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We investigate whether relative contributions of
genetic and shared environmental factors are

associated with an increased risk in melanoma. Data
from the Queensland Familial Melanoma Project
comprising 15,907 subjects arising from 1912 fami-
lies were analyzed to estimate the additive genetic,
common and unique environmental contributions to
variation in the age at onset of melanoma. Two com-
plementary approaches for analyzing correlated
time-to-onset family data were considered: the gener-
alized estimating equations (GEE) method in which
one can estimate relationship-specific dependence
simultaneously with regression coefficients that
describe the average population response to chang-
ing covariates; and a subject-specific Bayesian mixed
model in which heterogeneity in regression para-
meters is explicitly modeled and the different
components of variation may be estimated directly.
The proportional hazards and Weibull models were
utilized, as both produce natural frameworks for esti-
mating relative risks while adjusting for simultaneous
effects of other covariates. A simple Markov Chain
Monte Carlo method for covariate imputation of
missing data was used and the actual implementation
of the Bayesian model was based on Gibbs sampling
using the free ware package BUGS. In addition, we
also used a Bayesian model to investigate the relative
contribution of genetic and environmental effects on
the expression of naevi and freckles, which are
known risk factors for melanoma.

Melanoma is a complex chronic disease, the incidence
of which has more than doubled over the past 20 years
(MacLennan et al., 1992). The disease’s complexity can
be, in part, explained in terms of the joint effects of
genotype and environment, and censorship due to the
late onset of the disease in most patients.

Studies have revealed a number of possible under-
lying factors that may contribute to the risk of
melanoma (English et al, 1997; Siskind et al, 2002;
Swerdlow & Green, 1987). Such factors have
included sun exposure, skin, hair and eye colour,
degree of freckling, number of naevi, place of birth,
and ethnic origin. It is also thought that certain genes
are responsible for a person’s susceptibility to the
disease (Aitken et al., 1998) and that a number of the
above mentioned risk factors may themselves be
genetically influenced.

A preliminary segregation analysis conducted by
Aitken et al. (1998) investigated whether the familial
clustering of cutaneous melanoma was consistent
with Mendelian inheritance of a major autosomal
gene. Analyses were performed with the SAGE statis-
tical package using the maximum likelihood REGTL
program for a binary trait. The hypothesis of co-dom-
inant Mendelian inheritance gave a significantly
better fit to the data than either dominant or recessive
Mendelian inheritance. Overall, both Mendelian
inheritance of a single major gene and purely environ-
mental transmission were rejected. However, there
was strong evidence of familial dependence in
melanoma occurrence.

Despite these findings, the etiology of melanoma is
still not well understood. For example, it is unclear
why some people are more susceptible to the disease
than others and for susceptible cases, it is unclear
whether certain risk factors play a role in the progres-
sion of the disease or if genetic factors are a major
source of influence.
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Research into chronic diseases such as melanoma
has largely been achieved through family studies,
where the age of onset of the disease is modelled
within a survival analysis framework. An example of
this type of analysis is the work by Abel and Bonney
(1990), who developed a model accounting for age of
onset, where the hazard function was expressed in
terms of a major gene effect and residual family
dependence using the regressive approach described in
Bonney (1986).

Clayton (1978) and Vaupel (1979) introduced the
so-called “frailty” model which has been extended by
many others (Andersen et al., 1993; Clayton &
Cuzick, 1985; Gauderman & Thomas, 1994;
Hougaard, 1986; Li & Thompson, 1997; Li &
Wijsman, 1998; Nielsen et al., 1992; Siegmund &
McKnight, 1998). A variant of these approaches uses
estimating equations, which accommodates correlated
age of onset outcomes and is known to be robust and
computationally efficient (Hsu & Prentice, 1996; Hsu
& Zhao, 1996). A common theme is the investigation
of possible underlying genetic and environmental
factors that may influence the age of onset of the
disease of interest.

Recently, the focus of familial studies involving
censored data has moved towards the development of
Bayesian methods using packages such as BUGS and
WinBUGS (Gilks et al., 1994; Spiegelhalter et al.,
1996a, 1996b, 2003), the Genetic Analysis Package
(GAP, 1996) and MIXD (Olshen & Wijsman, 1996;
Thompson, 1994). Examples of this include the
implementation of Markov Chain Monte Carlo
(MCMC) methods for linkage analysis (Heath, 1997;
Kong et al., 1992; Lange & Sobel, 1991); the estima-
tion of parameters in a mixed model, with and
without covariates (Guo & Thompson, 1991;
Thomas, 1992); estimation of a gene-smoking interac-
tion and covariate imputation (Gauderman et al.,
1997); combined linkage and segregation analysis
(Guo & Thompson, 1992; Faucett et al., 1993); and
development of mixed models for large complex pedi-
grees (Guo & Thompson, 1994). Recent work by Do
et al. (2000) demonstrates an application of Bayesian
methodology to menopausal age in twins using a gen-
eralised linear mixed model (GLMM). In this
application, they investigated the contribution of
covariates and any underlying genetic and environ-
mental factors to explain variation in menopausal
age. A similar investigation by Scurrah et al. (2000)
fitted a Bayesian model to survival data. In this appli-
cation, the authors used a Bayesian piece-wise
exponential model to explore the time to onset of res-
piratory disease, given known risk factors and
possible familial effects. Both papers highlight the
flexible nature of the Bayesian approach, which can
be seen through the inclusion of priors and the inte-
gration of fixed and random effects.

The Bayesian approach to fitting a genetic model
in a GLMM framework was examined in detail in
Kuhnert and Do (2003). In this paper, a simulation
study investigated the flexible nature of the Bayesian
model and its ability to incorporate genetic compo-
nents through random effects. This was compared
with standard maximum likelihood methods for esti-
mating genetic components in the model. Results
from a simulation study indicated a consistent advan-
tage in using the Bayesian method to detect a correct
model under particular scenarios of additive genetics
and common environmental effects. Moreover, for
binary data, there was difficulty in detecting the
correct model under low and moderate levels of heri-
tability. Results, however, were improved for ordinal
data under similar scenarios.

