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An Explicit Computation of the Blanchfield
Pairing for Arbitrary Links

Anthony Conway

Abstract. Given a link L, the Blanchûeld pairing Bl(L) is a pairing that is deûned on the torsion
submodule of the Alexander module of L. In some particular cases, namely if L is a boundary link
or if the Alexander module of L is torsion, Bl(L) can be computed explicitly; however no formula
is known in general. In this article, we compute the Blanchûeld pairing of any link, generalizing
the aforementioned results. As a corollary, we obtain a new proof that the Blanchûeld pairing is
Hermitian. Finally, we also obtain short proofs of several properties of Bl(L).

1 Introduction

_e Blanchûeld pairing of a knot K is a nonsingular Hermitian pairing Bl(K) on the
Alexander module of K [2]. Despite early appearances in high dimensional knot the-
ory [25, 26, 35], the Blanchûeld pairing is nowadays mostly used in the classical di-
mension. For instance, applications of Bl(K) in knot concordance include a charac-
terization of algebraic sliceness [27] and a crucial role in the obstruction theory un-
derlying the solvable ûltration of [15] (see also [7, 12,22,30,32]). Furthermore, Bl(K)
has also served to compute unknotting numbers [3–5] and in the study of ûnite type
invariants [33]. Finally, the Blanchûeld pairing can be computed using Seifert matri-
ces [21, 27, 31], is known to determine the Levine–Tristram signatures [5] and more
generally the S-equivalence class of the knot [37].

In the case of links, the Blanchûeld pairing generalizes to a Hermitian pairing
Bl(L) on the torsion submodule of the Alexander module of L. Although Bl(L) is
still used to investigate concordance [8,11,13,19,28,36], unlinking numbers, and split-
ting numbers [6], several questions remain: is there a natural deûnition of algebraic
concordance for links and can it be expressed in terms of the Blanchûeld pairing? Can
one compute unlinking numbers and splitting numbers by generalizing themethods
of [3–5]? Does the Blanchûeld pairing determine themultivariable signature of [10]?
A common issue seems to lie at the root of these unanswered questions: there is no

general formula to compute the Blanchûeld pairing of a link. More precisely, Bl(L)
can currently only be computed if L is a boundary link [14, 24] or if the Alexander
module of L is torsion [16]. Note that these formulas generalize the one-component
case in orthogonal directions: if L is a boundary link whose Alexander module is
torsion, then Lmust be a knot. _e aimof thispaper is to provide a general formula for
the Blanchûeld pairing of any colored link, while generalizing the previous formulas.
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By a µ-colored link, wemean an oriented link L in S3 whose components are par-
titioned into µ sublinks L1 ∪ ⋅ ⋅ ⋅ ∪ Lµ . _e exterior S3 ∖ νL of L will always be denoted
by XL . Moreover, we write ΛS ∶= Z[t±1

1 , . . . , t
±1
µ , (1 − t1)−1 , . . . , (1 − tµ)−1] for the lo-

calization of the ring of Laurent polynomials, andwe use Q = Q(t1 , . . . , tµ) to denote
the quotient ûeld of ΛS . Using these notations, the Blanchûeld pairing of the colored
link L is a Hermitian pairing Bl(L)∶TH1(XL ;ΛS) × TH1(XL ;ΛS) → Q/ΛS , where
TH1(XL ;ΛS) denotes the torsion submodule of the Alexander module H1(XL ;ΛS)
of L (see Section 2.2 for details). _ere are two main reasons for which we use ΛS
coeõcients instead of the more conventional Λ ∶= Z[t±1

1 , . . . , t
±1
µ ] coeõcients. _e

ûrst is to ensure that the Alexander moduleH1(XL ;ΛS) admits a square presentation
matrix: the corresponding statement is false over Λ [18,23]. _e second is to guaran-
tee that the Blanchûeld pairing is non-degenerate a�er quotienting TH1(XL ;ΛS) by
the so-calledmaximal pseudonull submodule [23]. Note that for knots, the Alexander
module over ΛS is the same as the Alexander module over Λ [31, Proposition 1.2].
As wementioned above, Bl(L) can currently only be computed if L is a boundary

link (using boundary Seifert surfaces) or if the Alexander module of L is torsion (us-
ing some generalized Seifert surfaces known asC-complexes). Let us brie�y recall this
latter result. A C-complex for a µ-colored link L consists in a collection of Seifert sur-
faces F1 , . . . , Fµ for the sublinks L1 , . . . , Lµ that intersect only pairwise along clasps.
Given such a C-complex and a sequence ε = (ε1 , ε2 , . . . , εµ) of ±1, there are 2µ gener-
alized Seifertmatrices Aε that extend the usual Seifertmatrix [9,10,17]. _e associated
C-complex matrix is the Λ-valued squarematrix

H ∶=∑
ε

µ

∏
i=1

(1 − tε ii )Aε ,

where the sum is on all sequences ε = (ε1 , ε2 , . . . , εµ) of ±1. In [16, _eorem 1.1],
together with Stefan Friedl and Enrico Toòoli, we showed that if H1(XL ;ΛS) is ΛS-
torsion, then the Blanchûeld pairing Bl(L) is isometric to the pairing

(1.1) Λn
S /HTΛn

S × Λn
S /HTΛn

S Ð→ Q/ΛS (a, b)z→ −aTH−1b,

where the size n C-complex matrix H for L was required to arise from a totally con-
nected C-complex, i.e., a C-complex F in which each Fi is connected and Fi ∩ F j /= ∅
for all i /= j. Note that (1.1) also shows that the Alexander module H1(XL ;ΛS) admits
a square presentation matrix. _is fact was already known [10, Corollary 3.6], but as
wementioned above, it is false if we work over Λ [18,23].

In general, the Blanchûeld pairing is deûned on the torsion submodule
TH1(XL ;ΛS) of H1(XL ;ΛS). To the best of our knowledge, this ΛS-module has no
reason to admit a square presentation matrix, and thus a direct generalization of (1.1)
seems out of reach. In order to circumvent this issue, we adapt the deûnition of the
pairing described in (1.1) as follows. Let ∆ denote the order of TorΛS (Λn

S /HTΛn
S), the

ΛS-torsion submoduleofΛn
S /HTΛn

S . Note that for any class [x] inTorΛS (Λn
S /HTΛn

S),
there exists an x0 in Λn

S such that ∆x = HTx0. As we will see in Proposition 4.2, the
assignment (v ,w)↦ 1

∆2 vT
0 Hw0 induces a well-deûned pairing

λH ∶TorΛS (Λn
S /HTΛn

S) × TorΛS (Λn
S /HTΛn

S)→ Q/ΛS ,
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which recovers minus the pairing described in (1.1) when det(H) /= 0. Our main
theorem reads as follows.

_eorem 1.1 _e Blanchûeld pairing of a colored link L is isometric to the pairing
−λH , where H is any C-complex matrix for L.

_eorem 1.1 generalizes [16, _eorem 1.1] to links whose Alexander module
H1(XL ;ΛS) is not torsion and recovers it if H1(XL ;ΛS) is torsion. Note also that
[16, _eorem 1.1] required H to arise from a totally connected C-complex, whereas
_eorem 1.1 removes this extraneous assumption. As wementioned above,_eorem
1.1 also recovers the computation of Bl(L) when L is a boundary link (see _eorem
4.7). Note that to the best of our knowledge,_eorem 1.1 was not even known in the
case of oriented links (i.e., µ = 1), and the result might be of independent interest.

While the Blanchûeld pairing of a knot is known to be Hermitian and nonsin-
gular, the corresponding statements for links require some more care. _e Hermit-
ian property of Bl(L) was sorted out by Powell [34], whereas Hillman [23] quotients
TH1(XL ;ΛS) by itsmaximal pseudonull submodule in order to turn Bl(L) into a non-
degenerate pairing (see also [6, §2.5]). Even though we avoid discussing the non-
degeneracy of the Blanchûeld pairing, we observe that _eorem 1.1 provides a quick
proof that Bl(L) is Hermitian: namely, using ∆tor

L to denote the ûrst non-vanishing
Alexander polynomial of L over ΛS , we obtain the following corollary.

Corollary 1.2 _e Blanchûeld pairing of a link L is Hermitian and takes values in
∆tor−1

L ΛS/ΛS .

Since the deûnition of the pairing λH is quite manageable, we also use _eorem
1.1 to obtain quick proofs regarding the behavior of Bl(L) under connected sums,
disjoint unions, band claspings,mirror images, and orientation reversals (seeProposi-
tions 4.4, 4.5, and 4.6).

We conclude this introduction by remarking that _eorem 1.1 is not a trivial corol-
lary of the work carried out in [16]. As we will see in Section 3, removing the torsion
assumption on the Alexandermodule leads to several additional algebraic diõculties.

_is paper is organized as follows. Section 2 brie�y reviews twisted homology and
the deûnition of the Blanchûeld pairing. Section 3, which constitutes the core of this
paper, deals with the proof of _eorem 1.1. Section 4 provides the applications of
_eorem 1.1.

1.1 Notation and Conventions

We use p ↦ p to denote the usual involution on Q(t1 , . . . , tµ) induced by t i = t−1
i .

