PERMUTABLE FUNCTIONS CONCERNING DIFFERENTIAL EQUATIONS

X. HUA $^{\mp}$, R. VAILLANCOURT and X. L. WANG

(Received 25 January 2006: revised 28 June 2006)

Communicated by P. Fenton

Abstract

Let f and g be twe permutable transcendental entire functions. Assume that f is a solution of a linear differential equation with polynomial coefficients. We prove that. under some restrictions on the coefficients and the growth of f and g, there exist two non-constant rational functions R_{1} and R_{2} such that $R_{1}(f)=R_{2}(g)$. As a corollary, we show that f and g have the same Julia set: $J(f)=J(g)$. As an application. we study a function f which is a combination of exponential functions with polynomial coefficients. This research addresses an open question due to Baker.

2000 Mathematics subject classification: primary 30D05, 37F10, 37F50: secondary 34A20.

1. Introduction and Main Results

Let f be a meromorphic function. We denote by $T(r, f)$ the Nevanlinna characteristic of f. The order and the lower order of f are defined by

$$
\lambda=\lambda(f)=\limsup _{r \rightarrow \infty} \frac{\log \log M(r, f)}{\log r}=\limsup _{r \rightarrow \infty} \frac{\log T(r, f)}{\log r}
$$

and

$$
\rho=\rho(f)=\liminf _{r \rightarrow \infty} \frac{\log \log M(r, f)}{\log r}=\liminf _{r \rightarrow \infty} \frac{\log T(r, f)}{\log r}
$$

respectively, where $M(r, f)=\max \{|f(z)|:|z|=r\}$ is the maximum modulus (see for example [8] for an introduction to Nevanlinna Theory).

[^0]Let f and g denote two meromorphic functions. If

$$
\begin{equation*}
f(g)=g(f) \tag{1.1}
\end{equation*}
$$

then we call f and g permutable. Many mathematicians have studied the analytic and dynamical properties of f and g. The following general results are known.

- For a given f, there exist infinitely many transcendental entire functions g such that $f(g)=g(f)$, for example, $g=f^{n}$ will do, where f^{n} denotes the n-th iterate of $f: f^{n}=f^{n-1}(f)$. There should be no confusion with ordinary powers, which will be explicitly written as $(f(z))^{n}$ if necessary.
- For a given f, there are only countably many entire functions g such that (1.1) holds (see [2]).
- Let $f(z)=a e^{h=}+c(a b \neq 0, a . b, c \in \mathbb{C})$. If $f(g)=g(f)$ then $g=f^{n}$ for some $n \geq 0$ (see [1]).

In this paper we shall study relations between permutable entire functions and differential equations. In fact, we shall consider functions which are solutions of some linear differential equations of the form

$$
\begin{equation*}
p_{n}(z) f^{(n)}(z)+p_{n-1}(z) f^{(n-1)}(z)+\cdots+p_{1}(z) f^{\prime}(z)+p_{0}(z) f(z)+p(z)=0, \tag{1.2}
\end{equation*}
$$

where n is a positive integer, and $p_{i}(0 \leq i \leq n)$ and p are polynomials, with $p_{n} \not \equiv 0$.
THEOREM 1.1. Let f and g be two permutable transcendental entire functions with $\rho(f)>0$ and $\lambda(g)<\infty$. If
(i) $f(z)$ satisfies (1.2) with $p_{0}(z) \not \equiv 0$ and $p(z) / p_{0}(z) \not \equiv$ constant;
(ii) $f(\xi)$ cannot be a solution of any linearly differential equation of order $\leq n-1$ with polynomial coefficients,
then there exist two nonconstant rational functions $R_{1}(z)$ and $R_{2}(z)$ such that $R_{1}(f) \equiv R_{2}(g)$.

As an application, we consider the following function $f(z)$:

$$
\begin{equation*}
f(z)=p(z)+p_{1}(z) e^{q_{1}(E)}+p_{2}(z) e^{q_{2}(z)}+\cdots+p_{n}(z) e^{q_{n}(z)}, \tag{1.3}
\end{equation*}
$$

where $p(z)$ is a polynomial. $p_{i}(z)(i=1, \ldots, n)$ are non-zero polynomials and $q_{i}(z)$ $(i=1, \ldots, n)$ are polynomials with $q_{i}(z)-q_{j}(z) \not \equiv$ constant for $1 \leq i \neq j \leq n$.

THEOREM 1.2. Let f and g be two permutable transcendental entire functions with $\lambda(g)<\infty$, where f satisfies (1.3). Assume that $p(z)$ is not a constant. Then there exist two rational functions $P_{1}(z)$ and $P_{2}(z)$ such that $P_{1}(f)=P_{2}(g)$.

REMARK. In [17], we studied a special case where $n \leq 2$.
Next, we list some well-known permutable transcendental entire functions of exponential type (see Ng [14] for other examples).

EXAMPLE 1. Let $f(z)=z+\gamma e^{z}$ and $g(z)=z+\gamma e^{z}+2 k \pi i$, where $\gamma(\neq 0) \in \mathbb{C}$ and $k \in \mathbb{Z}$. Then $f \circ g=g \circ f$.

EXAMPLE 2. Let $g_{1}(z)=z+\gamma \sin z+2 k \pi$ and $g_{2}(z)=-z-\gamma \sin z+2 k \pi$ and $f(z)=z+\gamma \sin z$, where $\gamma(\neq 0) \in \mathbb{C}$ and $k \in \mathbb{Z}$. Then $f \circ g_{1}=g_{1} \circ f$ and $f \circ g_{2}=g_{2} \circ f$.

Example 3. Let

$$
\begin{gathered}
f(z)=i a\left[\exp \left(\frac{(4 k+3) \pi}{8 a^{2}} i z^{2}\right)+\exp \left(-\frac{(4 k+3) \pi}{8 a^{2}} i z^{2}\right)\right] \\
g(z)=a\left[\exp \left(-\frac{(4 k+3) \pi}{8 a^{2}} i z^{2}\right)-\exp \left(-\frac{(4 k+3) \pi}{8 a^{2}} i z^{2}\right)\right], \quad q(z)=\frac{(4 k+3) \pi}{8 a^{2}} i z^{2}
\end{gathered}
$$

where $a \in \mathbb{C}, a \neq 0$ and $k \in \mathbb{N}$. It is easy to check that $q(g)=-q(f)-(2 k+1.5) \pi i$ and $f(g)=g(f)$.

The motivation for this research comes from the following open question in complex dynamics.