We present an alternative model using Bayesian
methodology, which takes into account the complex
features inherent with melanoma, using a large dataset
comprising 1449 families. The model does not assume
proportional hazards, but a multiplicative model,
where the Weibull distribution is used to model the age
at onset of melanoma. This is fit in a Bayesian frame-
work, which incorporates fixed and random effects to
estimate possible risk factors, covariates and any
underlying genetic factors. Another approach to
accommodate the correlated age-at-onset outcomes rig-
orously is to use the estimating equations for assessing
familial aggregation of age-at-onset (Hsu & Prentice,
1996; Hsu & Zhao, 1996). It has two desirable fea-
tures: (i) robustness — no higher-order distributional
assumptions are required beyond pairwise ones; and
(ii) computational efficiency.

In this article, our interest lies primarily with
investigating whether certain risk factors are able to
explain a considerable proportion of the familial
dependence and if including them into the model
reduces the residual variation and results in increased
power for detecting a major gene effect. To our
knowledge, this study will be the first in melanoma
research that extends current methodology and incor-
porates covariate and genetic effects simultaneously,
with age of onset, using Bayesian methodology on
family data.

Material and Methods
The Data on the Age at Onset of Melanoma 

and Potential Risk Factors

We analysed data from the Queensland Familial
Melanoma Project. Family ascertainment and data
collection have been described in detail (Aitken et al.,
1996). Assessing standard melanoma risk factors
include counts of naevi on the arms and back, demo-
graphic and medical details, lifetime residence and
family history of melanoma and other cancers. Briefly,
we ascertained all 12,016 first incident cases of cuta-
neous melanoma (invasive and in situ) diagnosed in
Queensland residents between 1982 and 1990 and
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reported to the Queensland Cancer Registry, or found
by comparing cancer registrations for 1984 and 1987
with records of pathology laboratories throughout
Queensland. It is estimated that registry records are
approximately 95% complete for the study period.
Doctors’ permission was obtained to approach
10,407 cases of whom 7784 (75%) returned a brief
family history questionnaire, stating whether any of
their first-degree relatives (parents, siblings, children)
had had a diagnosis of melanoma. A total of 2920
probands was sampled from these respondents,
including all who had claimed a positive family
history (n = 1529) and an approximate 20% random
sample of the remainder (n = 1391). Probands were
sent a detailed family history questionnaire, asking
for the names and addresses of all first-degree rela-
tives, relatives’ vital status, dates of birth, and ages,
and whether any of these relatives had had a
melanoma diagnosed by a doctor. To avoid bias in
determining the mode of inheritance, second and
lower degree relatives were enrolled in the study
according to a sequential sampling scheme (Cannings
& Thompson, 1977). First degree relatives of all rela-
tives with confirmed melanoma were ascertained
through the detailed family history questionnaire,
described above, which was mailed to all confirmed
positive relatives. In total, 15,989 relatives belonging
to 1912 separate families were reported by 2118
(73%) probands or other positive relatives. A total of
1044 relatives for whom date of birth was unknown
were excluded, leaving 14,945 relatives for analysis.
There were 188 families independently ascertained
through two or more probands. To avoid ascertain-
ment bias, these families were included in the dataset
separately for each proband in the family.

Medical confirmation and dates of diagnosis were
sought for the relatives reported by probands or other
relatives to have had melanoma. After eliminating
18.7% of subjects who refused access to their medical
records, or those with lost records, or those with false
positive reports (basal or squamous cell carcinoma,
solar keratoses, or benign naevi), medical confirma-
tion of melanoma as the diagnosis was obtained for
48.2% of the original number of relatives. Only the
medically verified cases among relatives were classi-
fied as true events; all other relatives were treated as
unaffected (censored at last date of contact).

Risk factor questionnaires were subsequently
mailed to all living relatives aged between 18 and 75
years ascertained through the sequential sampling
procedure. Other relatives provided proxy reports.
The combined number of proxy-reports and self-
reports was 9746 relatives for whom standard risk
factor information was available.

For the Bayesian analysis, we focused on families
that included at least one parent and at least one
child, where each member in the family should have
information on age at diagnosis or age at last follow-
up and with maximum one missing covariate.

The demographic covariates and hypothesized
melanoma risk factors included gender, birth year,
place of birth, ability to tan (very brown, moderate
tan, slight tan, no tan), propensity to burn (never
burn and always tan, sometimes burn and usually tan,
usually burn and sometimes tan, always burn and
never tan), number of sunburns (0, 1, 2–5, > 6), skin
color (olive/dark, medium, fair/pale), hair color
(black, light/dark brown, fair/blonde, light/dark red),
eye color (brown, green/hazel, blue/grey), total freck-
ling in summer (0, 1–100, > 100), number of naevi
(none, few, moderate number, very many), and
numerous measures of cumulative lifetime exposures
to sun and ultraviolet rays.

Preliminary Exploratory Analysis

As a preliminary analysis, we ignored correlations
within families and applied a combination of paramet-
ric and non-parametric survival analysis techniques as
exploratory tools to identify possible risk factors for
melanoma. Once these fixed effects were identified, we
considered incorporating these into a subsequent gen-
eralized estimating equation model or a Bayesian
model with random effects that could account for
within-family correlations. The aim was to quantify the
genetic and familial associations in the presence of
observed covariate effects.