Furthermore, given a subring R of Q(t1 , . . . , tµ) closed under the involution, and
given anR-moduleM,weuseM todenote theR-module thathas the sameunderlying
additive group as M, but for which the action by R on M is precomposed with the
involution on R. Finally, given any ring R, we think of elements in Rn as column
vectors.
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2 Preliminaries

_is section is organized as follows. Section 2.1 brie�y reviews the deûnition of twisted
homology, while Section 2.2 gives a deûnition of the Blanchûeld pairing. References
include [20, Section 2] and [21, Section 2].

2.1 Twisted Homology

Let X be a CW complex, let φ∶ π1(X)→ Zµ be an epimorphism, and let p∶ X̃ → X be
the regular cover of X corresponding to the kernel of φ. Given a subspace Y ⊂ X, we
will write Ỹ ∶= p−1(Y), and view C∗(X̃ , Ỹ) as a chain-complex of free le� modules
over the ring Λ = Z[t±1

1 , . . . , t
±1
µ ]. Given a commutative ring R and an (R,Λ)-bi-

module M, consider the chain complexes

C∗(X ,Y ;M) ∶= M ⊗Λ C∗(X̃ , Ỹ),

C∗(X ,Y ;M) ∶= HomΛ(C∗(X̃ , Ỹ),M)

of le� R-modules and denote the corresponding homology R-modules by
H∗(X ,Y ;M) and H∗(X ,Y ;M). Taking R to be ΛS and M to be either ΛS ,Q or
Q/ΛS , we may send a cocycle f in HomΛ(C∗(X̃ , Ỹ),M) to the ΛS-linear map de-
ûned by σ ⊗ p ↦ p ⋅ f (σ). _is yields awell-deûned isomorphism of le� ΛS-modules

H i(X ,Y ;M)Ð→ H i(HomΛS (C∗(X ,Y ;ΛS),M)).

We also consider the evaluation homomorphism

H i(HomΛS (C∗(X ,Y ;ΛS),M))Ð→ HomΛS (H i(C∗(X ,Y ;ΛS)),M).

_e composition of these two homomorphisms gives rise to the le� ΛS-linear map

ev∶H i(X ,Y ;M)Ð→ HomΛS (H i(X ,Y ;ΛS),M).

We will also use repeatedly that the short exact sequence 0 → ΛS → Q → Q/ΛS → 0
of coeõcients gives rise to the long exact sequence
(2.1)
⋅ ⋅ ⋅→ Hk(X ,Y ;Q)→ Hk(X ,Y ;Q/ΛS)→ Hk+1(X ,Y ;ΛS)→ Hk+1(X ,Y ;Q)→ ⋅ ⋅ ⋅

in cohomology. _e connecting homomorphism Hk(X ,Y ;Q/ΛS) Ð→
Hk+1(X ,Y ;ΛS) is sometimes referred to as the Bockstein homomorphism and
will be denoted by BS. Finally, if X is a compact connected oriented n-manifold,
there are Poincaré duality isomorphisms H i(X , ∂X;M) ≅ Hn−i(X;M) and
H i(X;M) ≅ Hn−i(X , ∂X;M).

2.2 The Blanchfield Pairing

Let L = L1 ∪ ⋅ ⋅ ⋅ ∪ Lµ be a colored link and denote its exterior by XL . Identifying Zµ

with the free abelian group on t1 , . . . , tµ , the epimorphism π1(XL) → Zµ given by
γ ↦ tlk(γ ,L1)

1 ⋅ ⋅ ⋅ tlk(γ ,Lµ)
µ gives rise to the Alexander module H1(XL ;ΛS) of L. Denote
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by Ω the composition

TH1(XL ;ΛS)
(i)Ð→ TH1(XL , ∂XL ;ΛS)
(ii)ÐÐ→ ker(H2(XL ;ΛS)→ H2(XL ;Q))
(iii)ÐÐ→ H1(XL ;Q/ΛS)

ker(H1(XL ;Q/ΛS)
BS→ H2(XL ;ΛS))

(iv)ÐÐ→ HomΛS (TH1(XL ;ΛS),Q/ΛS)

of the four ΛS-homomorphisms deûned as follows. _e inclusion induced map
H1(XL ;ΛS)→ H1(XL , ∂XL ;ΛS) is an isomorphism [16, Lemma 2.2] and leads to (i).
Since H2(XL ;Q) is a Q-vector space, torsion elements in H2(XL ;ΛS) are mapped
to zero in H2(XL ;Q), and thus Poincaré duality induces (ii). _e long exact se-
quence displayed in (2.1) implies that the Bockstein homomorphism leads to the ho-
momorphism labeled (iii). Indeed, by exactness ker(H2(XL ;ΛS) → H2(XL ;Q))
is equal to im(BS) ≅ H1

(XL ;Q/ΛS)

ker(BS) . To deal with (iv), we must show that ele-
ments of ker(BS) evaluate to zero on elements of TH1(XL ;ΛS). Since ker(BS) =
im(H1(XL ;Q) → H1(XL ;Q/ΛS)), elements of ker(BS) are represented by cocycles
which factor through Q-valued homomorphisms. Since Q is a ûeld, these latter co-
cycles vanish on torsion elements, and thus so do the elements of ker(BS).

Deûnition 2.1 _e Blanchûeld pairing of a colored link L is the pairing

Bl(L)∶TH1(XL ;ΛS) × TH1(XL ;ΛS)Ð→ Q/ΛS

deûned by Bl(L)(a, b) = Ω(b)(a).

It follows from the deûnitions that the Blanchûeld pairing is sesquilinear over ΛS ,
in the sense that Bl(L)(pa, qb) = pBl(L)(a, b)q for any a, b in H1(XL ;ΛS) and any
p, q in ΛS .

3 Proof of Theorem 1.1

We start by ûxing some notation. As wementioned in the introduction, a C-complex
for a µ-colored link L consists in a collection of Seifert surfaces F1 , . . . , Fµ for the sub-
links L1 , . . . , Lµ that intersect only pairwise along clasps. Pushing a C-complex into
the 4-ball D4 leads to properly embedded surfaces that only intersect transversally in
double points. Let W be the exterior of such a pushed-in C-complex in D4, i.e., W
is the complement in D4 of a tubular neighborhood of the pushed-in C-complex (see
[16, §3] for details). Wewish to study the cochain complexes of ∂W ,W and (W , ∂W)
with coeõcients in ΛS ,Q and Q/ΛS . _ese nine cochain complexes ût in a commu-
tative diagram whose columns and rows are exact.

Keeping this motivating example in mind, wemake a short detourwhichwill only
involve homological algebra. More precisely, given a commutative ring R,wewill con-
sider the following commutative diagram of cochain complexes of R-modules whose
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columns and rows are assumed to be exact:

(3.1) 0

��

0

��

0

��
0 // A

��

// B
vB ��

hB // C //

��

0

0 // D
hD //

vD ��

E //

vE ��

F //

��

0

0 // H
hH //

��

J
h J //

��

K //

��

0 .

0 0 0

We will write H∗(D) → H∗(J) for the homomorphism induced by any composition
of the cochainmaps fromD to J. AlsoH∗(J)→ H∗+1(C)will denote the composition
of the connecting map from H∗(J) to H∗+1(B) with the homomorphism induced by
the cochainmap from B toC. Alternatively, the lattermap can also be described as the
composition of the homomorphism induced by the cochain map from J to K with the
connecting homomorphism δvK ∶H∗(K) → H∗+1(C). Furthermore, δh

K will denote
the connecting homomorphism fromH∗(K) toH∗+1(H). Note that these connecting
maps are of degree +1 since we are working with cochain complexes. Finally, we will
use the same notation for cochain maps as for the homomorphisms they induce on
cohomology.

We now argue that there is awell-deûned homomorphism from vD ker(H∗(D)→
H∗(J)) to H∗−1(K)/ker(δh

K) thatwewill denote by (δh
K)−1. Indeed, if [x] belongs to

ker(H∗(D)→ H∗(J)), the deûnition of the latter kernel implies that (hH○vD)([x]) =
0. Using the long exact sequence in cohomology induced by the bottom row of (3.1),
there is a [k] in H∗−1(K) that satisûes δh

K([k]) = vD([x]). Deûne (δh
K)−1(vD([x]))

as the class of [k] in H∗−1(K)/ker(δh
K). We now check that (δh

K)−1 is well deûned.
If [k] and [k′] are elements of H∗−1(K) satisfying δh

K([k]) = vD([x]) = δh
K([k′]),

then [k] − [k′] lies in ker(δh
K). Consequently, the classes of [k] and [k′] agree in the

quotient H∗(B)/ker(δh
K), as desired.

Similarly, we will argue that there is a well-deûned homomorphism from
hD ker(H∗(D) → H∗(J)) to H∗

(B)
ker(vB)

, which we will denote by v−1
B . Indeed, if [x]

belongs to ker(H∗(D) → H∗(J)), the deûnition of the latter kernel implies that
(vE ○ hD)([x]) = 0. Using the long exact sequence in cohomology induced by the
middle column of (3.1), there is a [b] in H∗(B) that satisûes vB([b]) = hD([x]). De-
ûne v−1

B (hD([x])) as the class of [b] in H∗
(B)

ker(vB)
. We now check that v−1

B iswell deûned.
If [b] and [b′] are elements of H∗−1(B) that satisfy vB([b]) = hD([x]) = vB([b′]),
then [b] − [b′] lies in ker(vB). Consequently, the classes of [b] and [b′] agree in the
quotient H∗(B)/ker(vB), as desired.
Finally,we claim that δvK induces awell-deûnedmap H∗−1

(K)
ker(δh

K)
→ H∗

(C)
im(H∗−1(J)→H∗(C)) .