Let f be a nonlinear meromorphic function. We define

$$
F=F(f)=\left\{z \in \overline{\mathbb{C}}: \text { the sequence }\left\{f^{n}\right\} \text { is well defined and normal at } z\right\}
$$

and

$$
J=J(f)=\overline{\mathbb{C}}-F(f)
$$

where $\overline{\mathbb{C}}=\overline{\mathbb{C}} \cup\{\infty\}$, and the concept normal is in the sense of Montel. $F(f)$ and $J(f)$ are called the Fatou and Julia sets of f, respectively. When there is no confusion, we briefly write F and J instead of $F(f)$ and $J(f)$. Clearly $F(f)$ is open and it is well-known that $J(f)$ is a nonempty perfect set which either coincides with \mathbb{C} or is nowhere dense in \mathbb{C}. For the basic results in the dynamical system theory of transcendental functions, we refer the reader to the books [9] and [13].

OPEN QUESTION 1 (Baker [1]). For two given permutable transcendental entire functions f and g, does it follow that $F(f)=F(g)$?

This is a difficult question to answer. So far, affirmative answers to special cases of functions of f and g have been obtained (see $[1,16,18]$). When f and g are permutable rational functions, Fatou [4-6] and Julia [10] proved that they have the same Julia set.

COROLLARY 1.3. Let f and g satisfy the assumptions of Theorem 1.1 or Theorem 1.2. Then $J(f)=J(g)$.

2. Some Lemmas

LEMMA 2.1 ([7]). Let $G_{0}, G_{1}, \ldots, G_{m}$ and f be non-constant entire functions and let $h_{0}, h_{1}, \ldots, h_{m}(m \geq 1)$ be nonzero meromorphic functions. Suppose that K is a positive number and $\left\{r_{i}\right\}$ is an unbounded monotone increasing sequence of positive numbers such that, for each $j \geq 1$,

$$
T\left(r_{j}, h_{i}\right) \leq K T\left(r_{j}, f\right) \quad(i=0, \ldots, m)
$$

and

$$
T\left(r_{j}, f^{\prime}\right) \leq(1+o(1)) T\left(r_{j}, f\right)
$$

If

$$
h_{0} G_{0}(f)+h_{1} G_{1}(f)+\cdots+h_{m} G_{m}(f) \equiv 0
$$

then there exist polynomials $\left\{p_{j}\right\}(j=0,1, \ldots, m)$, not all identically zero, such that

$$
p_{0}(z) G_{0}(z)+p_{1}(z) G_{1}(z)+\cdots+p_{m}(z) G_{m}(z) \equiv 0
$$

Lemma 2.2 ([3]). Let $f_{j}(z)(j=1,2, \ldots, n)$ and $g_{j}(z)(j=1,2, \ldots, n, n \geq 2)$ be two systems of entire functions satisfying the following conditions:
(1) $\sum_{j=1}^{n} f_{j}(z) e^{g_{j}(z)} \equiv 0$;
(2) for $1 \leq j, k \leq n, j \neq k, g_{j}(z)-g_{k}(z)$ is non-constant;
(3) for $1 \leq h, k \leq n, h \neq k, 1 \leq j \leq n, T\left(r, f_{j}\right)=o\left\{T\left(r, e^{g_{h}-x_{k}}\right)\right\}$.

Then $f_{i}(z) \equiv 0(j=1,2, \ldots, n)$.
To state the following result, we denote by $W\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ the Wronskian of the functions f_{1}, \ldots, f_{n} :

$$
W\left(f_{1}, f_{2}, \ldots, f_{n}\right)=\left|\begin{array}{cccc}
f_{1} & f_{2} & \cdots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \cdots & f_{n}^{\prime} \\
\vdots & \vdots & \ddots & \vdots \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & \cdots & f_{n}^{(n-1)}
\end{array}\right|
$$

Lemma 2.3 ([15], Problem 60, Chapter VII). Let $f_{j}(z)(j=1,2, \ldots, n)$ be transcendental entire functions. If $W\left(f_{1}, \ldots, f_{n}\right) \equiv 0$ but $W\left(f_{1}, \ldots, f_{n-1}\right) \not \equiv 0$, then there exist constants $c_{1}, c_{2}, \ldots, c_{n-1}$ such that

$$
f_{n}(z)=c_{1} f_{1}(z)+c_{2} f_{2}(z)+\cdots+c_{n-1} f_{n-1}(z)
$$

This implies the following lemma.
Lemma 2.4. If $f_{j}(z)(j=1,2, \ldots, n)$ are linearly independent transcendental entire functions then $W\left(f_{1}, \ldots, f_{n}\right) \not \equiv 0$.

LEMMA 2.5 ([19]). Let f and g be two permutable entire functions satisfying

$$
0<\rho(f)<\lambda(f)<\infty, \quad \lambda(g)<\infty
$$

Then for any given positive integer n there exist a positive constant K and a sequence $\left\{r_{j}\right\}$ tending to ∞ such that

$$
T\left(r_{j}, g^{(i)}\right) \leq K T\left(r_{j}, f\right)
$$

for all $j \geq 1$ and $0 \leq i \leq n$.
LEMMA 2.6 ([12]). If f and g are two permutable transcendental entire functions and there exists a nonconstant polynomial $\Phi(x, y)$ in both x and y such that $\Phi(f, g) \equiv 0$, then $J(f)=J(g)$.

LEMMA 2.7. Let $n \geq 1, f$ and g be two permutable transcendental entire functions with $\rho(f)>0$ and $\lambda(g)<\infty$, and let $p_{i}(z)(0 \leq i \leq n)$ and $p(z)$ be polynomials. If
(1) $p_{n}(z) \not \equiv 0$ and $p_{0}(z) \not \equiv 0$,
(2) $f(z)$ satisfies the following differential equation:
(2.1) $p_{n}(z) f^{(n)}(z)+p_{n-1}(z) f^{(n-1)}(z)+\cdots+p_{1}(z) f^{\prime}(z)+p_{0}(z) f(z)+p(z)=0$,
(3) $f(z)$ cannot be a solution of any linearly differential equation with polynomial coefficients of order $\leq n-1$,
then there exist four polynomials $Q(z), Q_{0}(z), Q_{n-1}(z)$ and $Q_{n}(z)$ with $Q_{0}(z) \not \equiv 0$ and $Q_{n}(z) \not \equiv 0$ such that
$Q_{n-1}(f) p_{n}(g)\left(\frac{f^{\prime}}{g^{\prime}}\right)^{n}-Q_{n}(f)\left[p_{n}(g) \frac{a_{n} f^{\prime n-2}\left(f^{\prime \prime} g^{\prime}-f^{\prime} g^{\prime \prime}\right)}{\left(g^{\prime}\right)^{n+1}}+p_{n-1}(g)\left(\frac{f^{\prime}}{g^{\prime}}\right)^{n-7}\right]=0$,

$$
\begin{equation*}
Q_{0}(f) p_{n}(g)\left(\frac{f^{\prime}}{g^{\prime}}\right)^{n}-Q_{n}(f) p_{0}(g)=0 \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
Q(f) p_{n}(g)\left(\frac{f^{\prime}}{g^{\prime}}\right)^{n}-Q_{n}(f) p(g)=0 \tag{2.3}
\end{equation*}
$$

where $a_{1}=a_{2}=1$ and $a_{n}=n(n-1) / 2$ for $n \geq 3$.

