... +xmpm} , xisZ in K. M (and F) is

1
said to be "full" if m = n and "non-full" otherwise. A full module M
which contains the unit 1 and has ring structure is said to be an order
D of the field K . In particular, the coefficient ring (i.e., take all
ae K with ¢«MCM) is an example of an order of K and the resolution
of the problem in (I) takes the following form:

If K has s real and 2t complex isomorphisms into the field of
complex numbers, (n = s+2t), then there exist r = s+t-1 units
61’ ..., 1in the order D and there exists a finite set of elements
r

Vyr e v)\ of M with norm a such that

peM,Np)=a=>p= uisZ,garootof 1.

r
v.Ee el E , n even.
1 r

The special case n = 2(r=1) is then considered and a classification of
'similar' modules defined to bring the development into parity with the
usual theory of representation of numbers by binary quadratic forms.

except when K is a complex quadratic field when the group of units
is finite.
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We enter category (II) in Chapter 3 which is devoted todivisibility
properties in an arbitrary integral domain (where, subsequently, K is
to be regarded as its quotient field). Following historical precedent,
this is illustrated by a discussion of the usual two cases of Fermat's
theorem, where the equation is now expressed in multiplicative form:

I (x1 +§Jx2) = x3£
1<j<4

th
over k =k({), ¢ being a primitive £ root of 1 . In the minority of

2 -
cases where ( is prime and the (maximal) order D = {1,¢,¢ ,.. .,Ql 2}

has the unique factorization property (u.f.p.) Fermat's theorem presents
no insurmountable difficulty and the main body of this chapter is concerned
with restoring the deficiency in the u.f.p. (whether £ is prime or not)
as far as possible. The method consists, in essentials, in setting up a
"theory of divisors' with the u.f.p., on a modified "copy' of D . More
precisely, starting with an arbitrary integral domain D and denoting by
D* the multiplicative semi-group of all non-zero elements of D, a
theory of divisors for D is defined if there exists a homomorphism

a>(a¢) of D¥ into ® with the properties®

(1) Ble in D*«—>(8)|(e) in P,
(2) (@), a|(B),ced, ae D*, pe D¥ —> [(a+p) in D ,

(3) Given L e®, Ye® and the set of all o¢e D such that & l(a)
in ® coincides with the set of all p € D such that ¥ [(B) in D . Then
& =% . The elements of are called divisors of D and divisors of
the form (), where oe D™ are called principal divisors (unit element
of ® is called the unit divisor). Also, itis conventional to write (Ila
for @ l(a/) .

It is important to observe that a theory of divisors is not asserted.
However, it is easily established that if one such exists then, up to
isomorphisms, it is unique and that D has the u.f.p. if, and only if,

D has a theory of divisors in which every divisor is principal. This
approach leads naturally to, and provides motivation for a discussion of
discrete valuations for D by assigning to each ot D¥ the integer vg ()

corresponding to the power to which the prime divisor ¢ enters in the
(unique) factorization of the principal divisor (o) into prime factors in

(f) , i.e.,
vp ()
1

’

(@) = Tllﬁl

It is important to note that condition (3) ensures that no element of B3
is spurious in the sense that for each (L ¢ & there is an element aeD
such that CC] (o)
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the corresponding extension to the quotient field K of D being obtained
by putting

vp &) = vpla) - vg(B),

where £ =a/BeK, aeD, Be D* . Moreover, the introduction of
valuations provides a constructive method of determining whether a
given D has a theory of divisors. Thus, for example, it is shown that
if D is the maximal order of K then there exists a theory of divisors
for D that is induced by the set of all (discrete) valuations of the field
K (and more generally the same holds for any Dedekind ring D) . Then,
following a brief discussion of divisor classes (where two divisors of K
are said to belong to the same class if, and only if, they differ by a
factor which is a principal divisor), the application to Fermat's equation
is apparent - the so-called first case of Fermat's theorem holds for all
prime exponents { which do not divide the number of divisor classes of
K = k(¢) . Further examples illustrate the practical problem of finding
the prime divisors of numbers in specific algebraic member fields

5
(e.g., k(6), where 6 =2 and 63 - 96 - 6 = 0) and quadratic fields
are fully treated.

