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Abstract

Staging is a programming technique for dividing the computation in order to exploit the early

availability of some arguments. In the early stages the program uses the available arguments to

generate, at run time, the code for the late stages. A type system for staging should ensure that

only well-typed expressions are generated, and that only expressions with no free variables

are permitted for evaluation. In this paper, we present a calculus for staged computation

in which code from the late stages is composed by splicing smaller code fragments into a

larger context, possibly incurring capture of free variables. The type system ensures safety by

tracking the names of free variables for each code fragment. The type system is based on the

necessity operator � from constructive modal logic, which we index with a set of names C .

Our type �CA classifies expressions of type A that belong to the late stage, and whose free

names are in the set C .

1 Introduction

Staging is a programming technique for explicitly dividing a computation in order

to exploit the early availability of some arguments (Ershov, 1977; Jones et al., 1985;

Nielson & Nielson, 1988; Glück & Jørgensen, 1995; Davies & Pfenning, 2001). For

example, a typical test used in many convex hull algorithms filters a set of points

to see on which side of a line given by two points they lie. This test can be staged

by first forming the line and its normal, and then checking the position of each

point from the set. This way, a staged test obviates the need to repeat the part of

the computation pertinent to the normal whenever a new point is tested, and can

potentially save a lot of work.

Because it is often quite cumbersome to design programs that fully exploit the

natural stage separation of their arguments, it is very desirable for a programming

language to provide support for early detection and reporting of staging errors. Two

calculi, λ� and λ©, based on different modal logics, have emerged in the literature

as alternatives suitable for capturing different invariants of staged computations.

The λ�-calculus is the proof term calculus for a constructive version of modal

logic S4, whose necessity constructor � annotates valid propositions (Davies &

Pfenning, 2001; Pfenning & Davies, 2001). The λ©-calculus is the proof term

calculus for discrete linear-time temporal logic, and the type constructor © annotates

propositions that are true at the subsequent time moment (Davies, 1996).
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From the computational perspective, values of the modal type �A are closed

expressions of type A (Davies & Pfenning, 2001). Closed expressions are independent

of the context in which they are built, and can be used in any other context.

In our example, the expression for computing the normal of the line could be

assigned a modal type, as it is independent of the points that it will be testing. The

computational meaning of ©A is a little bit more subtle. Values of type ©A are

also expressions of type A to be evaluated at the next stage, but they may refer to

the variables from their environment; they classify expressions that may be open,

that is, contain free variables subject to some further requirements (Davies, 1996).

Each of the calculi has its advantages and drawbacks. Because values of type �A

are closed expressions, they can safely be evaluated to obtain a value of type A.

But the ability to evaluate comes with a price: composing closed expressions into

larger ones, while maintaining the closeness invariant, is cumbersome and produces

unnecessarily complex results. On the other hand, a value of type ©A is an open

expression. It behaves nicely under composition, but the type system of λ© does not

provide guarantees for its safe evaluation. The reason is exactly in the openness: it is

not sound to evaluate an open expression before all of its free variables are bound.

The desire to combine the advantages of λ� and λ© has inspired most of the recent

work on type systems for staged computation, most notable being MetaML (Taha

& Sheard, 1997; Moggi et al., 1999; Taha, 1999; Benaissa et al., 1999; Calcagno

et al., 2003a; Sheard, 2001), and its recent variant MetaOCaml (Calcagno et al.,

2003b; Taha & Nielsen, 2003). The modal type of MetaML and MetaOCaml is

that of open expressions from λ©. In addition, various versions of MetaML contain

some additional type constructor to classify as closed those expressions that could

be proved to contain no free variables. Also, both MetaML and MetaOCaml feature

a term constructor for explicit evaluation of closed expressions.

The approach of our calculus (which we call ν�) is opposite. Rather than refining

the notion of open expressions of λ©, we relax the notion of closed expressions

of λ�. We start with the system of λ�, but allow generated code to contain free

variables, as long as this is recorded in the types. The free variables of modal

expressions are represented by a separate semantic category of names, the treatment

of which is inspired by the work on Nominal Logic and FreshML (Gabbay & Pitts,

2002; Pitts & Gabbay, 2000; Pitts, 2001; Gabbay, 2000).

This approach leads to a logically motivated type system, in which one can encode

open expressions and evaluate closed ones. The approach is conceptually simpler

than that of MetaML, in the sense that only one type constructor for expressions

suffices. In this respect, our system is closer to MetaOCaml, which also features

only one type constructor for expressions. However, unlike both MetaML and

MetaOCaml, we do not require any additional constructs for explicit evaluation of

closed code; this operation can be expressed using the already present constructors

which are justified by logical considerations.

The rest of the paper is organized as follows. Section 2 is a brief summary of

the previous work on λ�. The type system of ν� and its properties are described in

section 3, while section 4 describes parametric polymorphism in sets of names. The

equational properties of ν�, both with intensional and extensional interpretation of

the � type, are explored in section 5, before we discuss the related work in section 6.
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2 Modal λ�-calculus

This section reviews the previous work on the modal λ�-calculus, and the way λ�

can be used to divide the computation into stages that specify the relative evaluation

order of subcomputations.

The λ�-calculus is the proof-term calculus for the necessitation fragment of the

modal logic S4 (Pfenning & Davies, 2001; Davies & Pfenning, 2001). Chrono-

logically, it came to be considered in functional programming in the context of

specialization for purposes of run-time code generation (Wickline et al., 1998b;

Wickline et al., 1998a). For example, consider the exponentiation function, presented

below in ML-like notation.

fun exp1 (n : int) (x : int) : int =

if n = 0 then 1 else x * exp1 (n-1) x

The function exp1 : int -> int -> int is written in a curried form so that it

can be applied when only a part of its input is known. For example, if an actual

parameter for n is available, exp1(n) returns a function for computing the n-th

power of its argument. From the operational standpoint, however, no actual work is

done, as the parameter x must be supplied in order to proceed with the evaluation.

Thus, one can argue that the following reformulation of exp1 is preferable.

fun exp2 (n : int) : int -> int =

if n = 0 then λx:int.1

else

let val u = exp2 (n - 1)

in

λx:int. x * u(x)

end

Indeed, when only n is provided, but not x, the expression exp2(n) performs

computation steps based on the value of n to produce a residual function specialized

for computing the n-th power of its argument. In particular, the obtained residual

function will not perform any operations or take decisions at run time based on

the value of n; in fact, it does not even depend on n – all the computation steps

dependent on n have been taken during the specialization.

A useful intuition for understanding the programming idiom of the above example,

is to view exp2 as a program generator; once supplied with n, it generates a

specialized function for computing n-th powers. This suggests a stage distinction

between the terms of the calculus. The terms at the late stage are to be viewed

as data – as results of a process of code generation. Because the terms at this

stage are treated as data, i.e. as objects, we refer to this stage as object stage. In

the exp2 function, such terms are (λx:int.1) and (λx:int. x * u(x)). The early

stage (also called the run-time, or meta stage) describes the specific operations to

be performed over the data from the object stage. The stages are kept separate;

variables from the meta stage (n in the above example) are not allowed to appear

in the object stage. This is why the above-illustrated programming style is referred

to as staged computation.
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The idea behind the type system of λ� is to make explicit the distinction between

meta and object stages. It allows the programmer to specify the intended staging

of a term by annotating the object-level subterms. Then the type system can check

whether the written code conforms to the staging specifications, turning staging

errors into type errors. The syntax of λ� is presented below; we use b to stand for

a predetermined set of base types, and c for constants of those types.

Types A ::= b | A1 → A2 | �A

Terms e ::= c | x | u | λx:A. e | e1 e2 |
box e | let box u = e1 in e2

Value variable contexts Γ ::= · | Γ, x:A

Expression variable contexts ∆ ::= · | ∆, u:A

Values v ::= c | λx:A. e | box e

There are several distinctive features of the calculus, arising from the desire to

differentiate between the stages. The most important is the new type constructor “�”.

It is usually referred to as modal necessity, as on the logic side it is the necessitation

modifier on propositions (Pfenning & Davies, 2001). In our metaprogramming

application, it is used to classify object-level terms. Its introduction and elimination

forms are the term constructors box and let box, respectively. As Fig. 1 shows, if e

is an object term of type A, then box e is a meta term of type �A. The box term

constructor wraps the object term e so that it can be accessed and manipulated by

the meta part of the program. The elimination form let box u = e1 in e2 does the

opposite; it takes the object term enclosed in e1 and binds it to the variable u to be

used in e2.