To see this, we must show that if [k] lies in the kernel of δh
K , then δ

v
K([k]) belongs

to im ∶= im(H∗−1(J) h J→ H∗−1(K)
δvK→ H∗(C)). By exactness of the bottom row of
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(3.1), we have ker(δh
K) = im(hJ). Consequently [k] lies in im(hJ) and thus δvK([k])

belongs to im, proving the claim.
We delay the proof of the following lemma to the appendix. Note that the statement

of this lemma was inspired by [1, Lemma 4.4].

Lemma 3.1 Given nine cochain complexes as in (3.1), the diagram below anticom-
mutes:

ker(H∗(D)→ H∗(J)) vD //

hD

��

vD ker(H∗(D)→ H∗(J))

(δh
K)

−1��

hD ker(H∗(D)→ H∗(J))

v−1
B��

H∗−1(K)
ker(δh

K)
δvK��

H∗(B)
ker(vB)

hB // H∗(C)
im(H∗−1(J)→ H∗(C)) .

_is concludes our algebraic detour, and we now return to topological matters:
namely, to the nine cochain complexes that arosewhenwe considered the exteriorW
of a pushed-in C-complex in the 4-ball.

Use iWΛS ,Q to denote the homomorphism from H2(W ;ΛS) to H2(W ;Q) induced
by the inclusion of ΛS into Q. We also use iW ,∂W

ΛS
to denote the homomorphism from

H2(W ;ΛS) to H2(∂W ;ΛS). More generally,wewill o�en implicitly follow this nota-
tional scheme, for instance i(W ,∂W),W

Q/ΛS
will denote themap from H2(W , ∂W ;Q/ΛS)

to H2(W ;Q/ΛS).
Since BS plays the role of the boundary map δh

K in our algebraic detour,
there is a well-deûned map BS−1 from iW ,∂W

ΛS
ker(H2(W ;ΛS) → H2(∂W ;Q)) to

H1
(∂W ;Q/ΛS)

ker(H1(∂W ;Q/ΛS)
BS
→H2(∂W ;ΛS)

. Similarly, translating the role of vB into this setting, there

is a well-deûned map (i(W ,∂W),W
Q )−1 from iWΛS ,Q ker(H2(W ;ΛS) → H2(∂W ;Q)) to

H2
(W ,∂W ;Q)

ker(H2(W ,∂W ;Q)→H2(W ;Q)) . Furthermore, we will denote by δQ/ΛS the boundary map
that arises in the long sequence of the pair (W , ∂W) with Q/ΛS coeõcients.
Applying Lemma 3.1 to the cochain complexes of ∂W ,W , and (W , ∂W) with co-

eõcients in ΛS ,Q, and Q/ΛS immediately yields the following lemma.
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Lemma 3.2 Let W be the exterior of a pushed-in C-complex in D4. _e following
diagram anticommutes:

ker(H2(W ;ΛS)→ H2(∂W ;Q))
iW ,∂W
ΛS//

iWΛS ,Q
��

iW ,∂W
ΛS

ker(H2(W ;ΛS)→ H2(∂W ;Q))

BS−1

��

iWΛS ,Q ker(H2(W ;ΛS)→ H2(∂W ;Q))

(i(W ,∂W),W
Q )

−1

��

H1
(∂W ;Q/ΛS)

ker(H1(∂W ;Q/ΛS)
BS
→H2(∂W ;ΛS))

δQ/ΛS��
H2
(W ,∂W ;Q)

ker(H2(W ,∂W ;Q)→H2(W ;Q))

i(W ,∂W)
Q ,Q/ΛS // H2

(W ,∂W ;Q/ΛS)

im(H1(∂W ;Q)→H2(W ,∂W ;Q/ΛS))
.

Recall from Section 2.1 that the Poincaré duality provides isomorphisms from
H1(∂W ;ΛS) to H2(∂W ;ΛS) and from H2(W , ∂W ;ΛS) to H2(W ;ΛS). Both these
maps will be denoted by PD. Furthermore, we use ∂ to denote the map from
H2(W , ∂W ;ΛS) to H1(∂W ;ΛS) that arises in the long exact sequence of the pair
(W , ∂W). Wewill abbreviate TH1(∂W ;ΛS) by T . Finally,we recall that a C-complex
F = F1∪⋅ ⋅ ⋅∪Fµ is totally connected if each Fi is connected and Fi ∩F j /= ∅ for all i /= j.

Lemma 3.3 Let W be the exterior of a pushed-in C-complex in D4.
(i) Poincaré duality restricts to a well-deûned map ∂−1(T) → ker(H2(W ;ΛS) →

H2(∂W ;Q)).
(ii) If the C-complex is totally connected, then Poincaré duality restricts to a well-

deûnedmap T → iW ,∂W
ΛS

ker(H2(W ;ΛS)→ H2(∂W ;Q)).

Proof In order to prove both statements, we will consider the following commuta-
tive diagram:

(3.2) H2(W , ∂W ;ΛS) PD //

∂
��

H2(W ;ΛS)
iWΛS ,Q //

iW ,∂W
ΛS
��

H2(W ;Q)

iW ,∂W
Q
��

H1(∂W ;ΛS) PD // H2(∂W ;ΛS)
i∂WΛS ,Q // H2(∂W ;Q).

We startwith the ûrst assertion. Given x in ∂−1(T), the goal is to show that PD(x) lies
in ker(H2(W ;ΛS) → H2(∂W ;Q)) or in other words, we wish to show that (i∂WΛS ,Q ○
iW ,∂W
ΛS

○PD)(x) vanishes. Since ∂(x) is a torsion element ofH1(∂W ;ΛS), there exists
a non-zero λ in ΛS forwhich λ∂(x) = 0. _e commutativity of (3.2) now implies that
λ(i∂WΛS ,Q ○ iW ,∂W

ΛS
○ PD)(x) = (i∂WΛS ,Q ○ PD)(λ∂(x)) = 0. Since H2(W ;Q) is a vector

space and λ is non-zero, the ûrst claim is proved.
Next we deal with the second claim. Given a in T , we must ûnd a d in

ker(H2(W ;ΛS)→ H2(∂W ;Q)) such that iW ,∂W
ΛS

(d) = PD(a). Sincewenow assume
the C-complex to be totally connected, [16, Corollary 3.2] implies that H1(W ;ΛS) = 0
and thus ∂ is surjective. Consequently, there exists an x in H2(W , ∂W ;ΛS) forwhich
∂(x) = a. Since a is torsion, x is actually in ∂−1(T) and so the ûrst claim implies
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that PD(x) lies in ker(H2(W ;ΛS)→ H2(∂W ;Q)). _us we set d ∶= PD(x) and ob-
serve that the commutativity of (3.2) implies PD(a) = PD(∂(x)) = iW ,∂W

ΛS
(PD(x)) =

iW ,∂W
ΛS

(d), as desired.

Next we deal with the evaluation maps which were described in Section 2.1, from
H2(W , ∂W ;Q) to HomΛS (H2(W , ∂W ;ΛS),Q) and from H2(W , ∂W ;Q/ΛS) to
HomΛS (H2(W , ∂W ;ΛS),Q/ΛS).

Lemma 3.4 Let W be the exterior of a pushed-in C-complex in D4.
(i) _e evaluation map on H2(W , ∂W ;Q) induces a well-deûnedmap

ev∶ H2(W , ∂W ;Q)
ker(H2(W , ∂W ;Q)→ H2(W ;Q)) Ð→ HomΛS (∂−1(T),Q).

(ii) _e evaluation map on H2(W , ∂W ;Q/ΛS) induces a well-deûnedmap

ev∶ H2(W , ∂W ;Q/ΛS)
im(H1(∂W ;Q)→ H2(W , ∂W ;Q/ΛS))

Ð→ HomΛS (∂−1(T),Q/ΛS).

Proof Fromnow on,wewillwrite ⟨φ, x⟩ instead of (ev)(φ)(x). We start by proving
the ûrst assertion. By exactness we have

ker(H2(W , ∂W ;Q)Ð→ H2(W ;Q)) = im(H1(∂W ;Q) δQÐ→ H2(W , ∂W ;Q)),

where δQ denotes the boundary map in the long exact sequence of the pair. Conse-
quently, the goal is to show that for all φ in H1(∂W ;Q) and all x in ∂−1(T), one has
⟨δQφ, x⟩ = 0. Consider the following commutative diagram:

(3.3) H1(∂W ;Q)

δQ

��

ev // HomΛS (H1(∂W ;ΛS),Q)

∂∗

��
H2(W , ∂W ;Q) ev // HomΛS (H2(W , ∂W ;ΛS),Q).

Since ∂x is torsion, there exists a non-zero λ in ΛS for which λ∂(x) vanishes. _e di-
agram in (3.3) now gives λ⟨δQφ, x⟩ = λ⟨φ, ∂x⟩ = ⟨φ, λ∂(x)⟩ = 0. Since this equation
takes place in the ûeld Q and λ is non-zero, we get ⟨δQφ, x⟩ = 0, as desired.