Manipulation of the entire melanoma dataset
resulted in a subset of 9669 observations with a range
of explanatory variables that described phenotypic
characteristics for each individual, along with some
demographic details such as birth year and gender.
The response variable was the time to diagnosis (or
age at the last follow-up), with the proportion of cen-
sored cases being approximately 76%. The median
age at onset of melanoma was 43. The correlation
estimates for age of onset for different relationship
pairs with both affected members were: 0.67, 0.55,
and 0.39 for sib–sib, parent–child, and second/lower
order pairs respectively.

The first stage of modelling involved fitting uni-
variable proportional hazard models to assess each
variable’s individual effect on the time of onset of
melanoma. The SAS (Allison, 1995) package was
used to fit proportional hazards models of the follow-
ing form

h(t, x) = Ψ (x; β)h0(t)

where Ψ represents a log-linear function eβ'x of the
explanatory variables x and corresponding coeffi-
cients β and h0(t) represents the baseline hazard at
time t.

Significant variables associated with the age at
onset of melanoma consisted of eye, hair and skin
colour; freckling; number of moles; skin type; ability
to burn; ability to tan; previous skin cancers; ultravio-
let exposure between the ages of 5 and 12 years;
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cumulative sun exposure up to the age of 19 years;
and birth year.

The second stage fitted multivariable proportional
hazard models to those explanatory variables that
were significant at the univariable stage. Table 1 dis-
plays the results from the final model, which only
included significant variables (p-value < .05). It is
worth noting that a similar result could be obtained
using an automated stepwise procedure.

Results from this analysis highlight some interest-
ing but quite obvious risk factors noted in previous
analyses (Aitken et al., 1996, 1998). For example:

• An increase of 1 year in birth year induces 17%
increase in risk of earlier melanoma onset.

• People with neither freckles nor naevi have the
lowest risk of melanoma onset.

• The risk of earlier melanoma onset is increased by
up to 37% for blue eyed people and even further
(46%) for green eyed people, when compared to
individuals with brown eyes.

• “Red Heads” have an increased risk of earlier
melanoma onset (46%) when compared to indi-
viduals with black hair. However, no significant
increase was noted for individuals with fair or
light red hair.

• A person’s tendency to burn easily increases the
risk of earlier melanoma onset, in some cases by
up to 100% compared to those that never burn.

However striking this last statement is, issues of con-
founding, must also be considered. The most obvious
illustration of this is the confounding that occurred
between mole count and freckling. This is seen
through close inspection of the parameter estimates
which changed in magnitude when mole count was
added to the model after adjusting for freckling.
(Results not displayed here.)

To reduce the dimension of the problem further
and avoid some of these confounding issues, a sur-
vival tree was constructed using RPART (Recursive
Partitioning and Regression Trees), see Therneau and
Atkinson (1997). Survival trees are a special case of

Table 1

Results from Fitting a Multivariable Proportional Hazards Model to the Melanoma Data Based on Univariable Results. The Results Reported in this
Table Are the Parameter Estimates β, Their Standard Errors se(β), the Relative Risk eβ and the p-value for Each Estimate

Variable β se(β) eβ p-value
Birth Year 0.16 < 0.01 1.17 < .05
Eye Colour (Baseline: Brown)

Blue/Grey 0.31 0.07 1.36 < .05
Green/Hazel 0.38 0.07 1.46 <.05

Hair Colour (Baseline: Black)
Light Red/Ginger 0.17 0.15 1.19 .27
Dark Red/Auburn 0.38 0.15 1.46 < .05
Fair/Blonde 0.06 0.12 1.06 .62
Light Brown 0.14 0.12 1.15 .22
Dark Brown 0.02 0.12 1.02 .87

Skin Type (Baseline: never burn)
Always burn 0.69 0.16 1.968 < .05
Usually burn 0.45 0.15 1.57 < .05
Sometimes burn 0.31 0.15 1.36 < .05

Freckling (Baseline: none)
1 to 100 0.17 0.06 1.18 < .05
> 100 0.09 0.08 1.10 .23

Mole Count (Baseline: none)
Few 0.29 0.07 1.34 < .05
Moderate 0.79 0.08 2.20 < .05
Many 1.12 0.10 3.08 < .05

Number of Sunburns (Baseline: none)
One –0.07 0.11 0.93 .49
2 to 5 –0.06 0.09 0.94 .50
> 6 0.17 0.09 1.19 .07

Cumulative Sun Exposure ( < 5 yrs) 0.04 0.01 1.04 < .05
UV Exposure (5–12 yrs) 0.0003 < 0.0001 1 < .05
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decision trees that were incorporated into RPART by
Therneau (1997) using the ideas put forth by LeBlanc
and Crowley (1992) for survival data with censoring.
These authors showed through simulation studies that
survival trees could outperform standard parametric
methods such as proportional hazards modelling, 
particularly in situations where the underlying distrib-
ution was not exponential. Along with Breiman et al.
(1984), they showed decision trees to be useful
exploratory tools for identifying important variables,
interactions and outliers.

The methodology for survival trees begins by iden-
tifying optimal splits, using the log rank statistic to
separate the data into homogeneous groups. Each
split is comprised of a parent node and two daughter
nodes which are linked to the parent by branches.
Figure 1 is an example of a survival tree produced on
the melanoma data. Once a large tree is grown with
many terminal nodes that contain very few observa-
tions, a pruning procedure is introduced to identify a
sequence of sub-trees. The technique of pruning
involves snipping back splits of the tree, one at a time
until only the root node remains. Cross-validation is
then introduced to aid in the selection of the optimal
model. One nice feature of survival trees is the use of
Kaplan-Meier curves to provide information about
survival rates at each terminal node of the tree. This
approach may allow for better interpretation of the
terminal nodes and highlight different scenarios
which yield similar survival rates as can be seen in
Figure 1.