Proof. From (2.1) we see that $\lambda(f)<\infty$ (see [11]). By (1.1) we have

$$
\begin{gathered}
f^{\prime}(g) g^{\prime}=g^{\prime}(f) f^{\prime}, \\
f^{\prime \prime}(g) g^{\prime 2}+f^{\prime}(g) g^{\prime \prime}=g^{\prime \prime}(f) f^{\prime 2}+g^{\prime}(f) f^{\prime \prime}, \\
f^{\prime \prime \prime}(g) g^{\prime 3}+3 f^{\prime \prime}(g) g^{\prime} g^{\prime \prime}+f^{\prime}(g) g^{\prime \prime \prime}=g^{\prime \prime \prime}(f) f^{\prime 3}+3 g^{\prime \prime}(f) f^{\prime} f^{\prime \prime}+g^{\prime}(f) f^{\prime \prime \prime}, \\
f^{(4)}(g) g^{\prime 4}+6 f^{\prime \prime \prime}(g) g^{\prime 2} g^{\prime \prime}+f^{\prime \prime}(g) A_{4.2}\left(g^{\prime}, g^{\prime \prime}, g^{\prime \prime \prime}\right)+f^{\prime}(g) g^{(4)} \\
=g^{(4)}(f) f^{\prime 4}+6 g^{\prime \prime \prime}(f) f^{\prime 2} f^{\prime \prime}+g^{\prime \prime}(f) B_{4.2}\left(f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime}\right)+g^{\prime}(f) f^{(4)}, \\
f^{(5)}(g) g^{\prime 5}+10 f^{(4)}(g) g^{\prime 3} g^{\prime \prime}+f^{\prime \prime \prime}(g) A_{5.3}\left(g^{\prime}, \ldots, g^{(4)}\right)+f^{\prime \prime}(g) A_{5.2}\left(g^{\prime}, \ldots, g^{(4)}\right) \\
+f^{\prime}(g) g^{(5)} \\
=g^{(5)}(f) f^{\prime 5}+10 g^{(4)}(f) f^{\prime 3} f^{\prime \prime}+g^{\prime \prime \prime}(f) B_{5.3}\left(f^{\prime} \ldots, f^{(4)}\right) \\
\quad+g^{\prime \prime}(f) B_{5.2}\left(f^{\prime}, \ldots, f^{(4)}\right)+g^{\prime}(f) f^{(5)}, \\
\ldots \\
f^{(n)}(g)\left(g^{\prime}\right)^{n}+f^{(n-1)}(g) a_{n}\left(g^{\prime}\right)^{n-2} g^{\prime \prime}+f^{(n-2)}(g) A_{n . n-2}\left(g^{\prime}, \ldots, g^{(n-1)}\right)+\cdots \\
+f^{\prime \prime}(g) A_{n .2}\left(g^{\prime}, \ldots, g^{(n-1)}\right)+f^{\prime}(g) g^{(n)} \\
=g^{(n)}(f)\left(f^{\prime}\right)^{n}+g^{(n-1)}(f) a_{n}\left(f^{\prime}\right)^{n-2} f^{\prime \prime}+g^{(n-2)}(f) B_{n . n-2}\left(f^{\prime}, \ldots, f^{(n-1)}\right)+\cdots \\
\quad+g^{\prime \prime}(f) B_{n .2}\left(f^{\prime}, \ldots, f^{(n-1)}\right)+g^{\prime}(f) f^{(n)},
\end{gathered}
$$

where $A_{i . j}\left(g^{\prime}, \ldots, g^{(i-2)}\right)(i \geq 3,2 \leq j \leq i-2)$ are polynomials of $g^{\prime}, g^{\prime \prime} \ldots, g^{(i-2)}$ and $B_{i, j}\left(f^{\prime}, \ldots, f^{(i-2)}\right)(i \geq 3,2 \leq j \leq i-2)$ are polynomials of $f^{\prime}, f^{\prime \prime}, \ldots, f^{(i-2)}$. Solving the above system yields

$$
\left\{\begin{align*}
f^{\prime}(g)= & \frac{f^{\prime}}{g^{\prime}} g^{\prime}(f) \tag{2.4}\\
f^{\prime \prime}(g)= & \left(\frac{f^{\prime}}{g^{\prime}}\right)^{2} g^{\prime \prime}(f)+\left[\frac{f^{\prime \prime}}{g^{\prime 2}}-\frac{f^{\prime} g^{\prime \prime}}{g^{\prime 3}}\right] g^{\prime}(f), \\
f^{\prime \prime \prime}(g)= & \left(\frac{f^{\prime}}{g^{\prime}}\right)^{3} g^{\prime \prime \prime}(f)+\left[\frac{3 f^{\prime}\left(f^{\prime \prime} g^{\prime}-f^{\prime} g^{\prime \prime}\right)}{g^{\prime 4}}\right] g^{\prime \prime}(f)+C_{3.1}\left(f^{\prime}, g^{\prime}\right) g^{\prime}(f) \\
f^{(t)}(g)= & \left(\frac{f^{\prime}}{g^{\prime}}\right)^{4} g^{(4)}(f)+\left[\frac{6\left(f^{\prime}\right)^{2}\left(f^{\prime \prime} g^{\prime}-f^{\prime} g^{\prime \prime}\right)}{g^{\prime 5}}\right] g^{\prime \prime \prime}(f) \\
& +C_{4.2}\left(f^{\prime}, g^{\prime}\right) g^{\prime \prime}(f)+C_{+.1}\left(f^{\prime}, g^{\prime}\right) g^{\prime}(f), \\
& \cdots \\
f^{(n)}(g)= & \left(\frac{f^{\prime}}{g^{\prime}}\right)^{n} g^{(n)}(f)+\left[\frac{a_{n}\left(f^{\prime}\right)^{n-2}\left(f^{\prime \prime} g^{\prime}-f^{\prime} g^{\prime \prime}\right)}{\left(g^{\prime}\right)^{n+1}}\right] g^{(n-1)}(f) \\
& +C_{n . n-2}\left(f^{\prime}, g^{\prime}\right) g^{n-2}(f)+\cdots+C_{n .1}\left(f^{\prime}, g^{\prime}\right) g^{\prime}(f),
\end{align*}\right.
$$

where $C_{i . j}\left(f^{\prime}, g^{\prime}\right)(i \geq 3,1 \leq j \leq i-2)$ are rational functions of $g^{\prime}, g^{\prime \prime}, \ldots, g^{(i)}$ and $f^{\prime}, f^{\prime \prime}, \ldots, f^{(i)}$.