To prove the second claim, start with φ in H1(∂W ;Q) and x in ∂−1(T). Consider
the change of coeõcient homomorphism i∂WQ ,Q/ΛS

∶H1(∂W ;Q) → H1(∂W ;Q/ΛS)
and the connecting homomorphism δQ/ΛS ∶H1(∂W ;Q/ΛS) → H2(W , ∂W ;Q/ΛS).
In order to show that ⟨(δQ/ΛS ○ i∂WQ ,Q/ΛS

)(φ), x⟩ = 0, consider the same commutative
diagram as displayed in (3.3) but with Q/ΛS coeõcients:

(3.4) H1(∂W ;Q/ΛS)

δQ/ΛS

��

ev // HomΛS (H1(∂W ;ΛS),Q/ΛS)

∂∗

��
H2(W , ∂W ;Q/ΛS) ev // HomΛS (H2(W , ∂W ;ΛS),Q/ΛS).
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Since φ is Q-valued and ∂(x) is torsion, the result follows from the commutativity of
(3.4). Indeed, ⟨(δQ/ΛS ○ i∂WQ ,Q/ΛS

)(φ), x⟩ = ⟨(i∂WQ ,Q/ΛS
)(φ), ∂(x)⟩ and the latter term

vanishes since cocycles which factor through Q vanish on torsion elements.

Recall that we use BS−1 to denote the map from iW ,∂W
ΛS

ker(H2(W ;ΛS) →
H2(∂W ;Q)) to H1

(∂W ;Q/ΛS)

ker(H1(∂W ;Q/ΛS)→H2(∂W ;ΛS)
that appeared in Lemma 3.2. Combin-

ing the previous results, we obtain the following lemma.

Lemma 3.5 Let L be a colored link and let W be the exterior of a pushed-in totally
connected C-complex for L. _e squares and triangle in the following diagram com-
mute, while the top pentagon anticommutes. Furthermore, themap Γ ∶= ev ○BS−1 ○PD
coincides with the adjoint of the Blanchûeld pairing Bl(L).
(3.5)

∂−1(T) ∂ //

(i(W ,∂W),W
Q )

−1
○iWΛS ,Q

○PD

��

T

BS−1
○PD��

Γ

��

H1
(∂W ;Q/ΛS)

ker(BS)

δQ/ΛS��
ev

))
H2
(W ,∂W ;Q)

ker(H2(W ,∂W ;Q)→H2(W ;Q))

i(W ,∂W)
Q ,Q/ΛS//

ev
��

H2
(W ,∂W ;Q/ΛS)

im(H1(∂W ;Q)→H2(W ,∂W ;Q/ΛS))

ev

**

HomΛS (T ,Q/ΛS)

∂∗
��

HomΛS (∂−1(T),Q) // HomΛS (∂−1(T),Q/ΛS).

Proof We start by arguing that the maps in (3.5) are well deûned. For the upper
right evaluation map, this follows from the same argument as the one that was used
in Section 2.2, just before Deûnition 2.1. All the other maps are well deûned thanks
to Lemmas 3.2, 3.3, and 3.4. _e top pentagon anticommutes thanks to Lemmas 3.3
and 3.2. _e top triangle commutes by deûnition of Γ, the bottom square clearly com-
mutes, while the commutativity of the rightmost square follows from (3.4). To prove
the second assertion, we start by noting that [16, Lemma 5.2] implies that the inclu-
sion inducedmap H1(XL ;ΛS)→ H1(∂W ;ΛS) is an isomorphism. Using this fact,we
observe that Γ is deûned exactly as the adjoint Ω of the Blanchûeld pairing was (see
Section 2.2).

Looking at the le�most column of (3.5), wewish to deûne a pairing on ∂−1(T). To
do this, we start by considering the composition

Θ∶ ∂−1(T) PDÐ→ ker(H2(W ;ΛS)→ H2(∂W ;Q))
iWΛS ,QÐ→ iWΛS ,Q ker(H2(W ;ΛS)→ H2(∂W ;Q))

Ð→ H2(W , ∂W ;Q)
ker(H2(W , ∂W ;Q)→ H2(W ;Q))

evÐ→ HomΛS (∂−1(T),Q)
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of ΛS-linear homomorphisms, where the third arrow denotes the homomorphism
(i(W ,∂W),W

Q )−1 whichwas described in the discussion leading up to Lemma 3.2. Note
that the ûrst map is well deûned thanks to Lemma 3.3, the second map is obviously
well deûned, the discussion prior to Lemma 3.2 ensures that the thirdmap is well de-
ûned, and the fourth map is well deûned thanks to Lemma 3.4. We deûne the desired
pairing on ∂−1(T) by

θ(x , y) ∶= Θ(y)(x).
Recall from Lemma 3.5 and its proof that the pairing deûned by Γ on TH1(∂W ;ΛS)
coincides with the Blanchûeld pairing on TH1(XL ;ΛS). Using these identiûcations,
Lemma 3.5 implies the following proposition.

Proposition 3.6 Let L be a colored link and letW be the exterior of a pushed-in totally
connected C-complex for L. _e following diagram commutes:

(3.6) ∂−1(TH1(∂W ;ΛS)) × ∂−1(TH1(∂W ;ΛS)) −θ //

∂×∂��

Q

��
TH1(∂W ;ΛS) × TH1(∂W ;ΛS)

Bl(L) // Q/ΛS .

As (3.6) suggests, the computation of the Blanchûeld pairing now boils down to
the computation of θ. _e remainder of the proof is devoted to this task.

Henceforth, we will assume that W is the exterior of a pushed-in totally connected
C-complex. _e intersection form λ onW is deûned as the adjoint of the composition
(3.7)
Φ∶H2(W ;ΛS)

iÐ→ H2(W , ∂W ;ΛS)
PDÐ→ H2(W ;ΛS)

evÐ→ HomΛS (H2(W ;ΛS),ΛS).
In other words, λ(x , y) ∶= Φ(y)(x) (see for instance [16, Section 2.3] for de-
tails). In particular, we notice that Φ vanishes on ker(i) and descends to a map on
H2(W ;ΛS)/ker(i) that we also denote by Φ.

Since we assumed that W is the exterior of a pushed-in totally connected C-com-
plex, [16, Corollary 3.2] implies that H1(W ;ΛS) = 0. _us, there is an exact sequence

H2(W ;ΛS)
iÐ→ H2(W , ∂W ;ΛS)

∂Ð→ H1(∂W ;ΛS)Ð→ 0.

Consequently, we will henceforth identify H1(∂W ;ΛS) with the cokernel of the
map i. In particular, elements of H1(∂W ;ΛS) will be denoted by [x], where x lies
in H2(W , ∂W ;ΛS). Furthermore,wewill identify the boundarymap ∂ with the quo-
tient map of H2(W , ∂W ;ΛS) onto coker(i). In other words, we allow ourselves to
write ∂(x) and [x] interchangeably.

Let ∆ be the order of TH1(∂W ;ΛS) and let x , y be in ∂−1(T). Since [x] and [y] are
torsion, there exists x0 and y0 in H2(W ;ΛS) such that ∆x = i(x0) and ∆y = i(y0).
Deûne a Q-valued pairing ψ on ∂−1(T) by setting

ψ(x , y) ∶= 1
∆2 λ(x0 , y0).

Observe that ψ is well deûned: if x0 and x′0 both satisfy i(x0) = ∆x = i(x′0), then
x0 − x′0 lies in ker(i) and thus λ(x0 − x′0 , y) = 0, aswe observed above. _e same rea-
soning applies to the second variable. In particular, we could have very well taken x0
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and y0 in H2(W ;ΛS)/ker(i). Summarizing, we have two Q-valued pairings deûned
on ∂−1(T) and we wish to show that they agree.

Proposition 3.7 θ is equal to ψ.

Before diving into the proof, let us set up some notation. First, we deûne a map
j∶ ∂−1(T) → im(i) as follows. Given x in ∂−1(T), we set j(x) ∶= i(x0), where x0 is
any element of H2(W ;ΛS) that satisûes i(x0) = ∆x. _e map j is easily seen to be
well deûned. Next, we set

K ∶= ker(H2(W ;ΛS)
iW ,∂W
ΛSÐÐÐ→ H2(∂W ;ΛS)

i∂WΛS ,QÐÐ→ H2(∂W ;Q)).

Note that K already appeared in Lemma 3.2, as well as in the deûnition of θ. _e
discussion leading up to Lemma 3.2 also provided a homomorphism (i(W ,∂W),W

Q )−1

whose domain was iWΛS ,Q(K). For themoment however, we will rename it as

k∗∶ iWΛS ,Q(K)Ð→ H2(W , ∂W ;Q)
ker(H2(W , ∂W ;Q)→ H2(W ;Q))

and recall its deûnition. Given ϕ in K, the deûnition of K implies that (i∂W ,W
Q ○

iWΛS ,Q)(ϕ) vanishes. Using the exactness of the long exact sequence of the pair
(W , ∂W) with Q coeõcients, it follows that i(W ,∂W),W

Q (ξ) = iWΛS ,Q(ϕ) for some
ξ ∈ H2(W , ∂W ;Q). _emap k∗ is deûned by k∗(iWΛS ,Q(ϕ)) = [ξ].

Remark 3.8 Note that if ϕ = i(W ,∂W),W
ΛS

(φ) for some φ in H2(W , ∂W ;ΛS), then
the description of k∗ becomes more concrete. _e reason is that we can pick ξ to be
i(W ,∂W)
ΛS ,Q (φ). Indeed, we have

i(W ,∂W),W
Q (ξ) = (i(W ,∂W)

Q ○ i(W ,∂W)
ΛS ,Q )(φ) = (iWΛS ,Q ○ i(W ,∂W),W

ΛS
)(φ) = iWΛS ,Q(ϕ),

where the second equality follows from the diagram below:

H2(W , ∂W ;ΛS)
i(W ,∂W)
ΛS ,Q //

i(W ,∂W),W
ΛS
��

H2(W , ∂W ;Q)

i(W ,∂W),W
Q
��

H2(W ;ΛS)
iWΛS ,Q // H2(W ;Q).