The type system of λ� distinguishes between two kinds of variables, and con-

sequently has two variable contexts: Γ for variables bound to meta terms, and ∆

for variables bound to object terms. We implicitly assume that exchange holds for

both; that is, the order of variables in the contexts is immaterial. Observe that the

typing rule for box removes the variable context Γ. This implements a characteristic

restriction of type systems for staged languages that variables from the early stage

are not allowed to appear in the later stage.

Figure 2 presents the small-step operational semantics of λ�. We have decided

on a call-by-value strategy which, in addition, prohibits reductions in the generated

code until it is run. In the expression box e, the evaluation of the object expression

e is suspended, but we may still substitute for the object variables of e. In a value

of modal type, all the object variables are substituted away; such values consist of

boxed object expressions that are closed, i.e. they do not contain any free variables.

We can now use the type system of λ� to make explicit the staging of exp2.

fun exp3 (n : int) : �(int->int) =

if n = 0 then box (λx:int. 1)

else

let box u = exp3 (n - 1)

in

box (λx:int. x * u(x))

end
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Application of exp3 at argument 2 produces an object-level function for squaring.

- sqbox = exp3 2;

val sqbox = box (λx:int. x *

(λy:int. y *

(λz:int. 1) y) x) : �(int -> int)

In the elimination form let box u = e1 in e2, the bound variable u belongs to the

context ∆ of modal variables, but it can be used in e2 in both object positions

(i.e., under a box) and meta positions. This way, the calculus is not only capable

of composing object programs, but can also explicitly force their evaluation. For

example we can use the generated function sqbox in the following way.

- sq = (let box u = sqbox in u);

val sq = [fn] : int -> int

- sq 3;

val it = 9 : int

This example demonstrates how closed object expressions can be reflected, i.e.

coerced from the object level into the meta level. The opposite coercion, referred to

as reification, is achieved by the box operator for closed expressions, but cannot be

written as a function. This suggests that λ� could be given even a more specific model

in which reflection naturally exists, but reification does not. A possible interpretation

exhibiting this behavior considers object-level expressions as generated source code,

i.e., actual closed syntactic expressions, or abstract syntax trees of closed λ�-terms.

In contrast, the meta-level expressions are compiled executables. The operation of

reflection corresponds to the natural process of compiling a source program into an

executable. The opposite operation of reconstructing source code out of its compiled

equivalent is not usually feasible, so this interpretation does not support reification,

just as required. Furthermore, the typing of λ� ensures that only well-typed syntactic

expressions can be represented in the calculus.

The above intuitive “syntactic” model makes the λ�-calculus very appropriate not

only for staged computation, but also for metaprogramming. In metaprogramming,

expressions are again stratified into stages, but this time the syntactic structure

of object expressions may be inspected and analyzed. In metaprogramming, object

expressions represent source code which can be compared for syntactic equality and

even pattern-matched against (Nanevski, 2002).

In the remainder of this paper, we will frequently rely on the described syntactic

nature of object expressions in order to supply the intuition behind formal devel-

opments. However, whether a practical implementation actually needs to represent

object expression as syntax will depend on the application. In staged computation,

for example, we are usually not interested in inspecting the structure of generated

programs, so the generated programs may be represented in some intermediate,

or even fully compiled form. At this point, we do not commit to any particular

implementation strategy, but instead focus on the theoretical properties of the type

system.
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∆; (Γ, x:A) � x : A (∆, u:A); Γ � u : A

∆; (Γ, x:A) � e : B

∆; Γ � λx:A. e : A → B

∆; Γ � e1 : A → B ∆; Γ � e2 : A

∆; Γ � e1 e2 : B

∆; · � e : A

∆; Γ � box e : �A

∆; Γ � e1 : �A (∆, u:A); Γ � e2 : B

∆; Γ � let box u = e1 in e2 : B

Fig. 1. Typing rules for λ�.

e1 �−→ e′
1

e1 e2 �−→ e′
1 e2

e2 �−→ e′
2

v1 e2 �−→ v1 e
′
2

(λx:A. e) v �−→ [v/x]e

e1 �−→ e′
1

let box u = e1 in e2 �−→ let box u = e′
1 in e2

let box u = box e1 in e2 �−→ [e1/u]e2

Fig. 2. Operational semantics of λ�.

3 Modal calculus of names

3.1 Motivation, syntax and overview

If we adhere to the interpretation of object expressions as generated source code,

then the λ� staging of exp3 is rather unsatisfactory. The problem is that the object

expressions generated by exp3 (e.g. sqbox), contain unnecessary variable-for-variable

redexes.

From the standpoint of syntax manipulation, λ� is too restrictive. It cannot

express this rather simple way in which well-typed syntactic expressions can be put

together to form a more complex syntactic expression.

The reason for the deficiency lies in the requirement that the syntactic object ex-

pressions that λ� can represent and manipulate must always be closed. Furthermore,

if we only have a type of closed syntactic expressions at our disposal, we can never

type the body of an object-level λ-abstraction in isolation from the λ-binder itself –

subterms of a closed term are not necessarily closed themselves. Thus, it would

be impossible to ever inspect, destruct or recurse over object-level expressions with

binding structure.

What we need in order to avoid the problem of superfluous redexes, but also in

order to support code inspection, is the ability to represent open expressions and

specify substitution with capture. This need has long been recognized in the staged

computation and metaprogramming community, and Section 6 discusses several

different type systems and their solution of the problem. The basic idea of these type

systems is most concisely captured by Davies’ λ©-calculus (Davies, 1996). The type
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constructor © of this calculus corresponds to the discrete temporal logic modality

for propositions true at the subsequent time moment. In a metaprogramming

interpretation, the modal type ©A stands for open object expression of type A,

where the free variables of the object expression are modeled by λ-bound variables

from the subsequent time moment.

Our ν�-calculus adopts a different approach to the problem of spurious redexes.

We start with the λ�-calculus, and introduce a separate semantic category of names,

motivated by (Pitts & Gabbay, 2000; Gabbay & Pitts, 2002), and also (Odersky,

1994). The idea is to employ names to stand for the free variables of object

expressions, and correspondingly, to employ explicit name substitutions to facilitate

capture of free variables. Intuitively, the expressions of the ν�-calculus are obtained

by freely adjoining names to the expressions of the λ�-calculus. The situation is

somewhat analogous to that in polynomial algebra, where one is given a base

algebraic structure A and a set of indeterminates (or generators) {X1, . . . , Xn}, which

are then freely adjoined to A into a structure of polynomials A[X1, . . . , Xn]. In our

setup, the indeterminates are the names, and we build “polynomials” over the base

structure of λ� expressions.

When an object expression e contains a name X, we will say that e depends on X,

or that X is in the support of e. For example, assuming for a moment that X and Y

are names of type int, and that the usual operations of addition, multiplication and

exponentiation of integers are primitive in ν�, the term

e1 = X3 + 3X2Y + 3XY 2 + Y 3

would have type int and support set {X,Y }. The names X and Y appear in e1 at

the meta level, and indeed, notice that in order to evaluate e1 to an integer, we first

need to provide definitions for X and Y . On the other hand, if we box the term e1,

we obtain

e2 = box (X3 + 3X2Y + 3XY 2 + Y 3)

which has the type �X,Y int, but its support is the empty set, as the names X and

Y only appear at the object level (i.e., under a box). Thus, the support of a term

(in this case e1) becomes part of the type once the term itself is boxed. This way,

the types maintain the information about the support of subterms at all stages. For

example, assuming that our language has pairs, the term

e3 = 〈X2, box Y 2〉

would have the type int × �Y int with support {X}.
As illustrated by the above examples, if an object expression depends on some

names, then it is only partially specified. Such partially specified expressions cannot

be evaluated before every name in the expression’s support is provided a definition.

We use explicit substitutions for this purpose. Explicit substitutions remove substi-

tuted names from the support, eventually turning non-executable expressions into

executable ones.
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Example 1 Assuming that X and Y are names of type int, the ν� segment below

creates a “polynomial” expression over X and Y and then evaluates it at the point

(X = 1, Y = 2).

- let box u = box (X3 + 3X2Y + 3XY2 + Y3)

in

〈X -> 1, Y -> 2〉 u

end

val it = 27 : int

Notice how the explicit substitution 〈X → 1, Y → 2〉 captures the names X and Y

in the expression X3 + 3X2Y + 3XY 2 + Y 3, when this expression is substituted for

u. �

We next present the syntax of the ν�-calculus and discuss each of the constructors.

We use capital letters like X, Y and variants to denote names (of which there should

be infinitely many) and C and D for finite sets of names.