Replacing z by $g(z)$ in Equation (2.1) yields

$$
\begin{equation*}
p_{n}(g) f^{(n)}(g)+p_{n-1}(g) f^{(n-1)}(g)+\cdots+p_{1}(g) f^{\prime}(g)+p_{0}(g) f(g)+p(g)=0 . \tag{2.5}
\end{equation*}
$$

Substituting (1.1) and (2.4) into (2.5) we deduce that

$$
\begin{align*}
& p_{n}(g)\left(\frac{f^{\prime}}{g^{\prime}}\right)^{n} g^{(n)}(f)+\left[p_{n}(g) \frac{a_{n}\left(f^{\prime}\right)^{n-2}\left(f^{\prime \prime} g^{\prime}-f^{\prime} g^{\prime \prime}\right)}{\left(g^{\prime}\right)^{n+1}}+p_{n-1}(g)\left(\frac{f^{\prime}}{g^{\prime}}\right)^{n-1}\right] g^{(n-1)}(f) \tag{2.6}\\
& \quad+D_{n, n-2}\left(f^{\prime}, g^{\prime}\right) g^{(n-2)}(f)+\cdots+D_{n, 1}\left(f^{\prime}, g^{\prime}\right) g^{\prime}(f)+p_{0}(g) g(f)+p(g)=0
\end{align*}
$$

where $D_{n, i}\left(f^{\prime}, g^{\prime}\right)(n \geq 3,1 \leq i \leq n-2)$ are rational functions of $g, g^{\prime}, g^{\prime \prime}, \ldots, g^{(n)}$ and $f^{\prime}, f^{\prime \prime}, \ldots, f^{(n)}$.

CLAIM 2.8. Let $\left\{r_{j}\right\}_{j=1}^{\infty}$ tending to ∞ be the sequence of positive numbers in Lemma 2.5. Then there exists a positive number K such that, for sufficiently large j,

$$
\begin{gathered}
T\left(r_{j}, p_{n}(g)\left(\frac{f^{\prime}}{g^{\prime}}\right)^{n}\right) \leq K T\left(r_{j}, f\right), \\
T\left(r_{j}, p_{n}(g) \frac{a_{n}\left(f^{\prime}\right)^{n-2}\left(f^{\prime \prime} g^{\prime}-f^{\prime} g^{\prime \prime}\right)}{\left(g^{\prime}\right)^{n+1}}+p_{n-1}(g)\left(\frac{f^{\prime}}{g^{\prime}}\right)^{n-1}\right) \leq K T\left(r_{j}, f\right) \text { and } \\
T\left(r_{j}, D_{n, i}\left(f^{\prime}, g^{\prime}\right)\right) \leq K T\left(r_{j}, f\right)
\end{gathered}
$$

for all $n \geq 3,1 \leq i \leq n-2$.
Proof of Claim 2.8. We shall prove a more general result.
Let $P\left(f, f^{\prime}, \ldots, f^{(n)}, g, g^{\prime}, \ldots, g^{(n)}\right)$ be a linear combination of

$$
V(z)=b(z) f(z)^{s_{0}} f^{\prime}(z)^{s_{1}} \cdots f^{(n)}(z)^{s_{n}} g(z)^{r_{0}} g^{\prime}(z)^{t_{1}} \cdots g^{(n)}(z)^{t_{n}}
$$

where $s_{i}, t_{i}(0 \leq i \leq n)$ are integers and $b(z)$ is a rational function. We shall prove that there exists a positive constant K such that, for all sufficiently large j,

$$
T\left(r_{j}, P\right) \leq K T\left(r_{j}, f\right)
$$

In fact, by Nevanlinna's Logarithmic Derivative Lemma, (see [8, Page 105]) we have $T\left(r, f^{\prime}\right) \leq T(r, f)+O(\log r)$. Then, for $0 \leq i \leq n$,

$$
T\left(r_{j}, f^{(i)}\right) \leq T\left(r_{j}, f\right)+O(\log r)
$$

Since $\rho(f)>0, \liminf _{r \rightarrow \infty}(\log T(r, f) / \log r)=\rho(f)>0$. Thus, for sufficiently large r,

$$
\log r \leq \frac{\rho(f)}{2} \log T(r, f)=o\{T(r, f)\}
$$

Combining this with the above inequality implies that

$$
\begin{equation*}
T\left(r_{j}, f^{(i)}\right) \leq 2 T\left(r_{j}, f\right) \tag{2.7}
\end{equation*}
$$

Now, by Lemma 2.5, there exists a positive constant K_{1} such that

$$
\begin{equation*}
T\left(r_{j}, g^{(i)}\right) \leq K_{1} T\left(r_{j}, f\right) \quad \text { for } j \geq 1 \text { and } 0 \leq i \leq n \tag{2.8}
\end{equation*}
$$

By Nevanlinna's First Fundamental Theorem, $T(r, 1 / f) \leq 2 T(r, f)$ for sufficiently large r. Note that $T(r, b)=o(T(r, f))$. Thus, from (2.7) and (2.8),

$$
T\left(r_{j}, V\right) \leq T\left(r_{j}, b\right)+\sum_{i=0}^{n} 2\left|s_{i}\right| T\left(r_{j}, f^{(i)}\right)+\sum_{i=0}^{n} 2\left|t_{i}\right| T\left(r_{j}, g^{(i)}\right) \leq K_{2} T\left(r_{j}, f\right)
$$

for some positive constant K_{2} and for sufficiently large j. Therefore, there exists a positive constant K such that

$$
T\left(r_{j}, P\right) \leq K T\left(r_{j}, f\right)
$$

for sufficiently large j. Claim 2.8 follows.
Now by (2.6), Claim 2.8 and Lemma 2.1 , there exist $n+2$ polynomials $Q_{n}(z)$, $Q_{n-1}(z), \ldots, Q_{1}(z), Q_{0}(z)$ and $Q(z)$, not all identically zero, such that

$$
Q_{n}(z) g^{(n)}(z)+Q_{n-1}(z) g^{(n-1)}(z)+\cdots+Q_{0}(z) g(z)+Q(z)=0
$$

Substituting z by $f(z)$ in this equation, we get

$$
Q_{n}(f) g^{(n)}(f)+Q_{n-1}(f) g^{(n-l)}(f)+\cdots+Q_{0}(f) g(f)+Q(f)=0
$$

Eliminating the term $g^{(n)}(f)$ from this and (2.6), we have

$$
\begin{equation*}
H_{n-1} g^{(n-1)}(f)+H_{n-2} g^{(n-2)}(f)+\cdots+H_{1} g^{\prime}(f)+H_{0} g(f)+H=0 \tag{2.9}
\end{equation*}
$$