The variables identified from the multivariable
model were used as input into RPART. Variables such
as the sun and UV exposures were omitted from the
modelling stage, since nearly half of the data for each
of these variables were missing (cumulative sun expo-
sure: 43.8%; UV exposure: 40.4%). A large survival
tree was produced in SPLUS and using cross-valida-
tion, a model splitting solely on birth year was
identified. This survival tree yielded the minimum
cross-validated error rate (0.93) suggesting that birth
year was an important indicator for melanoma.
Selecting a slightly larger but more informative model
(error = 0.94) resulted in a survival tree consisting of
nine terminal nodes. This revealed splits on birth year,
mole count and freckling. All other variables
appeared to be either competing at each node or
acting as a surrogate variable for one of these primary
splits. Skin type, in particular, arose as an important
surrogate for freckling.

In Figure 1, we aim to provide a more visual inter-
pretation to the results from the survival analysis.
Each split is shown at the top of each node and can
be assumed to be the split that directs observations
towards the left side of the tree. For example, after
splitting on birth year at 1933, a split to the left cor-
responds to an individual with few moles. A split to
the right indicates an individual with many moles and
so on. The terminal nodes in this figure are displayed

as Kaplan-Meier plots, showing the survival curves
along with the number of observations n, and the risk
ratio, calculated with reference to the baseline group
of 9669 individuals. The reference survival curve is
shown at the root node along with a bar which shows
the percentage of events in the entire dataset. Grids
are placed on each survival plot at equal intervals of
20 years of age. These grids have been plotted to sim-
plify the interpretation. An indicator to the left of the
plot displays the risk ratio. Ratios above one are
shown by an “up arrow”, while a decrease in risk is
illustrated by a “down arrow”. From this model we
can see that there are a few scenarios that indicate
high risk for earlier onset of melanoma. These scenar-
ios may be described as:

• individuals born after 1966 with many moles 
(RR = 11.3)

• individuals born between 1947 and 1966 with
many moles (RR = 4.5)

• individuals born between 1933 and 1953 with few
moles, but many freckles (RR = 2.4)

• individuals born between 1923 and 1933 with
many moles (RR = 1.41)

It is obvious from these results that birth year has a
substantial impact on the age-at-onset of melanoma.
Once this is taken into account, mole count and freck-
ling only provide a small contribution to the risk.

Family History of Melanoma

As described earlier, in the Data section, family history
was collected regarding first-degree (siblings and
parents) and second-degree relatives. From this pedi-
gree structure, other higher-order types of relative pairs
could also be formed. Some of these relatives were dis-
eased with melanoma, resulting in pairs of relatives
who both may be diseased (++), both not diseased (—),
and one diseased while the other was not diseased (+–).
Table 2 lists the concordant and discordant pairs of
specific relationships: sib–sib, parent–child, and
second-degree/lower order relative pairs. The second-
degree relative pairs include grandparent–grandchild,
and aunt–niece, while the lower order relative pairs
include the in-law pairs. From Table 2, the percent-
ages of both diseased pairs are 0.6%, 0.9% and 0.4%
among sib–sib, parent–child, and second/lower order
pairs, respectively. Crude estimates of correlation
coefficients can be calculated from these percentages,
without accounting for ages at onset among these rel-
atives. However, the risk of developing melanoma
may depend on the subject’s age. Hence, adjusting for
the age at onset is essential in quantifying the correla-
tion of age at onset between pairs of relatives. In a
subsequent section, we describe how this can be done
rigorously via the generalized estimating equations
approach. On average, melanomas were diagnosed
slightly earlier in relatives (47.5 years) than in
probands (50.2 years). Among relatives, melanomas
were diagnosed at younger ages in later generations.
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To account for the different ages at censoring in each
generation due to termination of the study or death
from causes other than melanoma, we examined the
disease-free survival distribution for each generation
using the standard failure-time analysis technique
(Figure 2). The median age at diagnosis of melanoma
was 64 among parents of probands, 50 among sib-
lings of probands, and 33 among children of
probands. The disease-free survival functions differed
significantly between the children generation from
earlier generations (log-rank test with p < .01); but
there was no significant differences in age-at-onset of

melanoma between the siblings and parents of
probands (log rank test with p > .9).

Preliminary Segregation Analysis

A preliminary segregation analysis was conducted
(Aitken et al., 1998) to investigate whether the famil-
ial clustering of cutaneous melanoma is consistent
with Mendelian inheritance of a major autosomal
gene. Analyses were performed with the SAGE (1992)
statistical package, using the maximum likelihood
REGTL program for a binary trait with a variable age
of onset. The hypothesis of co-dominant Mendelian
inheritance gave a significantly better fit to the data
than either dominant or recessive Mendelian inheri-
tance. Overall, both Mendelian inheritance of a single
major gene, and purely environmental transmission
were rejected. However, there was strong evidence of
familial dependence in melanoma occurrence.

The inclusion of risk factors in the models may
reveal whether all or a combination of these explains
the familial dependence that was demonstrated by the
segregation analysis. If a major gene exists that oper-
ates independently on these covariates, including
them in the models may reduce residual variation and
increase the power of the analysis to detect a major
gene effect.

Estimating Equations Approach

Let y = (δki , tki , Zki) denote the data collected for the ith

member in the kth family (k = 1,…,K and i = 1,2)
where δki = 0 if the observation is censored, tki is either
the recorded age at diagnosis of melanoma or the age
at the most recent follow-up for unaffected people,
and Zki is a vector of measured covariates. We assume
that censoring time, age at diagnosis of melanoma
and the covariates are independently distributed.
These assumptions can be relaxed in more general
models, subject to identification constraints. The
hazard rate for melanoma is the instantaneous proba-
bility that melanoma is diagnosed immediately after
time t, given that the person is unaffected at time t.
The hazard rate under the Cox proportional hazards
model (Cox, 1972) is given by

λ(tki) = λ0(tki) exp(β'Zki)

Table 2

Concordant and Discordant Pairs of Relatives in 1912 Families from the Queensland Familial Melanoma Project. Probands Were Not Included for
the Calculation of Concordance

Sib–sib Parent–child Second/Others Total
++ 49 15 41 105
+– 763 536 1200 2499
— 7011 1078 9817 17,906
Total 7823 1629 11,058 20,510
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Figure 2
Cumulative melanoma-free survival among first-degree relatives of
confirmed cutaneous melanoma cases (probands) diagnosed in
Queensland, Australia, 1982–1987, according to the relative’s rela-
tionship to the proband.
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where λ0() is the baseline hazard function, and β is a
vector of regression coefficients.