In Chapter 4 we remain with the general problem in category II
and investigate the class of non-full forms (1) for which there are but a
finite (possible zero) number of solutions of the type under consideration.
That this class is non-void is known from the classical work of Thue on
irreducible binary forms f(x,,x_ ) of degree n> 3 . However, Thue's
method, which is based on ra)jtiot%al approximations to a given algebraic
number, in this case a root of f(x,41) = 0, is limited in applications and
the authors' have preferred (i) to apply the valuation theory of Chapter
3 to finite extensions of complete fields and (ii) couple it to the pioneering
work of Skolem on local methods for diophantine equations. So far as (i)
is concerned, the supplementary material required relates to the com-
pletions of the algebraic number field K (or, at no extra cost, any field
possessing a theory of divisors). Thus if $ is any prime divisor of K
and v = v is the corresponding valuation and we fix upon a real number
p with 0<p < 1, ametric (¥) ¢ = ¢@ on K is induced by putting

v (x) x e K

¢(x) =p
and K = K& (i.e., the §-adic completion of K) is simply the completion
of K with respect to this metric. In p_:ilrticular, the valuation v on K
extends uniquely to a valuation ¥ on K with V(x) =v(x) for xeK .
Now K has algebraic extensions of all degrees and so, for fixed n> 2,
we can consider such a field K' with [K":K] =n . By the work of
Chapter 3, we know that there exists an extension of the valuation vV of
K to a valuation v' of K', but now, under the additional hypothesis

* .
In this translation, valuations are discrete with value group Z and the
term ''metric!" is reserved for similar mappings into the reals.
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that K is complete, it follows that v' is unique and that K!' is complete.
If(fﬁ' is the prime divisor corresponding to v', the set of elements

o' e K' with v'(«') > 0 form a ring (the ring of the valuation) Dv' and

the elements are the ,fﬁ' -adic integers of K' ., With these preliminary
remarks about (i) we can briefly sketch the coupling (ii) with Skolem's
method:

Regard the module M = {xip1 +... +xm|.xm} of the form F
(where now m < n) as a submodule of a suitable chosen full module of
the shape

M = +
M {xip + tx _pootx

1 m+1'm+1 R +ann}
and use the technique of Chapter 2 (c.f. (3) above) to find all rational
integral solutions xi, vee,x  Of

n

N(p) = a, psﬁ.

Then it is sufficient to find a method of picking out those solutions of

the fori = +... 7+ f hich th oefficients of .
e form p xi“’l xn“n or whi e coefficients o xm+1,
E3

are simultaneously zero. Now,in terms of the dual basis p.i*, TS ,
n

C X

where we have the usual relations

T(w. * =§..,1<i<n, 1<j<:
(ujui) ij <ign <J<n

for the trace, the numbers of F/I which belong to the submodule M are
completely characterized by the conditions

T(up;") =0 (i=m+1,...,n).
But, on reference to (3), we also know that p has the form

u'1 u
p=v, te ces € r.
i 1 r

Hence the problem amounts to showing that, under suitable conditions,
the system of equations in the rational integral variables Uyseventt
r

u u
% 1 r .

4 T =0, = N

(4) (VpLi 81 €. ) =0 (i=m+1 n)

where v takes one of at most finitely many values in M with norm a ,
does not have an infinity of solutions. Since we have alreacy introduced

numbers composed from the fields conjugate to K, e.g. pi'" , We now

fix upon an algebraic number field K' containing all fields conjugate
to K. .If Tyrenes® is the set of isomorphisms of K into K', then
n
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T(g) = 01(§) +... +(rn(§) for all £e¢K' and the system (4) reduces to

u u

(5) clvp®)o(e) 1. oe)T=0, (i=mH,...,n)
J 1 J 1 jr

"M,‘S

j=1
This is a system of n-m equations in r variables and on empirical
grounds we might expect that, if n-m> r , there are at most finitely
many solutions. However, this is not always the case (whenwe.g., M
contains a full module of a subfield of K which is neither the rational
field nor an imaginary quadratic field) and, at present, certain technical
difficulties present a barrier to results of any generality. Skolem's
approach, which is successful in some cases, is to extend the domain