where

$$
\begin{aligned}
H_{n-1}= & Q_{n-1}(f) p_{n}(g)\left(\frac{f^{\prime}}{g^{\prime}}\right)^{n} \\
& -Q_{n}(f)\left[p_{n}(g) \frac{a_{n}\left(f^{\prime}\right)^{n-2}\left(f^{\prime \prime} g^{\prime}-f^{\prime}\right.}{\left(g^{\prime}\right)^{n+1}}\right. \\
& \cdots \\
& \cdots \\
H_{0}= & Q_{0}(f) p_{n}(g)\left(\frac{f^{\prime}}{g^{\prime}}\right)^{n}-Q_{n}(f) p_{0}(g) \\
H & =Q(f) p_{n}(g)\left(\frac{f^{\prime}}{g^{\prime}}\right)^{n}-Q_{n}(f) p(g)
\end{aligned}
$$

$$
-Q_{n}(f)\left[p_{n}(g) \frac{a_{n}\left(f^{\prime}\right)^{n-2}\left(f^{\prime \prime} g^{\prime}-f^{\prime} g^{\prime \prime}\right)}{\left(g^{\prime}\right)^{n+1}}+p_{n-1}(g)\left(\frac{f^{\prime}}{g^{\prime}}\right)^{n-1}\right]
$$

CLAIM 2.9. $H_{i} \equiv 0$ for $0 \leq i \leq n-1$ and $H \equiv 0$.
Proof of Claim 2.9. Without loss of generality, we suppose on the contrary that $H_{n-1} \not \equiv 0$.

Then, from (1.1), (2.4) and (2.9) we deduce that

$$
\begin{aligned}
& H_{n-1}\left(\frac{g^{\prime}}{f^{\prime}}\right)^{n-1} f^{(n-1)}(g)+E_{n-1.1}\left(f^{\prime}, g^{\prime}\right) f^{(n-2)}(g)+\cdots+E_{n-1, n-2}\left(f^{\prime}, g^{\prime}\right) f^{\prime}(g) \\
& \quad+H_{0} f(g)+H=0
\end{aligned}
$$

where $E_{n-1, i}\left(f^{\prime}, g^{\prime}\right)(n \geq 3,1 \leq i \leq n-2)$ are rational functions of $g, g^{\prime}, g^{\prime \prime}, \ldots, g^{(n)}$ and $f^{\prime}, f^{\prime \prime}, \ldots, f^{(n)}$. By Claim 2.8 and Lemma 2.1, there exist $n+1$ polynomials $t_{n-1}(z), t_{n-2}(z), \ldots, t_{1}(z), t_{0}(z)$ and $t(z)$, not all identically zero, such that

$$
t_{n-1}(z) f^{(n-1)}(z)+t_{n-2}(z) f^{(n-2)}(z)+\cdots+t_{0}(z) f(z)+t(z)=0
$$

This contradicts condition 3 of the lemma. Claim 2.9 follows.
Thus, we have
$Q_{n-1}(f) p_{n}(g)\left(\frac{f^{\prime}}{g^{\prime}}\right)^{n}-Q_{n}(f)\left[p_{n}(g) \frac{a_{n} f^{\prime n-2}\left(f^{\prime \prime} g^{\prime}-f^{\prime} g^{\prime \prime}\right)}{g^{\prime n+1}}+p_{n-1}(g)\left(\frac{f^{\prime}}{g^{\prime}}\right)^{n-1}\right]=0$,

$$
\begin{gather*}
Q_{0}(f) p_{n}(g)\left(\frac{f^{\prime}}{g^{\prime}}\right)^{n}-Q_{n}(f) p_{0}(g)=0 \quad \text { and } \tag{2.10}\\
Q(f) p_{n}(g)\left(\frac{f^{\prime}}{g^{\prime}}\right)^{n}-Q_{n}(f) p(g)=0
\end{gather*}
$$

CLAIM 2.10. $Q_{n} \not \equiv 0$ and $Q_{0} \not \equiv 0$.
Proof of Claim 2.10. In fact, if $Q_{n} \equiv 0$ then, by the same arguments as used in the proof of Claim 2.8, we can deduce that $f(z)$ must be a transcendental entire solution of some differential equation with order at most $n-1$ and with polynomial coefficients. This is a contradiction. Hence $Q_{n} \not \equiv 0$. It follows from (2.10) that $Q_{0} \not \equiv 0$. Claim 2.10 follows.

This completes the proof of Lemma 2.7.

3. Proof of Theorem $\mathbf{1 . 1}$

By (2.2) and (2.3), we have

$$
\begin{equation*}
\frac{Q(f)}{Q_{0}(f)}=\frac{p(g)}{p_{0}(g)} . \tag{3.1}
\end{equation*}
$$

Let

$$
R_{1}(z)=\frac{Q(z)}{Q_{0}(z)}, \quad R_{2}(z)=\frac{p(z)}{p_{0}(z)}
$$

By assumption, $p(z) / p_{0}(z)$ is not a constant. Therefore $R_{2}(z)$ is not constant. Also $R_{1}(z)$ is not constant by (3.1).

4. Proof of Theorem 1.2

Recall that

$$
f(z)=p(z)+p_{1}(z) e^{q_{1}(z)}+p_{2}(z) e^{q_{2}(z)}+\cdots+p_{n}(z) e^{q_{n}(z)} .
$$

Without loss of generality, we assume that $\operatorname{deg} q_{1} \leq \operatorname{deg} q_{2} \leq \cdots \leq \operatorname{deg} q_{n}$. Then $\rho(f)=\lambda(f)=\max \left\{\operatorname{deg} q_{1}, \ldots, \operatorname{deg} q_{n}\right\}=\operatorname{deg} q_{n}$.