For a specific pair of relatives, we follow Clayton
(1978) in modeling the bivariate survivor function

F(tk1, tk2) = (F1(tk1)
–θ + F2(tk2)

–θ –1)–1/θ

where F1 and F2 are univariable survivor functions, θ
is a scalar parameter that measures the degree of
dependence between the relatives’ times at onset,
independence being implied by θ = 0, and positive
association by θ > 0. The Clayton model allows nega-
tive dependencies and has the property that failure
times are absolutely continuous for θ > –0.5. In addi-
tion, the cross-ratio (or odds-ratio) function as
studied by Oakes (1989) is

c(tk1, tk2) = λ(tk1 ⏐ Tk2 = tk2) /λ(tk1⏐Tk2 ≥ tk2) =
1 + θ.

This is equivalent to assuming that the odds-ratio is
invariant over the grid region that supports the data.
Heuristically, the parameter 1 + θ is an odds-ratio
that depends on the degree of dependence between
the onset ages of the two relatives. If genetic factors
do influence the age at onset of melanoma, we would
expect to see a higher concordance in the age of onset
in first degree relatives who on average, share half
their genes in common in comparison to second
degree relatives. Under the current model, this trans-
lates as θfirst-degree > θsecond-degree.

We may use a standard method to estimate within
pair correlations for 2 × 2 tables from odds ratios.
Estimates of relation-pair correlations, psib–sib, pparent–child,
and psecond-order are recovered from using the relation-
ships; for example, rsib–sib = min(1,ln(1 + θsib–sib)).
Testing for the presence of genetic factors underlying
the age at diagnosis of melanoma is equivalent to
testing H0: pfirst-order = psecond-order. We may test this
hypothesis using a z-transform (Kendall, 1979, 
p. 315) of the point estimates of the correlation coef-
ficients. Let n1 and n2 denote the number of first order
and second order relatives, let z1and z2 denote the
transformed statistics of r1and r2, the correlation esti-
mates for first-order and second-order relative pairs
respectively. Specifically, we reject H0 when E/D >
Z1–α, where

E = E(z1 – z2) = —
1
2

— log ��—11
+
– r

r

1

1—� �—1
1

+
– r

r
2

2

—��
D2 = V(z1 – z2) = —

(n1

1
– 3)
— + —

(n2

1
– 3)
—

and Z1–α is the standard normal deviate corresponding
to the one-sided α significance level.

This approach has the advantage of providing a
test for the presence of genetic effects through a single
parameter (θ). However, it is limited in its ability to

attribute the phenotypic variance to specific effects
(e.g., additive gene action).

Mathematical details of the GEE model and the
iterative procedure to estimate the regression coeffi-
cients β and specific degrees of dependence θ for the
different types of relative pairs have been summarized
previously in Do et al. (2000).

MCMC Analysis Using BUGS

The Bayesian Paradigm and Gibbs Sampling

Markov Chain Monte Carlo (MCMC) is an alterna-
tive Bayesian approach that provides estimates of
likelihoods and associated parameter values when
exact computation is infeasible (Hastings, 1970;
Metropolis et al., 1953). MCMC methods can be
used to draw samples from the underlying joint distri-
bution of major genotypes and polygenic values,
conditional on the observed data. From these
samples, desired parameters and likelihoods can be
estimated without the need to resort to exact compu-
tation. MCMC methods have been used for linkage
analysis (Kong et al., 1992; Lange & Sobel, 1991),
for estimation of parameters in the mixed model with
and without covariates (Guo & Thompson, 1991;
Thomas, 1992), for estimation of gene–smoking inter-
action and covariate imputation (Gauderman et al.,
1997), for performing combined linkage and segrega-
tion analysis (Faucett et al., 1993; Guo & Thompson,
1992), and for mixed models of large complex pedi-
grees (Guo & Thompson, 1994).

In a general setting, let y be the observed data, and
θ be everything not observed including parameters
and latent variables. The implementation of Bayesian
methods using realistic models and priors is com-
puter-intensive and relies heavily on cunning
computational tools to approximate integrals. The
problem, in general terms, is to obtain the expected
value of a function of interest s (.) under the posterior
density p(θ⏐x)

E[s(θ)] = 

which cannot generally be found analytically. One
method to carry out the integration on the RHS is to
perform simulation of exact Bayesian posterior distri-
butions using Markov chain Monte Carlo techniques
such as Gibbs sampling. The Gibbs sampler (Geman
& Geman, 1984) is the most popular algorithm used
in MCMC applications to correlated data. Gibbs
sampling was introduced to the main statistical com-
munity by Gelfand and Smith (1990), and has since
been applied to an even wider array of problems. The
Gibbs sampler is easy to implement because it only
depends on the local neighborhood structure. In the
context of pedigree analysis (Olshen & Wijsman,
1996), the basic procedure is a sequential updating of
missing and latent data including the underlying and
unobserved major genotypes, polygenic effects, and