of the variables Uys ey ur by allowing them to take integral values in

the completion K'g ', where p' is a prime divisor of K' . More
precisely, the system (5) when expressed in logarithmic form:

n
(6) Z A . Lu,...,u)=0, (i=m#,...,n)
j=1 ij j 1 r

r
Fs
where L (u,...,u)= Z u logo(e), A . =0 (vu. and where th
ity r N T (80 Ay o) w e
left side of (6) is a formal power series (converging for all dfb'-adic
integral u ), is regarded as defining, for each v , a local analytic
i

manifold in the r-dimensional space of points (ui, ... u ), where each
r
component u, lies in K'/_A,' or in some finite extension of K'Jb' . The
i

success of this method hinges upon showing that (6) has no solution in
formal power series w (t) of the type u, = wi(t), i=1,2,...,r). The
i i

procedure is illustrated by taking Thue's example, where m = 2 and
the condition n-m> r reduces to t>1, i.e., f(x,1) = 0 has at least
one non-real root.

The final Chapter (ch. 5) has a distinctly different flavour from
the preceding ones in the sense that, on introducing analytical methods
into a discussion of properties of certain arithmetical constants of an
algebraic number field K, there is a much closer affinity to the works
of the classical writers, e.g. of Kummer, Dirichlet and Dedekind. This
is particularly true in the derivation of formulae for the number h of
divisor classes (a positive integer!) , where the Dedekind Zeta function,
Dirichlet's principle and the Dirichlet unit theorem not only play their
classical role but provide the only known general way of expressing h
in terms of certain simpler arithmetic constants of K . The special

case K =k(¢), where 2;1 =1, of cyclotomic fields is discussed at
length and h is expressed as the product of two positive integers ho

and h*¥ which have special significance in the proof of the second case
of Fermat's theorem (for regular primes £ ). Analogous formulae for
the case of quadratic fields are also given.
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Apart from the chapters in the book there is an excellent appendix
supplying relevant background material on algebraic topics: equivalence
of quadratic forms (Witt's theorem), algebraic extensions, finite fields
and characters of finite abelian groups. Among the chapters and some-
times augmenting the text of the various sections comprising a chapter,
there is also a very fine collection of examples. References to the
literature and discussions of the latest developments on the various topics
are particularly welcome and one would have wished that the authors had
been more systematic in this one respect, especially as the work of
Russian authors may occasionally be overlooked. The book concludes
with a number of tables of arithmetical constants taken from various
published sources, e.g. class numbers for quadratic and cubic fields,
fundamental units for quadratic fields, irregular primes and discriminants
of maximal and non-maximal orders. In total, this makes a really signi-
ficant and distinguished addition to the literature on Number-theory and
in recording our indebtedness to the authors, I also thank the translator
who has managed to convey the mathematical sense of the original while
permitting the style of the authors to permeate the translation.

J.H.H. Chalk, University of Toronto

Scales and Weights, by Bruno Kisch. McGill University Press,
295 pages + 98 plates. $'15.00.

This interesting book is devoted to the history of weighing, from
the earliest times to the introduction of the metric system. Paintings
in Egyptian tombs, excellently reproduced in the book, show clearly that
metrology was already an old art, or perhaps an old science, more than
3000 years ago. The Egyptian paintings show beautifully constructed
scales sometimes weighing materials and sometimes used by Egyptian
gods to weigh peoples' souls before passing divine judgement. This con-
cept of spiritual weighing was, of course, a familiar one in biblical
times as is shown by the famous story of Belshazzer's feast.

The book deals faithfully with the various instruments used in
weighing, such as scales with a variety of weights, bismars with no
weights and steelyards which use only one weight. Many of the 98 plates
give clear pictures of such apparatus dating from the earliest times down
to the modern chemical balance. A bismar consists of a beam carrying
at one end a scale pan and having a variable point of support. The point
of support is moved until a balance is reached and a mark at the position
of balance then shows the weight in the pan. The steelyard is somewhat
similar but the point of support is fixed on the beam while a weight can
be moved along the beam until a balance is reached.

Comprehensive tables are given of various systems of weights
used from biblical times to our own time, a feature which should be of
great use to all students of metrology. The number and variety of these

systems is amazing.

The history of the metric decimal scale is given in chapter 3. It
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