For $1 \leq i \leq n$ and $0 \leq j \leq n$, set

$$
\begin{equation*}
u_{i . j}=\frac{\left(p_{i} e^{q_{i}}\right)^{(j)}}{e^{q_{i}}} \tag{4.1}
\end{equation*}
$$

It is easy to see that all $u_{i, j}$ are non-zero polynomials. Note from (4.1) that

$$
\begin{equation*}
u_{i, j}^{\prime}+q_{i}^{\prime} u_{i, j}=u_{i . j+1} \tag{4.2}
\end{equation*}
$$

for all $j \geq 0$ and $1 \leq i \leq n$. From

$$
\begin{equation*}
f=p+p_{1} e^{q_{1}}+p_{2} e^{q_{2}}+\cdots+p_{n} e^{q_{n}} \tag{4.3}
\end{equation*}
$$

we get

$$
\begin{equation*}
f^{(j)}=p^{(j)}+u_{1 . j} e^{q_{1}}+u_{2 . j} e^{q_{2}}+\cdots+u_{n . j} e^{q_{n}} \tag{4.4}
\end{equation*}
$$

for all $j \geq 0$.
Set

$$
\begin{gathered}
A=\left|\begin{array}{cccc}
p_{1} & p_{2} & \cdots & p_{n} \\
u_{1.1} & u_{2.1} & \cdots & u_{n, 1} \\
\vdots & \vdots & \ddots & \vdots \\
u_{1 . n-1} & u_{2 . n-1} & \cdots & u_{n, n-1}
\end{array}\right|, \quad R_{0}=\left|\begin{array}{cccc}
u_{1 . n} & u_{2 . n} & \cdots & u_{n . n} \\
u_{1.1} & u_{2.1} & \cdots & u_{n .1} \\
\vdots & \vdots & \ddots & \vdots \\
u_{1 . n-1} & u_{2 . n-1} & \cdots & u_{n . n-1}
\end{array}\right|, \\
B_{1}=\left|\begin{array}{cccc}
f-p & p_{2} & \cdots & p_{n} \\
f^{\prime}-p^{\prime} & u_{2.1} & \cdots & u_{n .1} \\
\vdots & \vdots & \ddots & \vdots \\
(f-p)^{(n-1)} & u_{2 . n-1} & \cdots & u_{n, n-1}
\end{array}\right|, \ldots
\end{gathered}
$$

$$
B_{n}=\left|\begin{array}{cccc}
p_{1} & p_{2} & \cdots & f-p \\
u_{1,1} & u_{2.1} & \cdots & f^{\prime}-p^{\prime} \\
\vdots & \vdots & \ddots & \vdots \\
u_{1, n} & u_{2 . n} & \cdots & (f-p)^{(n-1)}
\end{array}\right|
$$

It is easy to check that A and R_{0} are two polynomials with $A \not \equiv 0$ and $R_{0} \not \equiv 0$. In fact, if $A \equiv 0$, that is

$$
\left|\begin{array}{cccc}
p_{1} e^{q_{1}} & p_{2} e^{q_{2}} & \cdots & p_{n} e^{q_{n}} \\
u_{1.1} e^{q_{1}} & u_{2.1} e^{q_{2}} & \cdots & u_{n, 1} e^{q_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
u_{1 . n-1} e^{q_{1}} & u_{2 . n-1} e^{q_{2}} & \cdots & u_{n, n-1} e^{q_{n}}
\end{array}\right| \equiv 0
$$

then

$$
\left|\begin{array}{cccc}
p_{1} e^{q_{1}} & p_{2} e^{q_{2}} & \cdots & p_{n} e^{q_{n}} \\
\left(p_{1} e^{q_{1}}\right)^{\prime} & \left(p_{2} e^{q_{2}}\right)^{\prime} & \cdots & \left(p_{n} e^{q_{n}}\right)^{\prime} \\
\vdots & \vdots & \ddots & \vdots \\
\left(p_{1} e^{q_{1}}\right)^{(n-1)} & \left(p_{2} e^{q_{2}}\right)^{(n-1)} & \cdots & \left(p_{n} e^{q_{n}}\right)^{(n-1)}
\end{array}\right| \equiv 0 .
$$

Now, by Lemma 2.4, the functions $p_{1} e^{q_{1}}, p_{2} e^{q_{2}}, \ldots, p_{n} e^{q_{n}}$ are linearly dependent. This obviously contradicts Lemma 2.2. Similarly we can show that $R_{0} \not \equiv 0$.

Now from (4.3) and (4.4), we deduce that

$$
e^{q_{s}}=B_{s} / A \quad(s=1, \ldots, n) .
$$

Substituting these into (4.4) for $j=n$, we have

$$
A f^{(n)}=p^{(n)}+u_{1 . n} B_{1}+u_{2, n} B_{2}+\cdots+u_{n, n} B_{n} .
$$

Note that each $B_{i}(1 \leq i \leq n)$ is a linear combination of $f, f^{\prime}, \ldots, f^{(n-1)}$. We deduce that

$$
A f^{(n)}+R_{n-1} f^{(n-1)}+\cdots+R_{1} f^{\prime}+R_{0} f+R=0
$$

where R_{n-1}, \ldots, R_{0} and R are polynomials.
Further, f cannot be a solution of a differential equation

$$
\begin{equation*}
t_{n-1} f^{(n-1)}+t_{n-2} f^{(n-2)}+\cdots+t_{1} f^{\prime}+t_{0} f+t=0 \tag{4.5}
\end{equation*}
$$

where $t_{n-1}, \ldots, t_{1}, t_{0}$ and t are polynomials, not all of them zero. For suppose to the contrary that $f(z)$ is a solution of (4.5). Then this, (4.3) and (4.4) (with $j=n$) imply that

$$
\begin{aligned}
& \left(u_{1 . n-1} t_{n-1}+u_{1 . n-2} t_{n-2}+\cdots+u_{1.1} t_{1}+t_{0} p_{1}\right) e^{q_{1}}+\cdots \\
& \quad+\left(u_{n, n-1} t_{n-1}+u_{n . n-2} t_{n-2}+\cdots+u_{n .1} t_{1}+t_{0} p_{n}\right) e^{q_{n}} \\
& \quad+\left(t_{n-1} p^{(n-1)}+t_{n-2} p^{(n-2)}+\cdots+t_{1} p+t\right) \equiv 0 .
\end{aligned}
$$

Combining this with Lemma 2.2, we get

$$
\begin{array}{r}
u_{1 . n-1} t_{n-1}+u_{1 . n-2} t_{n-2}+\cdots+u_{1.1} t_{1}+t_{0} p_{1}=0 \\
\cdots \\
u_{n, n-1} t_{n-1}+u_{n, n-2} t_{n-2}+\cdots+u_{n, 1} t_{1}+t_{0} p_{n}=0
\end{array}
$$

These obviously contradict $A \not \equiv 0$.
Thus the conditions of Lemma 2.7 are satisfied, so there exist polynomials $Q(z)$, $Q_{0}(z), Q_{n-1}(z)$ and $Q_{n}(z)$, with $Q_{0}(z) \not \equiv 0$ and $Q_{n}(z) \not \equiv 0$, such that

$$
\begin{gathered}
Q_{n-1}(f) A(g)\left(\frac{f^{\prime}}{g^{\prime}}\right)^{n}-Q_{n}(f)\left[A(g) \frac{a_{n} f^{\prime n-2}\left(f^{\prime \prime} g^{\prime}-f^{\prime} g^{\prime \prime}\right)}{g^{\prime n+1}}+R_{n-1}(g)\left(\frac{f^{\prime}}{g^{\prime}}\right)^{n-1}\right]=0 \\
Q_{0}(f) A(g)\left(\frac{f^{\prime}}{g^{\prime}}\right)^{n}-Q_{n}(f) R_{0}(g)=0 \text { and } \\
Q(f) A(g)\left(\frac{f^{\prime}}{g^{\prime}}\right)^{n}-Q_{n}(f) R(g)=0
\end{gathered}
$$