Summarizing, we have (k∗ ○ iWΛS ,Q ○ i(W ,∂W),W
ΛS

)(φ) = i(W ,∂W)
ΛS ,Q (φ).

Let us temporarily write V instead ofH2(W ;ΛS). Proposition 3.7will follow ifwe
manage to show that all themaps in (3.8) arewell deûned and produce a commutative
diagram. Indeed, in this diagram, there are several routes which lead from the upper
right corner to the lower le� corner. Taking the uppermost route produces the pairing
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ψ, while the lowermost route produces θ:
(3.8)

V
ker(i)

Φ
��

i
≅

// im(i)

PD
��

∂−1(T)
joo

PD

��
HomΛS ( V

ker(i)),ΛS)

��

i(W ,∂W),W
ΛS

○ PD(V)evoo

iWΛS ,Q

��

K

iWΛS ,Q

��
HomΛS ( V

ker(i) ,Q)

1
∆2

j∗(i−1
)
∗

��

iWΛS ,Q ○ i(W ,∂W),W
ΛS

○ PD(V)evoo

k∗

��

⋅ 1
∆ // iWΛS ,Q(K)

k∗

��

HomΛS (∂−1(T),Q) k∗ ○ iWΛS ,Q ○ i(W ,∂W),W
ΛS

○ PD(V)
⋅ 1
∆ //

1
∆ evoo H2

(W ,∂W ;Q)
ker(H2(W ,∂W ;Q)→H2(W ;Q)) .

ev

kk

We begin by arguing that all the maps in (3.8) are well deûned. We already checked
that the rightmost vertical maps are well deûned, see Lemma 3.2 and Lemma 3.3.
_e middle Poincaré duality map is well deûned: this follows immediately from the
equality PD ○ i = i(∂W ,W),W

ΛS
○PD. Next, we dealwith the two horizontal maps on the

bottom right. First observe that i(∂W ,W),W
ΛS

○ PD(V) is a subspace of K; indeed,

K = ker(H2(W ;ΛS)
iW ,∂W
ΛSÐÐÐ→ H2(∂W ;ΛS)

i∂WΛS ,QÐÐ→ H2(∂W ;Q)),

and iW ,∂W
ΛS

○ i(W ,∂W),W
ΛS

= 0 by exactness. Consequently iWΛS ,Q ○ i(W ,∂W),W
ΛS

○ PD(V)
is a subspace of iWΛS ,Q(K). It then follows that k∗ ○ iWΛS ,Q ○ i(W ,∂W),W

ΛS
○ PD(V) is

a subspace of the term in the lower right corner. Since these spaces are Q-vector
spaces,multiplication by 1

∆ makes sense. It also follows from these observations and
Lemma 3.4 that the lower two evaluation maps in (3.8) are well deûned. _e upper
two evaluation maps are well deûned since inducedmaps commute with evaluations.
_e next lemma will conclude the proof of Proposition 3.7.

Lemma 3.9 All the squares in (3.8) commute.

Proof _e upper le� square commutes by deûnition of Φ, see (3.7). _emiddle le�
square, the bottom right square, and the bottom triangle all clearly commute. Let us
now deal with the large rectangle on the upper right. Start with x in ∂−1(T). Using
the deûnition of j, we have j(x) = i(x0), where x0 lies in H2(W ;ΛS) and satisûes
i(x0) = ∆x. _e desired relation now follows readily:

1
∆
(iWΛS ,Q ○ PD ○ j)(x) = 1

∆
(iWΛS ,Q ○ PD ○ i)(x0) = (iWΛS ,Q ○ PD)(x).

Finally, we deal with the lower le� square. Let φ be in H2(W , ∂W ;ΛS) and let x be
in ∂−1(T). Using once again the deûnition of j, we have (i−1 ○ j)(x) = [x0] where x0
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lies in H2(W ;ΛS) and satisûes i(x0) = ∆x. Consequently, we get the relation
1
∆2 ⟨(i

W
ΛS ,Q ○ i(W ,∂W),W

ΛS
)(φ), (i−1 ○ j)(x)⟩ = 1

∆2 ⟨(i
W
ΛS ,Q ○ i(W ,∂W),W

ΛS
)(φ), [x0]⟩

= 1
∆2 ⟨φ, i([x0])⟩ =

1
∆
⟨φ, x⟩,

where in the second equality, we simultaneously used that induced maps commute
with evaluations and the fact that iWΛS ,Q changes the coeõcients without aòecting the
expression involved. On the other hand, recalling the conclusion of Remark 3.8, we
can compute the other term:

1
∆
⟨(k∗ ○ iWΛS ,Q ○ i(W ,∂W),W

ΛS
)(φ), x⟩ = 1

∆
⟨i(W ,∂W)

ΛS ,Q (φ), x⟩ = 1
∆
⟨φ, x⟩.

Combining these observations, the lower le� square of (3.8) commutes. _is con-
cludes the proof the lemma and thus the proof of Proposition 3.7.

We are now in position to conclude the proof of_eorem 1.1.

Proof of_eorem 1.1 Let L be a colored link and let W be the exterior of a pushed-
in totally connected C-complex for L. Recall that i denotes the inclusion induced
map from H2(W ;ΛS) to H2(W , ∂W ;ΛS) and that given torsion elements [x] and
[y] in H1(XL ;ΛS) ≅ H1(∂W ;ΛS) ≅ coker(i), there exists x0 and y0 in H2(W ;ΛS)
such that i(x0) = ∆x and i(y0) = ∆y. Using Proposition 3.6, we already know that
Bl(L)([x], [y]) = −θ(x , y). Next, Proposition 3.7 implies that θ(x , y) = ψ(x , y) =
1
∆2 λ(x0 , y0). Summarizing, we have

(3.9) Bl(L)([x], [y]) = −θ(x , y) = −ψ(x , y) = − 1
∆2 λ(x0 , y0).

Note that any choice of x0 , y0 will do since λ vanishes on ker(i); this was already
noticed in the deûnition ofψ. Furthermore, note that (3.9) holds independently of the
chosen representatives x and y for the classes [x] and [y]. Indeed if x and x′ represent
[x], we claim that ψ(x , y) and ψ(x′ , y) coincide in Q/ΛS , i.e., that ψ(x − x′ , y) lies
in ΛS ; the same proof will hold for the second variable. Since x and x′ both represent
[x], there is a v in H2(W ;ΛS) for which x − x′ = i(v). Consequently i(∆v) = ∆i(v).
Picking y0 such that i(y0) = ∆y and using the deûnition of λ, the following equalities
prove our claim, since the rightmost term lies in ΛS :

ψ(x − x′ , y) = ψ(i(v), y) = 1
∆2 λ(∆v , y0) =

1
∆
⟨(PD ○ i)(y0), v⟩ = ⟨PD(y), v⟩.

Using [16,_eorem 1.3], we know that there are baseswith respect towhich the inter-
section pairing λ on H2(W ;ΛS) is represented by the C-complexmatrixH described
in the introduction. Furthermore, with respect to the same bases, it was observed in
[16, §5.2] that the map i is represented by H = HT . Consequently, Equation (3.9)
can be reformulated as follows. Let n denote the rank of the ΛS-module H2(W ;ΛS).
Given [x], [y] ∈ TH1(XL ;ΛS), we have Bl(L)([x], [y]) = − 1

∆2 xT
0 Hy0 for any choice

of x0 , y0 ∈ Λn
S such that Hx0 = ∆x and Hy0 = ∆y. Using the notations of the intro-

duction, this can be written as

Bl(L)([x], [y]) = −λH([x], [y]).
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Up to now, we always supposed that W arose by pushing in a totally connected C-
complex. _us, a priori, _eorem 1.1 only holds for C-complex matrices which arise
from totally connected C-complexes. To conclude the proof of_eorem 1.1, it there-
fore only remains to check that the pairing λH is independent of the choice of a C-
complex for L.
As explained in [10, p. 1230] (see also [9]), if F and F′ are two C-complexes for

isotopic links, then the corresponding C-complexmatrices H and H′ are related by a
ûnite number of the following two moves:

H z→ H ⊕ (0) and H z→
⎛
⎜
⎝

H ξ 0
ξ∗ λ α
0 α 0

⎞
⎟
⎠
,

with α a unit of ΛS . In the ûrst case, the ΛS-module Λn
S /HΛn

S picks up a free rank
one factor, so its torsion submodule is le� unchanged. It can then be checked that λH
and λH⊕(0) are canonically isometric. In the second case, since α is a unit in ΛS , one
can assume via the appropriate base change that H is transformed into H ⊕ ( 0 1

1 0 ).
One can then once again check that the forms associated with these two Hermitian
matrices are canonically isometric.

_e proof of _eorem 1.1 is now complete. However, we wish to emphasize an
argument that we will use again later on.