Types A ::= b | A1 → A2 | A1 � A2 | �CA

Explicit substitutions Θ ::= · | X → e,Θ

Terms e ::= c | X | x | 〈Θ〉u | λx:A. e | e1 e2 |
box e | let box u = e1 in e2 |
νX:A. e | choose e

Value variable contexts Γ ::= · | Γ, x:A

Expression variable contexts ∆ ::= · | ∆, u:A[C]

Name contexts Σ ::= · | Σ, X:A

Just as λ�, our calculus makes a distinction between meta and object levels, which

here too may be interpreted as the level of executable code and the level of source

code, respectively. The two levels are separated by a modal type constructor �,

except that now we have a whole family of modal type constructors – one for each

finite set of names C . In that sense, the values of the type �CA are the closed

syntactic expressions containing the names from the set C . We refer to the finite

set C as a support of such expressions. All the names are drawn from a countably

infinite universe of names N. In addition to modal and functional types, ν� features

a new type A � B whose meaning we explain below.

As before, the distinction in levels motivates a split in the variable contexts. We

have a context Γ for ordinary variables (we will also call them value variables),

and a context ∆ for modal variables (which we also call expression variables). The

context ∆ must keep track not only of the typing of a given variable, but also of its

support. In ν� we also introduce the context Σ which associates types to names.

The types of ν�-calculus are dependent on names, so we impose on our contexts

the usual well-formedness conditions from dependently typed calculi. Henceforth,

variable contexts ∆ and Γ will be well-formed relative to Σ if Σ declares all the

names that appear in the types of ∆ and Γ. A name context Σ is well-formed if every
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type in Σ uses only names declared to the left of it. Two contexts are considered

equal if they only differ up to a dependency-preserving reordering of their variables

or names.

Further, we will often abuse the notation and write Σ = Σ′, X:A to define the

set Σ′ obtained after removing the name X from the context Σ. Obviously, Σ′ does

not have to be a well-formed context, as types in it may depend on X, but we

will always transform Σ′ into a well-formed context before using it again. Thus, we

will always take care, and also implicitly assume, that all the contexts we use in

the following sections are well-formed. The same holds for all the types and

supports.

The set of terms includes the syntax of the λ�-calculus from Section 2. However,

there are two important distinctions in ν�. First, we can now explicitly refer to names

at the level of terms. Second, it is required that all the references to modal variables

that a certain term makes are always prefixed by some explicit substitution. For

example, if u is a modal variable bound by some let box u = e1 in e2 term, then u

can only appear in e2 prefixed by an explicit substitution Θ, written as 〈Θ〉u, where

different occurrences of u can have different substitutions associated with them.

The explicit substitution provides definitions for names in the expression bound

to u. When the reference to the variable u is prefixed by an empty substitution,

instead of 〈·〉u we will simply write u. The explicit substitutions used in ν�-calculus

are simultaneous substitutions. We assume that the syntactic representation of a

substitution never defines the same name twice.

The terms νX:A. e and choose e are the introduction and elimination form for

the type constructor A � B. The term νX:A. e binds a name X of type A that can

subsequently be used in e. The term choose picks a fresh name of type A, substitutes

it for the name bound in the argument ν-abstraction of type A � B, and proceeds

to evaluate the body of the abstraction. To ensure the progress and preservation

properties of ν� (Theorems 12 and 11), we must prevent the bound name in

νX:A. e from escaping the scope of its definition. Indeed, if during evaluation, X

is encountered outside its defining ν, the evaluation will get stuck. Thus, the type

system must enforce a discipline on the use of X in e. An occurrence of X at a

certain position in e will be allowed only if the type system can establish that such

an occurrence will not disable the evaluation of e. Allowed positions for X are

characterized in one of the following two ways: either X is eventually substituted

away by an explicit substitution, or X appears in a part of the term that is not

encountered during evaluation. Technically, this discipline is enforced by requiring

that X does not appear in the type or the support of e.

Finally, enlarging an appropriate context by a new variable or a name is subject to

the usual variable conventions: the new variables and names are assumed distinct,

or are renamed in order not to clash with the already existing ones. Terms are

considered equal if they differ only in the syntactic representation of their bound

variables and names, or in the ordering of names in the explicit substitutions. The

binding forms in the language are λx:A. e, let box u = e1 in e2 and νX:A. e. As

usual, capture-avoiding substitution [e1/x]e2 of expression e1 for the variable x in

the expression e2 is defined to rename bound variables and names when descending
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into their scope. Given a term e, we denote by fv(e) and fn(e) the set of free variables

of e and the set of names appearing in e at the meta level. In addition, we overload

the function fn so that given a type A and a support set C , fn(A[C]) is the set of

names appearing in A or C .

Example 2 To illustrate our new constructors, we present a version of the staged

exponentiation function that we can write in ν�-calculus. In this and in other

examples we resort to concrete syntax in ML fashion, and assume the presence of

the base type of integers, recursive functions and let-definitions.

fun exp (n : int) : �(int -> int) =

choose (νX : int.

let fun exp’ (m : int) : �Xint =

if m = 0 then box 1

else

let box u = exp’ (m - 1)

in

box (X * u)

end

in

let box v = exp’ (n)

in

box (λx:int. 〈X -> x〉 v)

end

end)

- sq = exp 2;

val sq = box (λx:int. x * (x * 1)) : �(int->int)

The function exp takes an integer n and generates a fresh name X of integer type.

Then it calls the helper function exp’ to build the expression v = X ∗ · · · ∗ X︸ ︷︷ ︸
n

∗1

of type int and support {X}. Finally, it turns the expression v into a function by

explicitly substituting the name X in v with a newly introduced bound variable

x, incurring capture. Notice that the generated residual code for sq does not

contain any unnecessary redexes, in contrast to the λ� version of the program from

section 2. �

3.2 Explicit substitutions

In this section we formally introduce the concept of explicit substitution over names,

and define related operations. As already outlined before, substitutions serve to

provide definitions for names, thus effectively removing the substituting names from

the support of the term in which they appear. Once the term has empty support, it

can be evaluated.
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Definition 1 (Explicit substitution, its domain and range)

An explicit substitution is a finite set of pairs X → e, where X is a name and e

is a term, so that a name X appears paired up with at most one term. Given a

substitution Θ, its domain and range are the following sets.

dom(Θ) = {X | X → e ∈ Θ}

and

range(Θ) = {e | X → e ∈ Θ}
The set fv(Θ) of free variables of Θ is defined to be the set of free variables of

expressions in range(Θ). The set fn(Θ) of free names of Θ includes the names from

names dom(Θ) and the names appearing freely in the terms from range(Θ).

Each substitution Θ defines a unique function [[Θ]] : Names → Terms, defined as

follows.

[[Θ]](X) =

{
e if X → e ∈ Θ

X otherwise

Each substitution can be uniquely extended to a function over arbitrary terms in

the following way.

Definition 2 (Substitution application)

Given a substitution Θ with a finite domain, and a term e, the operation {Θ}e
of applying Θ to e is defined recursively on the structure of e as given below.

Substitution application is capture-avoiding.

{Θ} X = [[Θ]](X)

{Θ} x = x

{Θ} (〈Θ′〉u) = 〈Θ ◦ Θ′〉u
{Θ} (λx:A. e) = λx:A. {Θ}e x �∈ fv(Θ)

{Θ} (e1 e2) = {Θ}e1 {Θ}e2

{Θ} (box e) = box e

{Θ} (let box u = e1 in e2) = let box u = {Θ}e1 in {Θ}e2 u �∈ fv(Θ)

{Θ} (νX:A. e) = νX:A. {Θ}e X �∈ fn(Θ)

{Θ} (choose e) = choose {Θ}e

An important aspect of the above definition is that substitution application does not

recursively descend under box. This property preserves the distinction between the

meta and the object levels. It is also justified, as explicit substitutions are intended

to only remove names which are in the support of a term, and names appearing

under box do not contribute to the support.

The operation of substitution application depends upon the operation of substi-

tution composition Θ1 ◦ Θ2, which we define next.

Definition 3 (Composition of substitutions)

Given two substitutions Θ1 and Θ2, their composition Θ1 ◦ Θ2 is the set

Θ1 ◦ Θ2 = {X → {Θ1}([[Θ2]](X)) | X ∈ dom(Θ1) ∪ dom(Θ2)}
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It will occasionally be beneficial to represent this set as a disjoint union of two

smaller sets Ψ1 and Ψ2 defined as:

Ψ1 = {X → [[Θ1]] (X) | X ∈ dom(Θ1) \ dom(Θ2)}
Ψ2 = {X → {Θ1}([[Θ2]] (X)) | X ∈ dom(Θ2)}

It is important to notice that, though the definitions of substitution application and

substitution composition are mutually recursive, both operations are well founded.

Substitution application is defined inductively over the structure of its argument, so

the size of terms on which it operates is always decreasing. Computing Θ1 ◦ Θ2 only

requires applying Θ1 to subterms in Θ2.