We remark that

$$
\begin{aligned}
& R_{n-1}=-u_{1 . n}(-1)^{n+1}\left|\begin{array}{cccc}
p_{2} & p_{3} & \cdots & p_{n} \\
u_{2.1} & u_{3.1} & \cdots & u_{n, 1} \\
\vdots & \vdots & \ddots & \vdots \\
u_{2, n-2} & u_{3 . n-2} & \cdots & u_{n, n-2}
\end{array}\right| \\
& -u_{2 . n}(-1)^{n+2}\left|\begin{array}{cccc}
p_{1} & p_{3} & \cdots & p_{n} \\
u_{1.1} & u_{3.1} & \cdots & u_{n, 1} \\
\vdots & \vdots & \ddots & \vdots \\
u_{1, n-2} & u_{3, n-2} & \cdots & u_{n, n-2}
\end{array}\right|-\cdots \\
& -u_{n, n}(-1)^{n+n}\left|\begin{array}{cccc}
p_{1} & p_{2} & \cdots & p_{n-1} \\
u_{1,1} & u_{2.1} & \cdots & u_{n-1.1} \\
\vdots & \vdots & \ddots & \vdots \\
u_{1, n-2} & u_{2 . n-2} & \cdots & u_{n-1 . n-2}
\end{array}\right| \\
& =-\left|\begin{array}{cccc}
p_{1} & p_{2} & \cdots & p_{n} \\
u_{1.1} & u_{2.1} & \cdots & u_{n, 1} \\
\vdots & \vdots & \ddots & \vdots \\
u_{1 . n-2} & u_{2 . n-2} & \cdots & u_{n, n-2} \\
u_{1 . n} & u_{2 . n} & \cdots & u_{n, n}
\end{array}\right| .
\end{aligned}
$$

Similarly, for any i with $1 \leq i \leq n-1$, one has

$$
R_{n-i}=-\left|\begin{array}{cccc}
p_{1} & p_{2} & \cdots & p_{n} \\
\vdots & \vdots & \ddots & \vdots \\
u_{1, n-i-1} & u_{2, n-i-1} & \cdots & u_{n, n-i-1} \\
u_{1, n-i+1} & u_{2, n-i+1} & \cdots & u_{n, n-i+1} \\
\vdots & \vdots & \ddots & \vdots \\
u_{1, n} & u_{2, n} & \cdots & u_{n, n}
\end{array}\right| .
$$

Also, it is easy to verify that

$$
\begin{equation*}
R=p R_{0}+p^{\prime} R_{1}+\cdots+p^{(n-1)} R_{n-1}-p^{(n)} A \tag{4.6}
\end{equation*}
$$

with

$$
\begin{equation*}
\operatorname{deg} R_{0} \geq \max \left\{\operatorname{deg} R_{i}(1 \leq i \leq n-1), \operatorname{deg} A\right\} \tag{4.7}
\end{equation*}
$$

Here we only prove that $\operatorname{deg} R_{0} \geq \operatorname{deg} A$. In fact, we have

$$
\begin{equation*}
\operatorname{deg} R_{0}=\operatorname{deg} A+\sum_{i=1}^{n}\left(\operatorname{deg} q_{i}-1\right) \tag{4.8}
\end{equation*}
$$

Set

$$
Z=\left|\begin{array}{cccc}
u_{1,1} & u_{2,1} & \cdots & u_{n, 1} \\
\vdots & \vdots & \ddots & \vdots \\
u_{1, n-1} & u_{2, n-1} & \cdots & u_{n, n-1} \\
u_{1, n} & u_{2, n} & \cdots & u_{n, n}
\end{array}\right|
$$

To establish (4.8), we need only prove that $\operatorname{deg} Z=\operatorname{deg} A+\sum_{i=1}^{n}\left(\operatorname{deg} q_{i}-1\right)$. Rewrite Z by (4.2) as $Z=Z_{11}+Z_{12}$ where

$$
\begin{aligned}
& Z_{11}=\left|\begin{array}{cccc}
u_{1,1} & u_{2,1} & \cdots & u_{n, 1} \\
\vdots & \vdots & \ddots & \vdots \\
u_{1, n-1} & u_{2, n-1} & \cdots & u_{n, n-1} \\
u_{1, n-1}^{\prime} & u_{2, n-1}^{\prime} & \cdots & u_{n, n-1}^{\prime}
\end{array}\right|, \\
& Z_{12}=\left|\begin{array}{cccc}
u_{1,1} & u_{2,1} & \cdots & u_{n, 1} \\
\vdots & \vdots & \ddots & \vdots \\
u_{1, n-1} & u_{2, n-1} & \cdots & u_{n, n-1} \\
q_{1}^{\prime} u_{1, n-1} & q_{2}^{\prime} u_{2, n-1} & \cdots & q_{n}^{\prime} u_{n, n-1}
\end{array}\right|
\end{aligned}
$$

We easily deduce that $\operatorname{deg} Z=\operatorname{deg} Z_{12}$. Now we decompose Z_{12} as $Z_{12}=Z_{121}+Z_{122}$,
where

$$
\begin{aligned}
& Z_{121}=\left|\begin{array}{cccc}
u_{1,1} & u_{2,1} & \cdots & u_{n, 1} \\
\vdots & \vdots & \ddots & \vdots \\
u_{1 . n-2}^{\prime} & u_{2, n-2}^{\prime} & \cdots & u_{n, n-2}^{\prime} \\
q_{1}^{\prime} u_{1, n-1} & q_{2}^{\prime} u_{2, n-1} & \cdots & q_{n}^{\prime} u_{n, n-1}
\end{array}\right|, \\
& Z_{122}=\left|\begin{array}{cccc}
u_{1,1} & u_{2.1} & \cdots & u_{n, 1} \\
\vdots & \vdots & \ddots & \vdots \\
q_{1}^{\prime} u_{1, n-2} & q_{2}^{\prime} u_{2, n-2} & \cdots & q_{2}^{\prime} u_{n, n-2} \\
q_{1}^{\prime} u_{1, n-1} & q_{2}^{\prime} u_{2, n-1} & \cdots & q_{n}^{\prime} u_{n, n-1}
\end{array}\right| .
\end{aligned}
$$