Remark 3.10 It follows from [10, Corollary 3.6] (see also [16, _eorem 1.1]) that
H presents the ΛS-coeõcient Alexander module H1(XL ;ΛS) if H is a C-complex
matrix which arises from a totally connected C-complex. However, as we saw in
the proof of_eorem 1.1, TorΛS (Λn

S /HΛn
S) is (possibly non-naturally) isomorphic to

TH1(XL ;ΛS) for any C-complex matrix H. Furthermore, the same argument shows
that H actually presents H1(XL ;ΛS) under the weaker hypothesis that H is a C-com-
plex matrix which arises from a connected C-complex. Indeed, the transformation
H ↦ H ⊕ (0) only arises when one wishes to connect two disconnected components
of a C-complex (see [10, page 1230]).

4 Applications

In this section, we provide several applications of_eorem 1.1. First, in Section 4.1we
give a new proof that the Blanchûeld pairing is Hermitian. _en, in Section 4.2 we
give quick proofs of some elementary properties of the Blanchûeld pairing. Finally,
in Section 4.3 we apply _eorem 1.1 to boundary links.

4.1 The Blanchfield Pairing Is Hermitian

In this subsection, we prove Corollary 1.2, which states that the Blanchûeld pairing
is Hermitian and takes value in (∆tor

L )−1ΛS/ΛS , where ∆tor
L denotes the ûrst non-

vanishing Alexander polynomial of L over ΛS . Using _eorem 1.1, this reduces to
showing the corresponding statement for λH , where H is any C-complex matrix for
L. Since this is a purely algebraic statement, we will prove it in a somewhat greater
generality.
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Let R be an integral domain with involution and let Q(R) be its ûeld of fractions.
Given an R-module V , a pairing b∶V × V → Q(R)/R is sesquilinear if it is linear
in the ûrst entry and antilinear in the second entry. A sesquilinear pairing b is non-
degenerate (respectively nonsingular) if the adjoint map V → HomR(V ,Q(R)/R),
p ↦ (q ↦ λ(p, q)) is amonomorphism (respectively, an isomorphism) and Hermit-
ian if λ(w , v) = λ(v ,w) for any v ,w ∈ V .

Henceforth,wemake the additional assumption that R isNoetherian and factorial.
Let H be aHermitian n×n-matrix over R, and let ∆ denote the order of the R-module
TorR(Rn/HRn). Given classes [v] and [w] in TorR(Rn/HRn), there exists v0 ,w0 in
Rn such that ∆v = Hv0 and ∆w = Hw0. Proposition 4.2 will show that setting

λH([v], [w]) ∶= 1
∆2 v

T
0 Hw0

gives rise to a well-deûned, Hermitian ∆−1R/R-valued pairing on TorR(Rn/HRn).
Before proving this result, we explain its connection to the Blanchûeld pairing.

Remark 4.1 Let M be an R-module. For k ≥ 0, let ∆(k)(M) denote the greatest
common divisor of all (m − k) × (m − k) minors of an m × n presentation matrix of
M. Using r to denote the rank of M, it is known that the order of TorR(M) is equal
to ∆(r)(M) (see [38, Lemma 4.9]). If M is presented by a Hermitian matrix H, the
above discussion and the equality H = HT guarantee that ∆ = ∆.

Taking R to be ΛS and H to be a C-complexmatrix for a link L, we now claim that
∆ is equal to ∆tor

L (L), the ûrst non-vanishing Alexander polynomial of L over ΛS .
First of all, note thatwhile the ΛS-module Λn

S /HΛn
S may not be equal to H1(XL ;ΛS),

their torsion parts agree (see Remark 3.10). _e claim now follows from the fact that
the order of TH1(XL ;ΛS) is equal to the ûrst non-vanishing Alexander polynomial
of L, as mentioned above.

Combining _eorem 1.1 with Remark 4.1, the following proposition (which was
suggested by David Cimasoni) will immediately imply Corollary 1.2.

Proposition 4.2 _e assignment (v ,w)↦ 1
∆2 vT

0 Hw0 induces a well-deûned pairing

λH ∶TorR(Rn/HRn) × TorR(Rn/HRn)→ ∆−1R/R

that is Hermitian. Furthermore, if det(H) is non-zero, then this form is induced by the
pairing (v ,w)↦ vTH−1w.

Proof Let us ûrst check that this deûnition is independent of the choice of v0 in Rn

such that ∆v = Hv0. Any other choice is of the form v0 + k with k in Rn such that
Hk = 0. Since H is Hermitian, we have the equalities

1
∆2 k

THw0 =
1
∆2 (Hk)Tw0 = 0,

that give the result. A similar argument shows that the deûnition is independent of
the choice of w0 such that ∆w = Hw0. Next, let us check that it does not depend on
the choice of v representing the class [v]. Any other choice is of the form v+Huwhere
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u lies in Rn ; since ∆(v +Hu) = H(v0 + ∆u) and ∆ = ∆, the element
1
∆2 (∆u)

THw0 =
1
∆
uTHw0 = uTw

belongs to R, so the class inQ(R)/R is indeedwell deûned. A similar argument shows
that it does not depend on the choice ofw representing the class [w], thus concluding
the proof that λH is well deûned. _e fact that λH is sesquilinear is clear, and it is
Hermitian since H is and ∆ = ∆. To show the second claim, ûrst note that if det(H)
is non-zero, then H is invertible over Q(R) so the equation ∆v = Hv0 is equivalent
to v0 = ∆H

−1
v (and similarly for w0). Replacing v0 and w0 by these values and using

the fact that H is Hermitian, we see that λH is indeed induced by (v ,w) ↦ vTH−1w.
_is concludes the proof of the proposition.

4.2 Some Properties of the Blanchfield Pairing

Let R be a Noetherian factorial integral domain with involution. Before dealing with
the properties of the Blanchûeld pairing, we start by investigating the behavior of λH
under direct sums andmultiplication by norms.

Lemma 4.3 Let H1 , . . . ,Hµ and H be Hermitian matrices and let u be a unit of R.
(i) Setting B ∶= H1 ⊕ ⋅ ⋅ ⋅ ⊕Hµ , one has λB =⊕µ

i=1 λH i .
(ii) _e pairings λuuH and λH are isometric.

Proof For (i), assume that each H i is of size k i , set k ∶= k1 + ⋅ ⋅ ⋅ + kµ and observe
that Rk/BRk is equal to Rk1/H1Rk1 ⊕Rk2/H2Rk2 ⊕⋅ ⋅ ⋅⊕Rkµ/HµRkµ . Since the torsion
of the latter direct sum is equal to the direct sum of the torsion of the Rk i /H iRk i , it
follows that the order of TorR(Rk/BRk) is equal to the product of the orders of the
TorR(Rk i /H iRk i ). We will write this as ∆ = ∆1 ⋅ ⋅ ⋅∆µ , where ∆ i denotes the order of
TorR(Rk i /H iRk i ).

Next, we compute the sum of the λH i . Let x = x 1 ⊕ x2 ⊕ ⋅ ⋅ ⋅ ⊕ xµ and y = y1 ⊕ y2 ⊕
⋅ ⋅ ⋅ ⊕ yµ be torsion elements in Rk/BRk . Relying on the previous paragraph, the x i

and y i are torsion in Rk i /H iRk i , and so there exist x i
0 and y i

0 that satisfy H ix i
0 = ∆ ix i

and H i y i
0 = ∆ i y i . _us, by deûnition we have

(4.1)
µ
⊕
i=1

λH i (x , y) =
µ

∑
i=1

1
∆2

i
(x i

0)TH i y i
0 .

In order to compute λB and conclude the proof we proceed as follows. We deûne
an element x0 in Rk/BRk by requiring its i-th component to be equal to ∆∆−1

i x i
0.

_is way, the i-th component of Bx0 is H i(∆∆−1
i x i

0) = ∆∆−1
i H ix i

0 = ∆x i and thus
Bx0 = ∆x. We can therefore use x0 and y0 to compute λB(x , y) and we get

λB(x , y) =
1
∆2 x

T
0 By0 =

1
∆2

n

∑
i=1

(∆∆−1
i x i

0)TH i(∆∆−1
i y i

0) =
n

∑
i=1

1
∆2

i
(x i

0)TH i y i
0 ,

which agrees with (4.1). _is concludes the proof of the ûrst statement.
To deal with (ii), ûrst observe that since u is a unit, so are u and uu. Consequently

Rn/HRn is equal to Rn/(uuH)Rn and thus the corresponding torsion submodule
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supports both the pairings λH and λuuH . To prove the assertion, we wish to show
that the automorphism φ deûned by sending x to u−1x provides the desired isometry.
To see this, start with torsion elements x and y in the cokernel of H and let x0 , y0
be such that Hx0 = ∆x and Hy0 = ∆y. Since u is a unit, (uu)−1 lies in R, and thus
(uuH)((uu)−1x0) = ∆x and similarly for y. It follows that

λuuH(x , y) = 1
∆2 ((uu)

−1x0)T(uuH)((uu)−1 y0) = (uu)−1 1
∆2 x

T
0 Hy0

= (uu)−1λH(x , y).
On the other hand, the sesquilinearity of λH immediately implies that

λH(φ(x), φ(y)) = λH(u−1x , u−1 y) = (uu)−1λH(x , y).
Consequently λH and λuuH are isometric, which concludes the proof.

We can now apply Lemma 4.3 to obtain some results on the Blanchûeld pairing.
Before that however, given a C-complex F for a µ-colored link and a sequence ε =
(ε1 , . . . , εµ) of ±1, we brie�y recall some terminology. Pushing curves oò Fi in the
ε i-normal direction for i = 1, . . . , µ produces a map iε ∶H1(F) → H1(S3 ∖ F). _e
assignment αε(x , y) ∶= lk(iε(x), y) gives rise to a bilinear pairing on H1(F) and thus
to a generalized Seifert matrix Aε for L. We refer to [9, 10, 17] for details.