�Θ s(θ) p(θ) p(x⏐θ) dθ
———

�Θ p(θ) p(x⏐θ) dθ

105Twin Research February 2004

Analysis of Melanoma Onset

https://doi.org/10.1375/twin.7.1.98 Published online by Cambridge University Press

https://doi.org/10.1375/twin.7.1.98


106 Twin Research February 2004

Kim-Anh Do, Joanne F. Aitken, Adele C. Green, and Nicholas G. Martin

environmental effects. Values for the missing or latent
data are sampled from the local conditional distribu-
tion, a function of the observed individual data, the
current sampled values of other missing/latent data for
this particular individual such as polygenic and environ-
mental effects, and the values for the sampled genetic
effects in the immediate neighbors of an individual.
Gibbs sampling basically consists of three main steps:

• Step 1: Setting initial values for unobserved quanti-
ties (parameters and latent variables),

• Step 2: For each parameter or latent variable θj ,
sample from its “full conditional distribution”
given the current values of all other quantities in
the model,

• Step 3: Examine sampled values of parameters and
latent variables to monitor convergence and to
provide summary measures.

Some of the most recent and popular packages that
implement Gibbs sampling for analysis of pedigree
data include BUGS (Gilks et al., 1994; Spiegelhalter 
et al., 1996a,b), Genetic Analysis Package (GAP,
1996), and MIXD (Olshen & Wijsman, 1996;
Thompson, 1994). We have used BUGS mainly
because of its flexibility in programming hierarchical
models besides being a freeware product.

The Model

The aim here is to model the correlation structure
within the family structure to satisfy the fundamental
additive genetic model (Crow & Kimura, 1970;
Falconer, 1990; Kempthorne, 1960) as follows.
Consider a nuclear family structure consisting of 4
members: father, mother, and two children denoted by
F, M, S1, S2 respectively. Using similar notation as in
Burton et al. (1999), a conventional mixed linear
model consisting of fixed and random effects may be
written in the form

Qij = βTz + Aij +Cij + CSij
+ Eij

where Qij is the observed value of a normally distrib-
uted continuous trait for the jth individual in the ith

nuclear family; zij is a vector of observed covariates
representing fixed effects, and β is a corresponding
vector of unknown fixed regression coefficients; 
Aij, Cij , and CSij

A denote random effects that repre-
sent additive polygenic, common family environment,
and common sibling environment effects respectively.
The variation in an individual response is represented
by a composite covariance matrix, VT , and is the sum
of an additive genetic covariance matrix VA, a
common family environment matrix VC , a shared
sibling environment matrix VCs , and residual environ-
mental effects. The different variance components are

The overall total covariance matrix is

The components of variance σ 2
A ,σ 2

C ,σ 2
Cs need not be

positive as long as VT is positive definite. A negative
value for σ 2

Cs simply implies that the realized covari-
ance between siblings is less than the realized
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covariance between parent and a child. A negative
value for σ 2

Cs may suggest dominance. To optimize
convergence in BUGS, Model (1) may be reparameter-
ized as

where Fi, Gi, Hi are independent additive random
effects or latent variables; and are the residual error
terms for parents and children respectively. If we model 

Fi ~ N(0, —
1
2

— σ 2
A +σ 2

C) ,

Gi ~ N(0, —
1
2

— σ 2
A), Hi ~ N(0, σ 2

Cs),

then the basic genetics covariance model (additive
genetic, common environment and unique environ-
ment for this particular four-member family structure
is satisfied.

In survival models, unobserved or unmeasured
explanatory variables, some of which may be genetic,
are often referred to as frailties. The frailties take
values restricted to the positive line and may be
assumed to act multiplicatively on the hazard.
Extending the above model to correlated family data
with time-to-onset endpoint, a multiplicative individ-
ual heterogeneity or frailty term representing the
latent genetic and common environment variables
may be modeled as random effects simultaneously
with the effects associated with observed covariates.
Consider right censored time to onset of melanoma
data {(Tij, δij, zij);1 � j � n} from n relative pairs; here
Tij denotes the true age at onset of the jth family
member or the censored time depending on whether
δij =1 or 0 respectively, and z denotes a p × 1 vector of
covariates. A Weibull distribution may be used to
model time to failure as

f(ti, zi) = eβ'z i γt i
γ–1 exp(–eβ'z i t γ

i )

where β is a vector of unknown regression coefficients,
and γ is the shape parameter of the Weibull distribu-
tion. This leads to a baseline hazard of the form

λ0(ti) = γt i
γ–1.

Re-parameterize by letting µi = eβ'z i the conditional
distribution of ti given µI is then Weibull (γ,µi). We for-
mulated a mixed model to represent the conditional
distribution of tij given covariate effects, random addi-
tive genetic and common environment effects as

tij⏐µij ~ Weibull (γ, µij) i = 1,…n; j = 1,2

where

The regression coefficients and the precision of the
random effects (τG, τF , τH) were given “non-informa-
tive” Normal and Gamma priors respectively. The shape
parameter, γ, of the time to onset of melanoma distribu-
tion was also given a non-informative Gamma prior
which was slowly decreasing on the positive real line.

The overall model (including random effects) may
be described in a Bayesian graph (Figure 3) which
simplifies sampling from full conditional distributions
by exploiting partial independence properties
(Spiegelhalter et al., 1996a). In this graph, each
random quantity is represented by a node, which may
be connected by directed or undirected links.
Conditional independence assumptions are repre-
sented by the absence of such links.