Lemma 4

Let Θ1,Θ2,Θ3 be explicit substitutions. If e is a ν�-term, then:

1. {Θ1}({Θ2}e) = {Θ1 ◦ Θ2}e
2. Θ1 ◦ (Θ2 ◦ Θ3) = (Θ1 ◦ Θ2) ◦ Θ3

Proof

By simultaneous induction on the structure of e and Θ3. We present the characteristic

cases.

case e = 〈Θ〉u. By definition, {Θ1}({Θ2}e) = 〈Θ1 ◦ (Θ2 ◦ Θ)〉u. By second induction

hypothesis, this is equal to 〈(Θ1 ◦ Θ2) ◦ Θ〉u = {Θ1 ◦ Θ2}e.
case Θ3 = (X �→ e,Θ′). Let Z be an arbitrary name.

If Z = X, then {Θ1}([[Θ2 ◦ Θ3]](Z)) = {Θ1}({Θ2}e). By first induction hypo-

thesis, this is equal to {Θ1 ◦ Θ2}e = {Θ1 ◦ Θ2}([[Θ3]](Z)).

If Z �= X, then {Θ1} [[Θ2 ◦ Θ3]](Z) = {Θ1} [[Θ2 ◦ Θ′]](Z), and also {Θ1 ◦
Θ2} [[Θ3]](Z) = {Θ1 ◦ Θ2} [[Θ′]](Z). By second induction hypothesis, Θ1 ◦ (Θ2 ◦
Θ′) = (Θ1 ◦ Θ2) ◦ Θ′, and therefore {Θ1} [[Θ2 ◦ Θ′]](Z) = {Θ1 ◦ Θ2} [[Θ′]](Z).

Therefore, {Θ1} [[Θ2 ◦ Θ3]](Z) = {Θ1◦Θ2} [[Θ3]](Z), thus concluding the proof.

�

We will frequently blur the distinction between a substitution Θ, and its corres-

ponding function [[Θ]], and write Θ(X) instead of [[Θ]](X), or {Θ}(X). Represent-

ations of substitutions that differ only in the ordering of the assignment pairs are

considered to define equal substitutions.

3.3 Type system

The type system of the ν�-calculus consists of two mutually recursive judgments:

Σ; ∆; Γ � e : A [C]

and

Σ; ∆; Γ � 〈Θ〉 : [C] ⇒ [D]

Both of them work with three contexts: context of names Σ, context of modal

variables ∆, and a context of value variables Γ (the syntactic structure of all three
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Explicit substitutions
C ⊆ D

Σ; ∆; Γ � 〈 〉 : [C] ⇒ [D]

Σ; ∆; Γ � e : A [D] Σ; ∆; Γ � 〈Θ〉 : [C \ {X}] ⇒ [D] X:A ∈ Σ

Σ; ∆; Γ � 〈X → e,Θ〉 : [C] ⇒ [D]

Hypothesis
X:A ∈ Σ

Σ; ∆; Γ � X : A [X,C] Σ; ∆; (Γ, x:A) � x : A [C]

Σ; (∆, u:A[C]); Γ � 〈Θ〉 : [C] ⇒ [D]

Σ; (∆, u:A[C]); Γ � 〈Θ〉u : A [D]

λ-calculus

Σ; ∆; (Γ, x:A) � e : B [C]

Σ; ∆; Γ � λx:A. e : A → B [C]

Σ; ∆; Γ � e1 : A → B [C] Σ; ∆; Γ � e2 : A [C]

Σ; ∆; Γ � e1 e2 : B [C]

Modality

Σ; ∆; · � e : A [D]

Σ; ∆; Γ � box e : �DA [C]

Σ; ∆; Γ � e1 : �DA [C] Σ; (∆, u:A[D]); Γ � e2 : B [C]

Σ; ∆; Γ � let box u = e1 in e2 : B [C]

Names

(Σ, X:A); ∆; Γ � e : B [C] X �∈ fn(B[C])

Σ; ∆; Γ � νX:A. e : A � B [C]

Σ; ∆; Γ � e : A � B [C]

Σ; ∆; Γ � choose e : B [C]

Fig. 3. Typing rules of the ν�-calculus.

contexts is given in section 3.1). The first judgment is the typing judgment for

expressions. Given an expression e, it checks whether e has type A and support C .

The second judgment types the explicit substitutions. Given a substitution Θ and

two support sets C and D, the substitution has type [C] ⇒ [D] if it maps expressions

of support C to expressions of support D.

The typing rules of ν� are presented in Figure 3. A pervasive characteristic of the

type system is support weakening. If an expression has support C , then the names

the expression contains are elements of C . If C ⊆ D, these names are elements of D

as well, and the expression may also be ascribed the support D. Support weakening

is admissible in both judgments of the type system, which we prove in Section 3.4.

Explicit substitutions. The empty substitution gives rise to the identity function on

terms, as applying the empty substitution over a given term does not change the term

itself. Thus, when an empty substitution is applied to a term containing names from

C , the resulting term obviously contains the same names, all of which are elements

of D as well. The typing rule for empty substitutions formalizes this property. The

set D ⊇ C is introduced in order to ensure that the support weakening principle

holds for this judgment. We implicitly require that both C and D are well-formed;
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that is, they both contain only names already declared in the name context Σ. The

rule for non-empty substitutions recursively checks if each of component expressions

is well-typed.

When an explicit substitution Θ : [C] ⇒ [D] is applied to an expression e : A [C],

the result {Θ}e will have support D. Consider for example the explicit substitution

Θ = (X → 10, Y → 20), with the domain dom(Θ) = {X,Y }. This substitution can be

given (among others) the typings: [X,Y ] ⇒ [ ], but also [ ] ⇒ [ ], or [X,Y , Z] ⇒ [Z].

And indeed, if Θ is applied to an expression with support {X,Y }, the result will be

an expression with empty support. Similarly, Θ maps an expression of support [ ]

into another expression with support [ ], and an expression with support [X,Y , Z]

into one with support [Z].

Hypothesis rules. Because there are three kinds of variable contexts, we have three

hypothesis rules. First is the rule for names. A name X can be used provided it has

been declared in Σ and is accounted for in the supplied support set. The implicit

assumption is that the support set C is well-formed; that is, C ⊆ dom (Σ). The

rule for value variables is straightforward; it postulates that the typing x:A can be

inferred, if x:A is declared in Γ. The support of such a term can be any well-formed

support set C . The rule for modal variables prescribes that modal variables are

always prefixed by an explicit substitution of matching support.

λ-calculus fragment. The rule for λ-abstraction is standard. It implicitly assumes that

the argument type A is well-formed in the name context Σ before the argument

type is introduced into the variable context Γ. The application rule checks both the

function and the application argument against the same support set.

Modal fragment. Just as in λ�-calculus, the rule for box checks the boxed expression

e against an empty context of value variables. This way, it insures that stages of the

language are kept separate, as variables from the early stage cannot be referenced

in the late stage.

The support that e has to match is supplied as an index to the � constructor. On

the other hand, the support for the whole expression box e is empty, as the expression

obviously does not contain any names at the meta level. Thus, the support can be

arbitrarily weakened to any well-formed support set D. The rule for let box is also

a straightforward extension of the corresponding λ� rule. The only difference is

that the bound modal variable u from the context ∆ now has to be stored with its

support annotation.

Names fragment. The introduction form for names is νX:A. e with its corresponding

type A � B. It introduces the name X:A to be used in the expression e. It is assumed

that the type A is well-formed relative to the context Σ. The term constructor choose

is the elimination form for A � B. It picks a fresh name and substitutes it for the

bound name in the ν-abstraction. In other words, the operational semantics of the

redex choose (νX:A. e) (formalized in section 3.5) proceeds with the evaluation of e

in a run-time context in which a fresh name has been picked for X. It is justified

to do so because X is bound by ν and, by convention, can be renamed with a

fresh name. The side-condition X �∈ fn(B[C]) of the rule for ν-abstraction serves to
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enforce the typing discipline on the appearances of X in e. It effectively limits X to

appear only in subterms of e that can never be evaluated or in subterms from which

it will eventually be removed by some explicit substitution. For example, consider

the term

νX:int. νY:int.

box (let box u = box X

box v = box Y

in

〈X -> 1〉 u

end)

This term contains a substituted occurrence of X and an unused occurrence of Y ,

and is therefore well-typed (of type int � int � �int). Another way to paraphrase

this typing discipline is the following: when leaving the scope of a name X, we have

to turn the “polynomials” depending on X into functions. An illustration of this

technique is the program already presented in Example 2.