In the next two propositions, we will use Bl(L)(t1 , . . . , tµ) to denote the Blanch-
ûeld pairing of a µ-colored link and similarly for the C-complex matrices.

Proposition 4.4 Let L′ = L1 ∪ ⋅ ⋅ ⋅ ∪ Lν−1 ∪ L′ν and L′′ = L′′ν ∪ Lν+1 ∪ ⋅ ⋅ ⋅ ∪ Lµ be
two colored links. Consider a colored link L = L1 ∪ ⋅ ⋅ ⋅ ∪ Lµ , where Lν is a connected
sum of L′ν and L′′ν along any of their components. _en Bl(L)(t1 , . . . , tµ) is isometric to
Bl(L′)(t1 , . . . , tν)⊕ Bl(L′′)(tν , . . . , tµ).

Proof Denote∏i>ν(1 − t−1
i )(1 − t i) by u1 and∏i<ν(1 − t−1

i )(1 − t i) by u2. Given a
C-complex F′ for L′ and a C-complex F′′ for L′′, a C-complex for L is given by the
band sum of F′ and F′′ along the corresponding components of F′ν and F

′′
ν . Conse-

quently, AεF = Aε
′
F′ ⊕Aε

′′
F′′ ,with ε′ = (ε1 , . . . , εν) and ε′′ = (εν , . . . , εµ). It follows that a

C-complex matrix H for L is given by H = u1H′(t1 , . . . , tν)⊕ u2H′′(tν , . . . , tµ). De-
noting thesematrices byH′ andH′′,_eorem 1.1 and Lemma 4.3 (i) imply that Bl(L)
is isometric to λu1H′ ⊕ λu2H′′ . Since u1 and u2 are of the form uu with u a unit of ΛS ,
the result follows from the second assertion of Lemma 4.3.

L′′ L′ L′′L′

Figure 1: Performing a trivial band clasping of the links L′ and L′′.

A trivial band clasping of two links is the operation depicted in Figure 1. A proof
similar to that of Proposition 4.4 yield the following result.
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Proposition 4.5 Let L′ = L1 ∪ ⋅ ⋅ ⋅ ∪ Lν and L′′ = Lν+1 ∪ ⋅ ⋅ ⋅ ∪ Lµ be colored links with
disjoint sets of colors.
(i) Consider a colored link L obtained by trivially band clasping Lν and Lν+1 along

any of their components. _en Bl(L)(t) is isometric to Bl(L′)(t′)⊕Bl(L′′)(t′′).
(ii) Consider the colored link given by the disjoint sum of L′ and L′′. _en Bl(L)(t)

is isometric to Bl(L′)(t′)⊕ Bl(L′′)(t′′).

We conclude this subsection by studying the eòect of orientation reversal and tak-
ing themirror image.

Proposition 4.6 Let L be a colored link.
(i) If L denotes themirror image of L, then Bl(L) is isometric to −Bl(L).
(ii) If −L denotes L with the opposite orientation, then Bl(−L) is isometric to Bl(L).

Proof If F is a C-complex for L, then the mirror image F′ of F is a C-complex for
F. It follows that H′ = −H. Since these two matrices present the same module, the
corresponding torsion submodule supports both λH and λ−H . We claim that the au-
tomorphism which sends x to −x gives the required isometry. Indeed, if Hx0 = ∆x
and Hy0 = ∆y, then (−H)x0 = ∆(−x) and (−H)y0 = ∆(−y). Consequently,
λ−H(−x ,−y) and −λH(x , y) are both equal to −xT

0 Hy0. _e result now follows from
_eorem 1.1. _e second assertion follows similarly by noting that a C-complex ma-
trix for −L is given by H and by using the fact that λH is Hermitian.

4.3 Boundary Links

An n-component boundary link is a link L = K1∪⋅ ⋅ ⋅∪Kn whose n components bound
n disjoint Seifert surfaces F1 , . . . , Fn . Set F = F1 ⊔ ⋅ ⋅ ⋅ ⊔ Fn . Pushing curves oò this
boundary Seifert surface in the negative normal direction produces a homomorphism
i−∶H1(F)→ H1(S3∖F). _e assignment θ(x , y) ∶= lk(i−(x), y) gives rise to apairing
onH1(F) and to a boundary Seifertmatrix for L [29, p. 670]. SinceH1(F) decomposes
as the direct sum of the H1(Fi), the restriction of θ to H1(Fi)×H1(F j) produces ma-
trices A i j . For i /= j, thesematrices satisfy A i j = AT

ji ,while A i i is nothing but a Seifert
matrix for the knot K i . Let g i be the genus of Fi , let Ik be the k×k identitymatrix, let τ
be the block diagonal matrix whose diagonal blocks are t1I2g1 , t2I2g2 , . . . , tn I2gn , and
set g ∶= g1 + ⋅ ⋅ ⋅ + gn . We use_eorem 1.1 in order to give a new proof of the following
result, originally due to Hillman [24, pp. 122–123], see also [14,_eorem 4.2].

_eorem 4.7 Let L = K1 ∪ ⋅ ⋅ ⋅ ∪Kn be a boundary link. Assume that A is a boundary
Seifert matrix for L of size 2g. _e Blanchûeld pairing of L is isometric to

Λ2g
S /(Aτ − AT)Λ2g

S × Λ2g
S /(Aτ − AT)Λ2g

S Ð→ Q/ΛS

(a, b)z→ aT(A− τAT)−1(τ − I2g)b.

Proof Let F be a boundary Seifert surfacewhich gives rise to A. View F as a C-com-
plex for L, and use Aεi j to denote the restriction of the generalized Seifert matrix Aε

to H1(Fi) × H1(F j). If i /= j, since L is a boundary link, Aεi j is independent of ε

https://doi.org/10.4153/CJM-2017-051-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-051-5


1002 A. Conway

and is equal to the block A i j of the boundary Seifert matrix A. Similarly, for each ε
with ε i = −1, the restriction of Aε to H1(Fi) × H1(Fi) is equal to the block A i i . Let
H i = (1−t i)AT

i i+(1−t−1
i )A i i denote the correspondingC-complexmatrix for the knot

K i and let u denote∏n
j=1(1− t j). _e previous considerations show that a C-complex

matrix H for L is given by

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

uu(1 − t1)−1(1 − t−1
1 )−1H1 uuA12 ⋅ ⋅ ⋅ uuA1n

uuA21 uu(1 − t2)−1(1 − t−1
2 )−1H2 ⋅ ⋅ ⋅ uuA2n

⋮ ⋱ ⋱ ⋮
uuAn1 uuAn2 ⋅ ⋅ ⋅ uu(1 − tn)−1(1 − t−1

n )−1Hn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Since H i = (1 − t−1
i )(A i i − t iAT

i i), the diagonal blocks of H can be rewritten as
uu(1 − t i)−1(A i i − t iAT

i i). Using the equation A i j = AT
ji , we see that a C-complex

matrix for L is given by

(4.2) H = uu(I2g − τ)−1(A− τAT).

It follows that HT = uu(AT −Aτ)(I2g − τ)−1. Since u is a unit of ΛS and (I2g − τ)−1 is
an automorphismofΛ2g

S , themodule presented byH = HT is canonically isomorphic
to themodule presented by Aτ − AT . As the isomorphism is induced by the identity
of Λ2g

S ,wewill slightly abuse notations and consider thesemodules as “equal" (see the
second le� vertical arrow in (4.3)).

Next, we claim that Λ2g
S /HΛ2g

S is ΛS-torsion. Trivially band clasp F1 with F2, F2
with F3, Fi with Fi+1, and ûnally Fn−1 with Fn . _e result is a link L′ that bounds a
connectedC-complex F′ forwhich the associatedC-complexmatrix is alsoH. Since L
has pairwise vanishing linking numbers, L′ does not. Consequently, using the Torres
formula, the Alexander polynomial of L′ is non-zero and thus its Alexander module
is torsion. As we saw in Remark 3.10, if a C-complex matrix H arises from a con-
nected C-complex, H presents the ΛS-localized Alexander module. _us H presents
the torsion module H1(XL′ ;ΛS) and the claim follows.

Now consider the following diagram:

(4.3) TH1(XL ;ΛS) × TH1(XL ;ΛS)
Bl(L) //

≅

��

Q/ΛS

=

��
Λ2g

S

HΛ2g
S
× Λ2g

S

HΛ2g
S

(a ,b)↦−aTH−1b //

=

��

Q/ΛS

=

��
Λ2g

S

(Aτ−AT)Λ2g
S
× Λ2g

S

(Aτ−AT)Λ2g
S

(a ,b)↦aT
(uu)−1

(A−τAT
)
−1
(τ−I2g)b //

(a ,b)↦(u−1a ,u−1b)

��

Q/ΛS

=

��
Λ2g

S

(Aτ−AT)Λ2g
S
× Λ2g

S

(Aτ−AT)Λ2g
S

(a ,b)↦aT
(A−τAT

)
−1
(τ−I2g)b // Q/ΛS .
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_e top square commutes by _eorem 1.1. Note that Corollary 1.2 ensures that
λH(a, b) = −aTH−1b. Indeed,we argued above that Λ2g

S /HΛ2g
S is torsion. _emiddle

rectangle commutes thanks to (4.2). Finally, the commutativity of the bottom square
follows from a direct computation.