We implemented the Gibbs sampler using the
BUGS program (Gilks et al., 1994), (code in the
Appendix). Imputation of missing data was handled
naturally in the Gibbs sampling framework by treating
missing values as additional unknown quantities and
randomly sampling values from their full conditional
distributions. We chose simple prior distributions for
imputation, since the number of missing values for
covariates was not large (complete for birth year, 16%
missing for naevi and 21% missing for freckles) and
there was no indication of non-random missingness in
our data. Therefore imputation for missing naevi and
freckles covariates were based on Bernouilli prior dis-
tributions with respective parameter values estimated
from the complete observations. We performed an
initial 10,000 burn-in iterations followed by an addi-
tional 20,000. Parameter estimates were the mean and
standard deviation (SD) of all post convergence Gibbs
samples with a thinning interval between 20 and 50;
credible intervals were computed as the lower and
upper α/2 percentiles from the last 20,000 iterations.
Convergence to the posterior distribution was con-
firmed by using the different criteria provided by the
add-on CODA package including those of Gelman
and Rubin (1992), Geweke (1992), and Raftery and
Lewis (1992a, 1992b).

Results
GEE Approach

An inspection of residual plots following preliminary
model-fitting provided no evidence for the failure of
proportional hazards assumption and did not detect
influential observations. We then proceeded to apply
the GEE approach that could estimate regression
coefficients while incorporating a dependence struc-
ture between relative pairs. The results are displayed
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in Table 3 which suggest that later birth year, having
at least a moderate number of naevi and freckles were
all simultaneously associated with later age at onset
of melanoma. Table 3 also presents the estimated
odds-ratios for quantifying the correlation between
paired relatives of specific relationships.

The odds ratio for sib–sib pairs is 2.973 which is
significantly different from 1 (p < 0.01). The odds ratio
for parent–child pairs is 1.650 which is slightly greater
than 1, indicating a mild dependency between these
pairs, although they are not quite statistically signifi-
cant. The odds ratio for second-degree and higher
relative pairs is 1.155, indicating no dependence at all
between these pairs. This pattern of familial aggrega-
tion is compatible with dominance variance as well as
additive genetic variance (Falconer, 1990).

Bayesian Approach

We re-analyzed the age-at-onset of melanoma by using
Gibbs sampling to impute missing covariates and to
estimate subject-specific covariate effects, random
additive genetic, common family environment, and
shared sibling environment effects on the log scale. The
estimated shape parameter γ was 4.3 with a 95% credi-
ble interval (CI) of (4.2, 4.6). The results are
summarized in Table 4 (Model A). The residual plots
did not indicate a gross departure from the underlying
Weibull model and revealed no influential observa-
tions. We checked the sensitivity of the analyses to

initial parameter values by re-running the Gibbs
sampler five more times using different starting values.
The resulting estimates did not differ by more than 5%
from the values reported here. The mean estimate for
(σ2

A) was 0.452 with 95% CI = (0.348, 0.566), for (σ2
C)

was –0.053 with 95% CI = (–0.120, 0.019), and for
(σ2

Cs) was 0.467 with 95% CI = (0.393, 0.545).
A small negative value for the common family

effect suggests that there may be a dominant effect, or
that the current model is not quite appropriate, for
example, that there are systematic effects or correla-
tion structures that have not been accounted for. The
results here indicate that additive genetics seem to
impact equally on the variation of the age at onset of
melanoma. Further exploration for alternative models
is a focus of our future research.

In addition, we investigated the relative contribu-
tion of genetic and environmental effects on the
expression of naevi (Model B) and freckles (Model
C), which are known risk factors for melanoma. The
expressions of naevi and freckles were coded as
binary variables (none or few moles versus moderate
or many moles; and no freckles versus one or more
freckles). A hierarchical Bayesian binomial model was
fitted to estimate the random variance components.
The results in Table 4 indicate that a common family
environment effect contributed the most to the
expression of naevi (σ2

C = 0.704) (relative to the con-
tributions of additive genetic effect (σ2

A = 0.142) and
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Figure 3
Graphical model of covariate and random family effects for an individual in a nuclear family structure. tij represents the observed failure time for
the jth individual in the ith family with t.cenij being an indicator variable of censoring status. Full arrows indicate stochastic links to which a probabil-
ity is attached; broken arrows denote deterministic relationships; βs are regression coefficients, T is the precision of the prior distribution and
equals the inverse of the variance; Fi , Gi , Hi are random effects modeled as Fi  ~ N(0,1\2 σ 2

A + σ 2
C), Gi ~ N(0, 1/2 σ 2

A) and Hi ~ N(0, σ 2
Cs). Rectangles rep-

resent actual data values for the covariates; γ and µij are shape and scale parameters for the underlying Weibull distribution.
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of shared sibling effect(σ 2
Cs = 0.142), both of which

were non negligible. In contrast, variation in the
expression of freckles was largely explained by addi-
tive genetic and shared family effects(σ2

A = 2.050, σ2
C =

2.600), compared to a relatively small shared sibling
effect(σ2

C = 0.115).

Discussion
We applied two methods — generalized estimating
equation and Bayesian analysis — to the genetic
analysis of age at onset of melanoma based on a
nuclear family structure. Under both approaches, the
results suggest that additive genetic factors played an

Table 4

Gibbs Sampling Approach: Estimated Regression Coefficients and Estimated Variance Components in a Melanoma Study of Queensland Families

Weibull Model: A. Mean effects — Response variable is Age-at-onset
Covariate RR = eβ Coefficient β Robust se(β) 95% CI of β
Year of birth 1.378 0.321 0.0027 (0.316,0.326) **
Naevi 1.126 0.119 0.0021 (0.058,0.185) **
Freckling 1.017 0.017 0.1400 (–0.005,0.085)

Weibull Model: B. Variance components — Response variable is Age-at-onset
Latent effect Mean from 5000 iterations se(σ2) 95% CI of σ2

σ 2
A 0.452 0.054 (0.348,0.566) **

σ 2
C –0.053 0.027 (–0.120,0.019)

σ 2
Cs 0.467 0.040 (0.393,0.545) **

γ 4.3 0.104 (4.2,4.6)