In the remainder of this section, we compare the name discipline of ν� to some

previous work on name calculi. The main motivation for the ν� treatment of names

comes from the work on FreshML (Pitts & Gabbay, 2000). In FreshML, names

are introduced into the computation by the construct new X in e which is roughly

equivalent to our choose (νX. e). We have decided on this decomposition in order

to make the types of the language follow more closely the intended meaning of the

terms, as it is the case in the simply-typed λ-calculus. In simply-typed λ-calculus,

the computational content of programs is defined by β-reduction. Generating new

names obviously has computational interpretation in ν�, and our decomposition

gives us an appropriate β-reduction to which we can ascribe this computational

content:

Σ, choose (νX:A. e) �−→β (Σ, X:A), e

Given e : A � B, we also have the η-expansion:

Σ, e �−→η Σ, νX:A. choose e

In FreshML, if X is a name appearing in the term e, then the support of e will

contain X, unless X occurs in dead code, or is otherwise abstracted using a specific

term constructor for name abstraction. The type system of FreshML insists on a

side condition similar to our rule for ν, in order to prevent unabstracted names from

escaping the scope of their introducing new.

This side condition provides significant simplifications when compared to some

previous work on names. For example, the ν-calculus of Pitts & Starck (1993) is

similar to FreshML, but it does not track the appearance of names in the terms. This

gives rise to a very powerful language, but also a very complex one. The ν-calculus

has a rather involved equational theory; in particular, it does not equate a term with

its β-reduct.

The λν-calculus (Odersky, 1994) introduces a somewhat different idea for treating

names, characterized by reductions that push the name declaration inside other term

https://doi.org/10.1017/S095679680500568X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680500568X


908 A. Nanevski and F. Pfenning

constructors. A typical reduction rule in λν would be paraphrased in the notation

of ν� as

choose (νX. (λx. e)) �−→ λx. (choose (νX. e)) (*)

Just like the ν-calculus, λν does not keep track of names either. As a consequence,

it does not possess the usual progress and preservation properties, because the

evaluation of well-typed expressions in λν may get stuck. The typical example is the

expression νX. X, which is well typed, but does not denote any value.

All the cited name calculi are designed around the single goal: that of providing

the operation of equality on names. In contrast to this goal, the ν�-calculus uses

names primarily as a way of describing supports, i.e. as a way of specifying the

dependency of an expression on names. In fact, names in the ν�-calculus are second-

class objects – they cannot be passed as arguments to other functions, and may not

be tested for equality.

Insisting on second-class names is somewhat restrictive when compared to the

ν-calculus of Pitts & Stark (1993), and λν of Odersky (1994). However, it allows

that names be tracked by the type system (in this respect the ν�-calculus is similar

to FreshML), which is exactly the functionality required by our application to

staged computation. Furthermore, it results in a language with rather simple and

pleasing properties. For example, in Section 5 we explore the equational theory of

ν�, and establish that the notion of logical equivalence that we define validates

all the β-reductions and η-expansions of ν�, as well as the equivalence (*) of the

λν-calculus.

At this point, it may be interesting to observe that, while names in the ν�-calculus

may not be directly tested for equality, it is possible to test them for equality

indirectly. Indeed, as mentioned before, ν� may be extended with pattern-matching

against boxed syntactic expressions (Nanevski, 2002). Since the syntactic expressions

may contain names, this will provide an indirect way to test for name equality. This

extension, however, is beyond the scope of the current paper.

Example 3 This example presents the function conv for computing the convolution

of two integer lists. Convolution of lists x = [x1, . . . , xn] and y = [y1, . . . , yn], is the

list [xny1, . . . , x1yn]. We ignore the possibility that the two lists can be of different

sizes.

The function conv, which we present in Fig. 4, is staged in the first argument,

so that given the list x, conv outputs a source code specialized for computing

the convolution with x. In this example, we assume the existence of a function

lift : int → �int, mapping each integer n into box n. This is a reasonable

assumption, as the base type of integers is always considered observable; in any

realistic situation, it would be possible to coerce an integer value into its own

syntactic representation. The helper function conv’ recurses over the list x to build

the output code; it keeps the unfinished part of the output abstracted using the

variable z:�TLintlist.

Specializing conv to the list [3,2] results with the following program.
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(*
* val conv : intlist ->
* �(intlist -> intlist)
*)

fun conv (xs : intlist) =
choose νTL:intlist.
(*
* conv’ : intlist -> �TLintlist
* -> �(intlist -> intlist)
*)

let fun conv’ (nil) =
λz:�TLintlist.

let box u = z
in

box (λy:intlist.
<TL -> y>u)

end

| conv’ (x::xs’) =
let val f = conv’ (xs’)

box x’ = lift x
in

λz:�TLintlist.
let box u = z
in

f (box (
let val (hd::tl) = TL
in

x’*hd :: <TL -> tl>u
end))

end
end

in
conv’ xs (box nil)

end

Fig. 4. Staged convolution.

- conv [3,2];

val it = box (λy:intlist.

let val (hd::tl) = y

in

2*hd :: let val (hd::tl) = tl

in

3*hd :: nil

end

end) : �(intlist -> intlist)

It remains a challenge to write a program that could generate a yet more concise

specialized code – like for example the following fragment for convolution with

[3,2]:

box (λy:intlist. let val (y1::y2::tl) = y in [2*y1, 3*y2])

�

3.4 Structural properties

This section explores the basic theoretical properties of the ν� type system. The

lemmas developed here will be used to justify the operational semantics that we

ascribe to the ν�-calculus in section 3.5, and will ultimately lead to the proof of type

preservation (Theorem 11) and progress (Theorem 12).

Lemma 5 (Structural properties of contexts)

1. Weakening Let Σ ⊆ Σ′, ∆ ⊆ ∆′ and Γ ⊆ Γ′. Then

(a) if Σ; ∆; Γ � e : A [C], then Σ′; ∆′; Γ′ � e : A [C]

(b) if Σ; ∆; Γ � 〈Θ〉 : [C] ⇒ [D], then Σ′; ∆′; Γ′ � 〈Θ〉 : [C] ⇒ [D]
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2. Contraction on variables

(a) if Σ; ∆; (Γ, x:A, y:A) � e : B [C], then Σ; ∆; (Γ, w:A) � [w/x, w/y]e : B [C]

(b) if Σ; ∆; (Γ, x:A, y:A) � 〈Θ〉 : [C] ⇒ [D], then

Σ; ∆; (Γ, w:A) � 〈[w/x, w/y]Θ〉 : [C] ⇒ [D]

(c) if Σ; (∆, u:A[D], v:A[D]); Γ � e : B [C], then

Σ; (∆, w:A[D]); Γ � [w/u, w/v]e : B [C].

(d) if Σ; (∆, u:A[D], v:A[D]); Γ � 〈Θ〉 : [C1] ⇒ [C2], then

Σ; (∆, w:A[D]); Γ � 〈[w/u, w/v]Θ〉 : [C1] ⇒ [C2].

Proof

By straightforward induction on the structure of the typing derivations. �

Contraction on names does not hold in ν�. Indeed, identifying two different

names in a term may make the term syntactically ill-formed. Typical examples are

explicit substitutions. Identifying two names may make an otherwise well-formed

substitution assign two different images to the same name.

The next series of lemmas establishes the admissibility of support weakening, as

discussed in section 3.3.

Lemma 6 (Support weakening)

Support weakening is covariant on the right-hand side and contravariant on the

left-hand side of the judgments. More formally, let C ⊆ C ′ ⊆ dom(Σ) and D′ ⊆ D ⊆
dom(Σ) be well-formed support sets. Then the following holds:

1. if Σ; ∆; Γ � e : A [C], then Σ; ∆; Γ � e : A [C ′].

2. if Σ; ∆; Γ � 〈Θ〉 : [D] ⇒ [C], then Σ; ∆; Γ � 〈Θ〉 : [D] ⇒ [C ′].

3. if Σ; ∆; Γ � 〈Θ〉 : [D] ⇒ [C], then Σ; ∆; Γ � 〈Θ〉 : [D′] ⇒ [C].

Proof

The first two statements are proved by straightforward simultaneous induction on

the given derivations. The third part is proved by induction on the structure the

derivation. �

The following lemma shows that the intuition behind the typing judgment for

explicit substitutions explained in section 3.3 is indeed valid; if Θ : [C] ⇒ [D] is

applied to an expression of support C , then the result is an expression of support D.