A Proof of Lemma 3.2

For the reader’s convenience, we recall both the set-up and the statement of Lem-
ma 3.2. Given a commutative ring R, consider the following commutative diagram of
cochain complexes of R-modules whose columns and rows are assumed to be exact:

(A.1) 0

��

0

��

0

��
0 // A

��

// B
vB ��

hB // C //

��

0

0 // D
hD //

vD ��

E //

vE ��

F //

��

0

0 // H
hH //

��

J
h J //

��

K //

��

0

0 0 0.

If 0 → S → T → U → 0 is one of the short exact sequences of cochain complexes
in (A.1), we will use δvU , respectively δ

h
U , to denote the connecting homomorphism

H∗(U) → H∗+1(S) if the sequence is depicted vertically, respectively, horizontally.
For instance, there are connecting homomorphisms δvK ∶H∗(K) → H∗+1(C) and
δh
K ∶H∗(K)→ H∗+1(H).
Just as in Section 3, we use the same notation for cochain maps as for the homo-

morphisms they induce on cohomology. Furthermore,wewillwriteH∗(D)→ H∗(J)
for the homomorphism induced by any composition of the cochain maps from D to
J. Also, H∗(J) → H∗+1(C) will denote the composition of the connecting homo-
morphism δh

J ∶H∗(J) → H∗+1(B) with the homomorphism hB ∶H∗(B) → H∗(C).
Alternatively, the latter map can also be described as the composition of the homo-
morphism induced by the cochain map hJ ∶H∗(J) → H∗(K) with the connecting
homomorphism δvK ∶H∗(K)→ H∗+1(C).
Furthermore, as we argued in the discussion leading to the statement of Lem-

ma 3.2, the connecting homomorphism δvK induces a well-deûned map H∗−1
(K)

ker(δh
K)
→

H∗
(C)

im(H∗−1(J)→H∗(C)) , which we also denote by δvK . Additionally, there are well-deûned
homomorphisms (δh

K)−1 and v−1
B , whose deûnitions we now recall, referring to Sec-

tion 3 for details.
1. _ere is a homomorphism (δh

K)−1 from vD ker(H∗(D)→ H∗(J)) to
H∗−1(K)/ker(δh

K). More precisely, (δh
K)−1(vD([x])) is deûned as the class

of [k] in H∗−1(K)/ker(δh
K) for any [k] in H∗−1(K) such that δh

K([k]) = vD([x]).
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2. _ere is a homomorphism v−1
B from hD ker(H∗(D) → H∗(J)) to H∗

(B)
ker(vB)

. More
precisely, v−1

B (hD([x])) is deûned as the class of [b] in H∗
(B)

ker(vB)
for any [b] inH∗(B)

such that vB([b]) = hD([x]).
_e aim of this appendix is to prove Lemma 3.2, which states that the following dia-
gram anticommutes:

ker(Hm(D)→ Hm(J)) vD //

hD
��

vD ker(Hm(D)→ Hm(J))
(δh

K)
−1

��

hD ker(Hm(D)→ Hm(J))
v−1
B��

Hm−1
(K)

ker(δh
K)

δvK��
Hm
(B)

ker(vB)
hB // Hm

(C)
im(Hm−1(J)→Hm(C)) .

Proof of Lemma 3.2 _e proof is structured as follows: ûrst, we set up some nota-
tion; thenwe compute hB ○v−1

B ○ hD ; and, ûnally, we show that δvK ○(δh
K)−1 ○vD yields

the same result.
Our ûrst task is to write out explicitly the short exact sequences of cochain com-

plexes displayed in (A.1). We restrict our attention to the degrees of interest (namelym
andm− 1) and omit the trivial modules that ought to appear on the extremities of the
exact rows and columns. _e result is the following commuting cube of R-modules
in which the rows and columns are exact:

(A.2) Am−1 //

&&

��

Bm−1 //

%%

��

Cm−1

��

&&
Am //

��

Bm //

��

Cm

��

Dm−1 //

&&

��

Em−1

��

//

%%

Fm−1

��

&&
Dm //

��

Em //

��

Fm

��

Hm−1 //

%%

Jm−1

%%

// Km−1

%%
Hm // Jm // Km .

Although the maps of this cube are not labeled, we systematically use the following
conventions. First, the codiòerential of a cochain complex T will be denoted by δT .
Secondly, cochain maps are indexed by their domain and are named h, respectively,
v, if they are horizontal, respectively, vertical. For instance, in the lower right corner
of (A.2), the horizontal map is denoted by hJ , the vertical map is denoted by vF and
the diagonal map is denoted by δK . Additionally, recall thatwe use the same notation
for cochain maps as for the homomorphisms they induce on cohomology.

Next, we move on to the second step of the proof: since our goal is to show that
the equality

hB ○ v−1
B ○ hD([x]) = −δvK ○ (δh

K)−1 ○ vD([x])
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holds for all [x] ∈ ker(Hm(D) → Hm(J)), we now describe the map hB ○ v−1
B ○ hD .

Let x ∈ Dm be a cocycle representing a class [x] ∈ ker(Hm(D)→ Hm(J)). Aswe saw
in Section 3, there exists [b] in Hm(B) such that vB([b]) = hD([x]). Fixing once and
for all such a [b], the deûnition of v−1

B implies that v−1
B ○ hD([x]) is equal to the class

of [b] in Hm
(B)

ker(vB)
. We deduce that hB ○ v−1

B ○ hD([x]) = hB([b]).
To carry out the third step of the proof, wemust compute δvK ○ (δh

K)−1 ○ vD([x]).
Consequently, we brie�y recall the deûnition of connecting homomorphisms.

Remark A.1 Given a short exact sequence 0 → S
j→ T

π→ U → 0 of cochain
complexes, the connecting homomorphisms δconn∶Hm(U) → Hm+1(S) are deûned
as follows. Since π is surjective, pick any t ∈ Tm such that π(t) = u is a cocycle
representing a cohomology class [u] in Hm(U), and set δconn([u]) ∶= [s], where
s ∈ Sm+1 is the (unique) cocycle satisfying j(s) = δT(t). It is well known that δconn is
well deûned.

In order to compute δvK ○ (δh
K)−1 ○ vD([x]), we ûrst compute (δh

K)−1 ○ vD([x]).
Since hD([x]) − vB([b]) vanishes in cohomology (by deûnition of [b]), there is a
cochain e ∈ Em−1 such that δE(e) = hD(x) − vB(b).

Claim _e class of hJ(vE([e])) in Hm−1
(K)

ker(δh
K)

is equal to (δh
K)−1 ○ vD([x]).

Proof By deûnition of (δh
K)−1, it is enough to verify that δh

K(hJ(vE([e]))) =
vD([x]). To check this, recall from Remark A.1 that we must show that hJ(vE(e))
is a cocyle and that δJ(vE(e)) = hH(vD(x)). To check that hJ(vE(e)) is indeed a
cocycle, we use successively the commutativity of (A.1), the deûnition of e, and the
exactness of the lines in (A.1) to get

δK(hJ(vE(e))) = vF(hE(δE(e))) = vF(hE(hD(x) − vB(b))) = −vF(hE(vB(b))).
Using once again the commutativity of (A.1) and the exactness of its lines, we deduce
the desired result, namely that

δK(hJ(vE(e))) = −vF(hE(vB(b))) = −hJ(vE(vB(b))) = 0.

Next, we check the equality δJ(vE(e)) = hH(vD(x)). _is veriûcation is carried out
by using successively the commutativity of (A.2), the deûnition of e, the exactness of
the columns in (A.2), and the commutativity of (A.2):

δJ(vE(e)) = vE(δE(e)) = vE(hD(x)) − vE(vB(b)) = vE(hD(x)) = hH(vD(x)).
_is concludes the proof of the claim.

_e conclusion of the lemma will promptly follow from the next claim.

Claim _e class of −hB([b]) in Hm
(C)

im(Hm−1(J)→Hm(C)) is equal to δ
v
K ○(δh

K)−1○vD([x]).

Proof Wewill show that the announced equality holdswithout having to pass to the
quotient. To check this assertion, recall from Remark A.1 thatwemust ûnd a cochain
f ∈ Fm−1 such that vF( f ) is a cocycle representing (δh

K)−1 ○ vD([x]). Furthermore f
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must also satisfy δF( f ) = −vC(hB(b)). We claim that hE(e) can be taken to play the
role of f . We ûrst check that hE(e) is such that vF(hE(e)) is a cocycle representing
(δh

K)−1 ○ vD([x]). Since we proved in the previous claim that (δh
K)−1 ○ vD([x]) is

(the class of) the cohomology class of hJ(vE(e)), it is actually enough to show that
vF(hE(e)) = hJ(vE(e)). _is is immediate from the commutativity of (A.2). Finally,
we show that δF(hE(e)) = −vC(hB(b)). _is follows from the commutativity of
(A.2), the deûnition of e, the exactness of the rows in (A.2), and the commutativity of
(A.2):

δF(hE(e)) = hE(δE(e)) = hE(hD(x)) − hE(vB(b)) = −hE(vB(b)) = −vC(hB(b)).
_is concludes the proof of the claim.

Summarizing,we have just shown that −[hB(b)] represents δvK ○(δh
K)−1 ○vD([x]).

Since the second step of the proof consisted in showing that hB([b]) represents hB ○
v−1
B ○ hD([x]), the proof of the lemma is concluded.
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