Binomial Model: Variance components — Response variable is Naevi

Latent effect Mean from 5000 iterations se(σ2) 95% CI of σ2 

σ 2
A 0.142 0.149 (0.002,0.498) **

σ 2
C 0.704 0.156 (0.403,1.010) **

σ 2
Cs 0.195 0.157 (0.0025,0.553) **

Binomial Model: Variance components — Response variable is Freckling
Latent effect Mean from 5000 iterations se(σ2) 95% CI of σ2

σ 2
A 2.050 0.779 (0.835,3.570)

σ 2
C 2.600 0.418 (1.780,3.460)

σ 2
Cs 0.115 0.088 (0.011,0.312)

Note: ** Indicates Significance at the 0.05 level). Naevi Is a Binary Variable with Baseline 0 = No or Few Moles; Freckling Is Coded as a Binary Variable with Baseline
0 = No Freckles

Table 3

GEE Approach: Estimated Regression Coefficients in the Proportional Hazard Model and Estimated Odds Ratios for Quantifying Familial
Aggregation in Age at Onset of Melanoma in Queensland Families (** Indicates Significance at the .05 Significance Level)

A. Mean effects

Covariate RR = eβ Coefficient β Robust se(β) Z-statistic

Year of birth 1.142 0.132 0.051 2.588**
Naevi (Baseline = No or few moles) 1.765 0.568 0.073 7.781**
Freckling (Baseline = No freckles) 1.160 0.148 0.049 3.020**

B. Pattterns of familial aggregation
Relationship 1 + θ se(θ) Z-statistic
Sib–sib 2.973 0.6217 3.17**
Parent–child 1.650 0.434 1.50
Second/Others 1.155 0.270 0.47
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important role in the age at onset of melanoma but
that shared sibling environmental factors were not
negligible. We focused attention on these approaches
because they are more appropriate for modeling cor-
related age at onset data and they allow the inclusion
of covariates in the analyses. Under both approaches,
there were suggestions that earlier melanoma onset
was influenced by later birth year, having a moderate
number of naevi, and being freckly. The principal dif-
ference between the two approaches is in the
interpretation of the regression coefficients. The GEE
method uses a marginal approach resulting in regres-
sion coefficients that describe the average population
response to changing covariates, whereas the Bayesian
approach produces subject-specific coefficients. A sec-
ondary distinction is in the nature of the within-pair
dependence. The GEE model only describes a
common covariance among specific relative pairs,
whereas the Bayesian approach can explicitly describe
the source of this covariance. A third advantage of the
Bayesian method is its flexibility in incorporating
prior information, if available, for the covariates or
latent effects by modifying their prior distributions.
Further, the Bayesian method would permit a more
accurate decomposition of the genetic variance into
additive and dominant components, thus providing
the means for a direct assessment of the no-domi-
nance assumption. Finally, it is also interesting to
record the amount of CPU time required for each
method: 20 seconds for the GEE approach and
approximately 3 hours (for binary traits) and 12
hours (for age at onset outcome) to run BUGS on a
single-user Intel Pentium III 600 MHz personal com-
puter with the Linux Mandrake 7.1 operating system.
The amount of human and financial resources dedi-
cated to collecting, maintaining, and updating the
melanoma family database is extremely high, there-
fore, the extra CPU time requirement by the MCMC
method is well worth the additional genetic informa-
tion and flexibility that it provides. A BUGS program
is included in the Appendix.
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Appendix A 
A BUGS Program to Implement the Bayesian MCMC approach in Modeling an ACE
Model for Age at onset of Melanoma with Covariate Effects and Random Genetics/
Environmental Effects

# Data: melsub.dat

#       No. of Members  = 6819

#       No. of Families = 1450

#

# Response:  Age at Onset

#

model gene;

const  Members=6819,

Fam=1450;

var yrbth[Members],naevi[Members],freckle[Members],F[Fam],G[Fam],H[Fam],

FamIND[Members],IndexF[Members],AgeFU[Members],Affect[Members],

alpha,beta.yrbth,beta.naevi,beta.freckle,r,mu[Members],

p.naevi[4],p.freckle[3],tauF,tauG,tauH,VF,VG,VH,VA,VC,VCS;

data IndexF,FamIND,yrbth,naevi,freckle,AgeFU,Affect in "melsub.dat";

inits in "mel.in";

{

# Imputation of missing covariates using straightforward

# Bernoulli parameters estimated from complete data

for(i in 1:Members){

naevi[i] ~ dbern(0.359);

freckle[i] ~ dbern(0.669);

}

# The Model

for(i in 1:Members){

    AgeFU[i] ~ dweib(r,mu[i])I(Affect[i],);

    log(mu[i]) <- alpha + beta.yrbth*yrbth[i] + beta.naevi*naevi[i] +

beta.freckle*freckle[i] +

equals(FamIND[i],1)*(F[IndexF[i]] + G[IndexF[i]]) +

equals(FamIND[i],2)*(F[IndexF[i]] - G[IndexF[i]]) +

equals(FamIND[i],3)*(F[IndexF[i]] + H[IndexF[i]]);

}

for(j in 1:Fam){

    F[j] ~ dnorm(0.0,tauF);

    G[j] ~ dnorm(0.0,tauG);

    H[j] ~ dnorm(0.0,tauH);

}

# Priors

alpha ~ dnorm(0.0,0.001);

beta.yrbth ~ dnorm(0.0,0.001);

beta.naevi ~ dnorm(0.0,0.001);

beta.freckle ~ dnorm(0.0,0.001);

tauF ~ dgamma(0.001,0.001);

tauG ~ dgamma(0.001,0.001);

tauH ~ dgamma(0.001,0.001);

r ~ dgamma(0.001,0.001);

VF <- 1/tauF;

VG <- 1/tauG;

VH <- 1/tauH;

VA <- 2*VG

VC <- VF-VG

VCS <- VH

}
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