Lemma 7 (Explicit substitution principle)

Let Σ; ∆; Γ � 〈Θ〉 : [C] ⇒ [D]. Then the following holds:

1. if Σ; ∆; Γ � e : A [C] then Σ; ∆; Γ � {Θ}e : A [D]

2. if Σ; ∆; Γ � 〈Θ′〉 : [C1] ⇒ [C], then Σ; ∆; Γ � 〈Θ ◦ Θ′〉 : [C1] ⇒ [D]

Proof

By simultaneous induction on the structure of the derivations. We just present the

proof of the second statement.
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Given the substitutions Θ and Θ′, we split the representation of Ψ = Θ ◦ Θ′ into

two disjoint sets:

Ψ′
1 = {X → Θ(X) | X ∈ dom(Θ) \ dom(Θ′)}

Ψ′
2 = {X → {Θ}(Θ′(X)) | X ∈ dom(Θ′)}

Let X:A. It suffices to show that

(a) if X �∈ dom(Ψ) and X ∈ C1, then X ∈ D

(b) if X → e ∈ Ψ, then Σ; ∆; Γ � e : A [D]

To establish (a), observe that X �∈ dom(Ψ) implies X �∈ dom(Θ) and X �∈ dom(Θ′),

by definition. If X �∈ dom(Θ′) and X ∈ C1, then X ∈ C by the typing of Θ′. If

X �∈ dom(Θ) and X ∈ C , then X ∈ D, by the typing of Θ.

To establish (b), we need to consider two cases: (1) X → e ∈ Ψ′
1 and (2)

X → e ∈ Ψ′
2. In case (1), by the typing of Θ, we immediately have Σ; ∆; Γ � e : A [D].

In case (2), there exists a term e′ such that X → e′ ∈ Θ′ and e = {Θ}e′. By the typing

of Θ′, we have Σ; ∆; Γ � e′ : A [C], and by then by the first induction hypothesis,

Σ; ∆; Γ � {Θ}e′ : A [D]. This concludes the proof, since e = {Θ}e′. �

The following lemma establishes the hypothetical nature of the two typing

judgment with respect to the ordinary value variables.

Lemma 8 (Value substitution principle)

Let Σ; ∆; Γ � e1 : A [C]. The following holds:

1. if Σ; ∆; (Γ, x:A) � e2 : B [C], then Σ; ∆; Γ � [e1/x]e2 : B [C]

2. if Σ; ∆; (Γ, x:A) � 〈Θ〉 : [C ′] ⇒ [C], then Σ; ∆; Γ � 〈[e1/x]Θ〉 : [C ′] ⇒ [C]

Proof

Simultaneous induction on the two derivations. �

The situation is not that simple with modal variables. A simple substitution of

an expression for some modal variable will not result in a syntactically well-formed

term. The reason is, as discussed before, that occurrences of modal variables are

always prefixed by an explicit substitution. But, explicit substitutions in ν�-calculus

can occur only immediately before modal variables, and cannot be freely applied to

arbitrary terms1. Hence, if a substitution of the expression e for a modal variable u

is to produce a syntactically valid term, we need to follow it up with applications

of explicit name substitutions that were paired up with each occurrence of u. The

definition below generalizes capture-avoiding substitution of modal variables in

order to handle this problem.

1 Albeit this extension does not seem particularly hard, we omit it for simplicity.
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Definition 9 (Modal substitution)

The capture-avoiding substitution of e for an expression variable u is defined

recursively as follows

[[e/u]] 〈Θ〉u = {[[e/u]]Θ}e
[[e/u]] 〈Θ〉v = 〈[[e/u]]Θ〉v u �= v

[[e/u]] x = x

[[e/u]] X = X

[[e/u]] λx:A. e′ = λx:A. [[e/u]]e′ x �∈ fv(e)

[[e/u]] e1 e2 = [[e/u]]e1 [[e/u]]e2

[[e/u]] box e′ = box [[e/u]]e′

[[e/u]] let box v = e1 in e2 = let box v = [[e/u]]e1 in [[e/u]]e2 v �∈ fv(e)

[[e/u]] νX:A. e′ = νX:A. [[e/u]]e′ X �∈ fn(e)

[[e/u]] choose e′ = choose ([[e/u]]e′)

[[e/u]] (·) = (·)
[[e/u]] (X → e′,Θ) = (X → [[e/u]]e′, [[e/u]]Θ)

Note that in the first clause 〈Θ〉u of the above definition the resulting expression is

obtained by carrying out the explicit substitution.

Lemma 10 (Modal substitution principle)

Let e1 be an expression such that Σ; ∆; · � e1 : A [C]. Then the following holds:

1. if Σ; (∆, u:A[C]); Γ � e2 : B [D], then Σ; ∆; Γ � [[e1/u]]e2 : B [D]

2. if Σ; (∆, u:A[C]); Γ � 〈Θ〉 : [D′] ⇒ [D], then Σ; ∆; Γ � 〈[[e1/u]]Θ〉 : [D′] ⇒ [D]

Proof

By simultaneous induction on the two derivations. We just present one case from

the proof of the first statement.

case e2 = 〈Θ〉u.
1. by derivation, A = B and Σ; (∆, u:A[C]); Γ � 〈Θ〉 : [C] ⇒ [D]

2. by the second induction hypothesis, Σ; ∆; Γ � 〈[[e1/u]]Θ〉 : [C] ⇒ [D]

3. by explicit substitution (Lemma 7.1), Σ; ∆; Γ � {[[e1/u]]Θ}e1 : B [D]

4. but this is exactly equal to [[e1/u]]e2

�

3.5 Operational semantics

We define the small-step call-by-value operational semantics of the ν�-calculus

through the judgment

Σ, e �−→ Σ′, e′

which relates an expression e with its one-step reduct e′. The expressions e and e′

do not contain any free variables, but they may contain free names. However, we

require that e and e′ must have empty support. In other words, we only consider for

evaluation those terms whose names appear exclusively in boxed subterms, or are
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Σ, e1 �−→ Σ′, e′
1

Σ, (e1 e2) �−→ Σ′, (e′
1 e2)

Σ, e2 �−→ Σ′, e′
2

Σ, (v1 e2) �−→ Σ′, (v1 e
′
2)

Σ, (λx:A. e) v �−→ Σ, [v/x]e

Σ, e1 �−→ Σ′, e′
1

Σ, (let box u = e1 in e2) �−→ Σ′, (let box u = e′
1 in e2)

Σ, (let box u = box e1 in e2) �−→ Σ, [[e1/u]]e2

Σ, e �−→ Σ′, e′

Σ, choose e �−→ Σ′, choose e′

X �∈ dom(Σ)

Σ, choose (νX:A. e) �−→ (Σ, X:A), e

Fig. 5. Structured operational semantics of ν�-calculus.

otherwise captured by some explicit substitution. Because free names are allowed

under these conditions, the operational semantics has to keep track of them in the

run-time name contexts Σ and Σ′. The rules of the judgment are given in Fig. 5, and

the values of the language are generated by the grammar below.

Values v ::= c | λx:A. e | box e | νX:A. e

The rules agree with the β-reductions of the calculus, and are standard except for

two important observations. First of all, the β-redex for the type constructor �
extends the run-time context with a fresh name before proceeding. This way, we

keep track of names that have been generated in the course of evaluation, so that

we can select a fresh name when it is needed.

Even more important is to observe that names in ν� are not values. This is a direct

consequence of the fact that names in ν� can be ascribed an arbitrary type. If a

name X : A were a value, then introducing X into the computation extends the type

A with a new value. Such a dynamic type extension effectively renders the already

defined functions of domain A incomplete. Suddenly, if a function f has domain

A, then it is forced to check at run time if its argument is a name-free value (in

which case f can be applied), or if its argument is an expression containing a name

X. This is where the modal constructor � comes in – it classifies object expressions

with names, so that the above checks can be done statically during type checking.

Thus, while X:A is not a value in ν�, the expression (box X) : �XA is.

The evaluation relation is sound with respect to typing, and it never gets stuck,

as the following theorems establish.

Theorem 11 (Type preservation)

If Σ; ·; · � e : A [ ] and Σ, e �−→ Σ′, e′, then Σ′ extends Σ, and Σ′; ·; · � e′ : A [ ].

Proof

By a straightforward induction on the reduction relation, using inversion on the

typing derivation and the substitution principles. �
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Theorem 12 (Progress)

If Σ; ·; · � e : A [ ], then either

1. e is a value, or

2. there exist a term e′ and a context Σ′, such that Σ, e �−→ Σ′, e′.

Proof

By a straightforward case analysis of e, employing inversion on the typing deriva-

tion. �

The progress theorem does not indicate that the reduct e′ and the context Σ′

are unique for each given e and Σ. In fact, they are not, as fresh names may be

introduced during the course of the computation, and two different evaluations of

one and the same term may choose the fresh names differently. The determinacy

theorem below shows, in fact, that the choice of fresh names accounts for all the

differences between two reductions of the same term. As customary, we denote

by �−→n the n-step reduction relation.