We easily deduce that $\operatorname{deg} Z_{12}=\operatorname{deg} Z_{122}$. Thus $\operatorname{deg} Z=\operatorname{deg} Z_{122}$. This procedure can be repeated. Finally we can assert that $\operatorname{deg} Z=\operatorname{deg} Z_{12 \cdots 2}$, where

$$
Z_{12 \cdots 2}=\left|\begin{array}{cccc}
q_{1}^{\prime} p_{1} & q_{2}^{\prime} p_{2} & \cdots & q_{n}^{\prime} p_{n} \\
\vdots & \vdots & \ddots & \vdots \\
q_{1}^{\prime} u_{1, n-2} & q_{2}^{\prime} u_{2, n-2} & \cdots & q_{2}^{\prime} u_{n, n-2} \\
q_{1}^{\prime} u_{1, n-1} & q_{2}^{\prime} u_{2, n-1} & \cdots & q_{n}^{\prime} u_{n, n-1}
\end{array}\right|=q_{1}^{\prime} q_{2}^{\prime} \cdots q_{n}^{\prime} A
$$

so establishing (4.8)
From (4.6) it follows that $p \equiv$ constant implies $R / R_{0} \equiv$ constant. We now prove the converse. Let us suppose that

$$
\frac{R}{R_{0}}=c
$$

By (4.6),

$$
(c-p) R_{0}=p^{\prime} R_{1}+\cdots+p^{(n-1)} R_{n-1}-p^{(n)} A
$$

If $p \not \equiv$ constant, this contradicts (4.7).
Finally, the theorem follows from Lemma 2.7 and Theorem 1.1.

5. Proof of Corollary 1.3

By (2.2) and (2.3), we have

$$
\begin{equation*}
\frac{Q(f)}{Q_{0}(f)}=\frac{p(g)}{p_{0}(g)} \tag{5.1}
\end{equation*}
$$

Let

$$
R_{1}(z)=\frac{Q(z)}{Q_{0}(z)}, \quad R_{2}(z)=\frac{p(z)}{p_{0}(z)}
$$

By assumption, $p(z) / p_{0}(z)$ is not a constant, therefore, $R_{2}(z)$ is not constant. Also $R_{1}(z)$ is not constant by (5.1).

We rewrite (5.1) in the form

$$
\begin{equation*}
\frac{Q_{0}(x) p(y)-Q(x) p_{0}(y)}{Q_{0}(x) p_{0}(y)}=0 \tag{5.2}
\end{equation*}
$$

and consider two subcases.
If $Q_{0}(x) p(y)-Q(x) p_{0}(y) \equiv$ constant, then by (5.2)

$$
Q_{0}(x) p(y)-Q(x) p_{0}(y) \equiv 0
$$

Hence

$$
\frac{Q(z)}{Q_{0}(z)}=\frac{p(z)}{p_{0}(z)}=S(z)
$$

for some rational function $S(z)$. It follows from (5.1) that

$$
S(f)=S(g)
$$

Therefore $f= \pm g+c$ for some constant c. By Baker [1], we obtain $J(f)=J(g)$.
If $Q_{0}(x) p(y)-Q(x) p_{0}(y) \not \equiv$ constant, then by (3.1) we get a nonconstant polynomial $Q_{0}(x) p(y)-Q(x) p_{0}(y)$ such that

$$
Q_{0}(f) p(g)-Q(f) p_{0}(g) \equiv 0
$$

The conclusion follows from Lemma 2.6.

References

[1] I. N. Baker. 'Wandering domains in the iteration of entire functions'. Proc. London Math. Soc. 3 (1984), 563-576.
[2] W. Bergweiler and A. Hinkkanen. 'On semiconjugation of entire functions'.Math. Proc. Cambridge Philos. Soc. 126 (1999). 565-574.
[3] C. T. Chuang and C. C. Yang, Fix-Points and Factorization of Meromorphic Functions (World Scientific. Singapore. 1990).
[4] P. Fatou. 'Sur les équations fonctionelles'. Bull. Soc. Math. France 47 (1919). 161-271.
[5] _-. 'Sur les équations fonctionelles', Bull. Soc. Math. France 48 (1920). 33-94.
[6] _-. 'Sur les équations fonctionelles', Bull. Soc. Math. France 48 (1920), 208-314.
[7] F. Gross and C. F. Osgood. 'On fixed points of composite entire functions', J. London Math. Soc. 28 (1983). 57-61.
[8] W. K. Hayman. Meromorphic functions (Clarendon Press, Oxford. 1964).
[9] X. H. Hua and C. C. Yang, Dynamics of transcendental functions (Gordon and Breach Science Publishers. 1998).
[10] G. Julia, 'Mémoire sur la permutabilité des fractions rationnelles', Ann. Sci. École Norm. Sup. 39 (1922), 131-215.
[11] I. Laine, Nevanlinna Theory and Complex Differential Equations (Walter de Gruyter, Berlin-New York. 1993).
[12] L. W. Liao and C. C. Yang, 'Some further results on the Julia sets of two permutable entire functions', Rocky Mountain J. Math. to appear.
[13] S. Morosawa, Y. Nishimura. M. Taniguchi and T. Ueda, Holomorphic Dynamics (Cambridge University Press, 2000).
[14] T. W. Ng. 'Permutable entire functions and their Julia sets', Math. Proc. Cambridge Philos. Soc. 131 (2001). 129-138.
[15] G. Polya and G. Szegö. Problems and Theorems in Analysis I (Springer, New York. 1972).
[16] K. K. Poon and C. C. Yang. 'Dynamical behavior of two permutable entire functions', Ann. Polon. Math. 168 (1998), 159-163.
[17] X. L. Wang. X. H. Hua. C. C. Yang and D. G. Yang, 'Dynamics of permutable transcendental entire functions'. Rocky Mountain J. Math. 36 (2006), 2041-2055.
[18] X. L. Wang and C. C. Yang. 'On the Fatou components of two permutable transcendental entire functions'.J. Math. Anal. Appl. 278 (2003). 512-526.
[19] J. H. Zheng and Z. Z. Zhou. 'Permutability of entire functions satisfying certain differential equations". Tohoku Math. J. 40 (1988). 323-330.

Department of Mathematics and Statistics University of Ottawa
Ottawa, ON, K1N 6N5
Canada
Department of Applied Mathematics
Nanjing University of Finance
and Economics
e-mail: hua@mathstat.uottawa.ca
Nanjing 210003, Jiangsu
e-mail: remi@ottawa.ca
China
e-mail: wangxiaoling@vip.163.com

[^0]: This research was partially supported by the Natural Sciences and Engineering Research Council of Canada and NNSF of China, No: 10371069.
 (C) 2007 Australian Mathematical Society 1446-7887/07 \$A2.00 +0.00