Theorem 13 (Determinacy)

If Σ, e �−→n Σ1, e1, and Σ, e �−→n Σ2, e2, then there exists a permutation of names

π : N → N, fixing dom(Σ), such that Σ2 = π(Σ1) and e2 = π(e1).

Proof

By induction on the length of the reductions, using the property that if Σ, e �−→n

Σ′, e′ and π is a permutation on names, then π(Σ), π(e) �−→n π(Σ′), π(e′). The only

interesting case is when n = 1 and e = choose (νX:A. e′). In that case, it must

be e1 = [X1/X]e′, e2 = [X2/X]e′, and Σ1 = (Σ, X1:A), Σ2 = (Σ, X2:A), where

X1, X2 ∈ N are fresh. Obviously, the involution π = (X1 X2) which swaps these two

names has the required properties. �

4 Support polymorphism

It is frequently necessary to write programs that are polymorphic in the support

of their arguments, because they manipulate syntactic expressions of unknown

support. A typical example is a function that recurses over an expression with

binding structure. When this function encounters a λ-abstraction, it has to place

a fresh name instead of the bound variable, and recursively continue scanning the

body of the λ-abstraction, which is itself a syntactic expression but depending on

this newly introduced name2. For such uses, we extend the ν�-calculus with a notion

of explicit support polymorphism in the style of Girard & Reynolds (Girard, 1986;

Reynolds, 1983).

To add support polymorphism to the simple ν�-calculus, we create a new syntactic

category of support variables, which stand for unknown support sets. Then the rest of

2 The calculus described in this document cannot support this scenario in full generality yet because it
lacks type polymorphism and type-polymorphic recursion, but support polymorphism is a necessary
step in that direction.

https://doi.org/10.1017/S095679680500568X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680500568X


Names and necessity 915

the syntax of ν� is extended to take support variables into account. We summarize

the changes in the following table.

Support variables p, q ∈ S
Supports C,D ::= . . . | C, p

Types A ::= . . . | ∀p. A
Expressions e ::= . . . | Λp. e | e [C]

Name contexts Σ ::= . . . | Σ, p

Values v ::= . . . | Λp. e

Before a support variable can be used, it has to be declared in the name context

Σ. For the new definition of Σ, we retain the same well-formedness conditions as

before. In particular, a support variable p ∈ Σ may only be used to the right of its

declaration. It is important that supports themselves are allowed to contain support

variables, to express the situation in which only a portion of a support set is known.

Consequently, the function fn(−) is updated to return the set of names and support

variables appearing in its argument. The family of types is extended with the type

∀p. A expressing universal support quantification. Its introduction form is Λp. e,

which binds a support variable p in the expression e. This Λ-abstraction will also be

a value in the extended operational semantics. The corresponding elimination form

is the application e [C] whose meaning is to instantiate the unknown support set

abstracted in e with the provided support set C .

The typing judgment has to be instrumented with new rules for typing support-

polymorphic abstraction and application.

(Σ, p); ∆; Γ � e : A [C] p �∈ C

Σ; ∆; Γ � Λp. e : ∀p. A [C]

Σ; ∆; Γ � e : ∀p. A [C]

Σ; ∆; Γ � e [D] : ([D/p]A) [C]

The ∀-introduction rule requires that the bound variable p does not escape the

scope of the constructors ∀ and Λ which bind it. In particular it must be p �∈ C .

The convention also assumes implicitly that p �∈ Σ, before it can be added. The rule

for ∀-elimination substitutes the argument support set D into the type A. It assumes

that D is well-formed relative to the context Σ; that is, D ⊆ dom(Σ). The operational

semantics for the new constructs is also not surprising.

Σ, e �−→ Σ′, e′

Σ, (e [C]) �−→ Σ′, (e′ [C]) Σ, (Λp. e) [C] �−→ Σ, [C/p]e

The extended language satisfies the following substitution principle.

Lemma 14 (Support substitution principle)

Let Σ = (Σ1, p,Σ2) and D ⊆ dom(Σ1) and denote by (−)′ the operation of substituting

D for p.

Then the following holds.

1. if Σ; ∆; Γ � e : A [C], then (Σ1,Σ
′
2); ∆′; Γ′ � e′ : A′ [C ′]

2. if Σ; ∆; Γ � 〈Θ〉 : [C1] ⇒ [C2], then (Σ1,Σ
′
2); ∆′; Γ′ � 〈Θ′〉 : [C ′

1] ⇒ [C ′
2]
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Proof

By simultaneous induction on the two derivations. We present one case from the

proof of the second statement.

case Θ = (X → e,Θ1), where X:A ∈ Σ.

1. by derivation, Σ; ∆; Γ � e : A [C2] and Σ; ∆; Γ � Θ1 : [C1 \ {X}] ⇒ [C2]

2. by first induction hypothesis, (Σ1,Σ
′
2); ∆′; Γ′ � e′ : A′ [C ′

2]

3. by second induction hypothesis, (Σ1,Σ
′
2); ∆′; Γ′ � Θ′

1 : [(C1 \ {X})′] ⇒ [C ′
2]

4. because (C ′
1 \ {X}) ⊆ (C1 \ {X})′, by support weakening (Lemma 6.3),

(Σ1,Σ
′
2); ∆′; Γ′ � Θ′

1 : [C ′
1 \ {X}] ⇒ [C ′

2]

5. result follows from (2) and (4) by the typing rule for non-empty substitu-

tions

�

The structural properties presented in section 3.4 readily extend to the new

language with support polymorphism. The same is true of type preservation

(Theorem 11) and progress (Theorem 12) whose additional cases involving support

abstraction and application are handled using the above Lemma 14.

Example 4 In a support-polymorphic ν�-calculus we can slightly generalize the

program from Example 2 by pulling out the helper function exp’ and parametrizing

it over the exponentiating expression. In the following program, we use [p] in the

function definition as a concrete syntax for Λ-abstraction of a support variable p.

fun exp’ [p] (e : �pint) (n : int) : �pint =

if n = 0 then box 1

else

let box u = exp’ [p] e (n - 1)

box w = e

in

box (u * w)

end

fun exp (n : int) : �(int -> int) =

choose (νX : int.

let box w = exp’ [X] (box X) n

in

box (λx:int. 〈X -> x〉 w)

end)

- sq = exp 2;

val sq = box (λx:int. x * (x * 1)) : �(int->int)

�

Example 5 As an example of a more realistic program we present the regular

expression matcher from Davies & Pfenning (2001) and Davies (1996). The example
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(*
* val acc1 : regexp -> (char list -> bool) ->
* char list -> bool
*)

fun acc1 (Empty) k s = k s

| acc1 (Plus (e1, e2)) k s =
(acc1 e1 k s) orelse (acc1 e2 k s)

| acc1 (Times (e1, e2)) k s =
(acc1 e1 (acc1 e2 k)) s

| acc1 (Star e) k s =
(k s) orelse

acc1 e (λs’ =>
if s = s’ then false
else acc1 (Star e) k s’)

| acc1 (Const c) k s =
case s
of nil => false
| (x::l) =>

((x = c) andalso (k s))

(*
* val accept1 : regexp -> char list -> bool
*)

fun accept1 e s = acc1 e null s

Fig. 6. Unstaged regular expression matcher.

assumes the declaration of the datatype of regular expressions:

datatype regexp =

Empty

| Plus of regexp * regexp

| Times of regexp * regexp

| Star of regexp

| Const of char

We also assume a primitive predicate null : char list -> bool for testing if the

input list of characters is empty. Figure 6 presents an ordinary ML implementation

of the matcher, and λ� and λ© versions can be found in Davies & Pfenning (2001)

and Davies (1996). The helper function acc1 in Fig. 6 takes a regular expression e,

a continuation function k, and an input string s (represented as a list of characters).

The function attempts to match a prefix of s to the regular expression e. If the

matching succeeds, then the remainder of s is passed to the continuation k to

determine if s is accepted or not.

We now want to use the ν�-calculus to stage the program from Fig. 6 so that

it can be specialized with respect to a given regular expression. For that purpose,

it is useful to view the helper function acc1 from Fig. 6 as a code generator.

Indeed, acc1 may be seen as follows: it first generates code for matching a string

against a regular expression e, and then appends k to that code. This is the main

idea behind the function acc, and the ν� program in Fig. 7. In this program,
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(*
* val accept : regexp ->
* �(char list -> bool)
*)

fun accept (e : regexp) =
choose νS : char list.

(*
* acc : regexp -> ∀p.(�S,pbool
* -> �S,pbool)
*)

let fun acc (Empty) [p] k = k

| acc (Plus (e1, e2)) [p] k =
choose νJOIN : char list

-> bool.
let box u1 =

acc e1 [JOIN] box(JOIN S)
box u2 =
acc e2 [JOIN] box(JOIN S)

box kk = k
in

box(let fun join t =
<S->t>kk

in
<JOIN->join>u1

orelse
<JOIN->join>u2

end)
end

| acc (Times (e1, e2)) [p] k =
acc e1 (acc e2 k)

| acc (Star e) [p] k =
choose νT : char list
choose νLOOP : char list

-> bool.
let box u =

acc e [T, LOOP]
box(if T = S then false

else LOOP S)
box kk = k

in
box(let fun loop t =

<S->t>kk
orelse
<LOOP->loop,

T->t,S->t>u
in

loop S
end)

end

| acc (Const c) [p] k =
let box cc = lift c

box kk = k
in

box(case S
of (x::xs) =>

(x = cc) andalso
<S->xs>kk

| nil => false)
end

box code = acc e [] box (null S)
in

box (λs:char list. <S->s>code)
end

Fig. 7. Regular expression matcher staged in the ν�-calculus.

we use the name S for the input string to be matched by the code that acc

generates. The continuation k is not a function anymore, but code to be attached

at the end of the generated result. We want code k to contain further names

standing for the yet unbound variables, and hence the support-polymorphic typing

acc : regexp -> ∀p.(�S,pbool -> �S,pbool). The support polymorphism pays

off when generating code for alternation Plus(e1, e2) and iteration Star(e). For

example, observe in the alternation case that the generated code does not duplicate

the “continuation” code of k. Rather, k is emitted as a separate function which is a

joining point for the computation branches corresponding to e1 and e2. Similarly, in

the case of iteration, we set up a loop in the output code that would attempt zero or

more matchings against e. The support polymorphism of acc enables us to produce

code in chunks without knowing the exact identity of the above-mentioned joining

or looping points. Once all the parts of the output code are generated, we just stitch

them together by means of explicit substitutions.

At this point, it may be illustrative to trace the execution of the program on a

concrete input. Figure 8 presents the function calls and the intermediate results that

occur when the ν� matcher is applied to the regular expression Star(Empty). The

resulting specialized program is a function accepting only the empty string. This
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� accept (Star (Empty))

� acc (Star(Empty)) [] (box (null S))

� acc Empty [T, LOOP] (box (if T = S then false
else LOOP S))

� box (if T = S then false else LOOP S)

� box (let fun loop (t) =
null (t) orelse
if t = t then false else loop(t)

in
loop S

end)

� box (λs. let fun loop (t) =
null (t) orelse
if t = t then false else loop(t)

in
loop s

end)

Fig. 8. Example execution trace for a regular expression matcher in ν�. Function calls are
marked by � and the corresponding return results are marked by an aligned �.

function does not contain variable-for-variable redexes, thanks to the features and

expressiveness of ν�, but it unnecessarily tests if t = t. Removing these extraneous

tests requires some further examination and preprocessing of e, but the thorough

description of such a process is beyond our scope. We refer to Harper (1999) for an

insightful analysis.

�

5 Logical relations for program equivalence

In this section we develop the notion of equivalence between programs in the core

ν�-calculus (without recursion and support polymorphism), with which we establish

the intensional properties of the modal operator, and justify our intuitive view of

�CA as classifying syntactic expressions.

To that end, we consider two notions of equivalence. The first is intensional, or

syntactic, by which two programs are equal if and only if their abstract syntax

representations are the same; the programs may only differ in the names of their

bound variables, and possibly also in the representation of their explicit substitutions.

On the other hand, two programs are extensionally equivalent if, in some appropriate

sense which we will define shortly, they produce the same results. Of course, if two

expression are intensionally equivalent, they should also be extensionally equivalent.

One of the questions that we explore in this section is an interplay between

intensional and extensional equivalences of programs. The ν�-calculus is particularly

appropriate for investigating and combining the two notions, because we can use the
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modal constructs as explicit boundaries between the different notions of equivalence.

In particular, we can treat values of modal types as being observable, i.e. amenable

to inspection of their structure. Then two general expressions of modal type will be

extensionally equivalent if and only if their values are intensionally equivalent. We

are also interested in exploring the properties of the calculus when only extensional

equivalence is used, as the present formulation of ν� does not contain any constructs

for inspecting the structure of modal values. In both of these cases, we will establish

that our formulation of ν� is purely functional, in the sense that it satisfies the

logical equivalences arising from the β-reductions and η-expansions of the language.

The development presented here will follow the methodology of logical relations, as

used, for example, in other works concerned with names in functional programming

(Pitts & Stark, 1993). However, the details of our approach are different because we

want to make the identity of locally declared names irrelevant for the purposes of

expression comparison.

To motivate our approach, we first present several examples of intensional and

extensional equivalences that we would like our programs to satisfy. We use the

symbol ∼= for extensional equivalence, and = for intensional equivalence. The

equivalences will always be considered at a certain type and support.

Example 6 In the examples below, we assume that X is a name of integer type.

1. (λx:int. x + 1) 2 ∼= (λx:int. x + 2) 1 ∼= 3 : int, because all three terms evaluate

to 3; however, neither of them is intensionally equivalent to any other.

2. (λx:int. x+X) 2 ∼= 2 +X ∼= X + 2 : int [X], because whenever X is substituted

by e (and x is not free in e), the three terms evaluate to the same value.

3. (λx:�X int. 2) (box X) ∼= (1 + 1) : int, because both terms evaluate to 2. Notice

that X does not appear in the second term, nor in the type and support of

comparison.

4. box (X+1) ∼= box (X+1) : �X int, because X+1 = X+1 : int [X] intensionally,

as syntactic expressions.

�

As illustrated by this example, in our equivalence relations we should distinguish

between two different kinds of names: (1) names which may appear in either of

the compared terms, as well as their type and support (Example 6, cases 2 and 4),

and (2) names which are local to some of the terms (case 3). The later kind of

names should not influence the equivalence relations – these names could freely be

renamed.

The described requirement leads to the following formulation of our relations.

The judgment for intensional equivalence compares two expressions for syntactic

equality modulo α-equivalence

e1 = e2,

and the judgment for extensional equivalence has the form

Σ; ∆; Γ � Σ1. e1
∼= Σ2. e2 : A [C].
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In this judgment, we assume that Σ is a well-formed name context and that ∆, Γ,

Σ1, Σ2, A and C are all well-formed with respect to Σ. Intuitively, the context Σ

declares the names that matter when comparing two terms; hence the requirement

that ∆, Γ, A and C contain only the names from Σ. On the other hand, the contexts

Σ1 and Σ2 declare the names that may appear in e1 and e2, but these names are, in

some sense, irrelevant. They will be subject to renaming, as they do not appear in

∆, Γ, A or C .

For the purposes of this section, we further restrict our considerations of

intensional equivalence to only modal terms which are themselves part of the

simply typed fragment of ν�. In other words, we introduce new categories of simple

types and simple terms as follows:

1. a type A is simple iff A = b, or A = A1 → A2 or A = A1 � A2 where A1, A2

are simple types

2. a term e is simple if it does not contain the modal constructs box and let box.

Then we only allow modal types �CA if A is simple, and modal terms box e if e

is simple. We justify this restriction by a desire to avoid impredicativity arising in

a language that can intensionally analyze the whole set of its expressions. In fact,

it seems rather improbable that a language with such strong intensional capabilities

can be designed at all. Indeed, we added names and modal constructs in order

to represent syntax with free variables. But, the modal constructs can also bind

variables, so a new category of names and modalities seems to be required in order

to analyze these new bindings, and then a new category of names and modalities is

required for the bindings by the previous class of modalities, etc. Thus, here we limit

the intensional equivalence to the simply-typed fragment, and leave the possible

extensions to larger fragments for future work.

The next step in the development is to formally define the notion of extensional

equivalence. As already mentioned before, the idea is that two expressions are

considered extensionally equivalent, if and only if they evaluate to the same value.

The values that we will consider for comparison are the values at base type b of

natural numbers, and values at modal types �CA which are closed simple terms of

type A and support C , which we compare for intensional equivalence.

The standard approach in the development of logical relations starts with a bit

different premise. Rather than evaluate two expressions and check if their values

are the same, we need to check if the values are extensionally equivalent. The later

notion is much more permissive, which is particularly important when comparing

values of functional types. Indeed, two functions ought to be equivalent not only if

they are the same, but also if they map related arguments to related results.

Thus, we need to define two mutually recursive judgments: one for the extensional

equivalence of (closed) expressions, and another for extensional equivalence of values.

Our judgment for extensional equivalence of expressions has the form

Σ � Σ1. e1
∼= Σ2. e2 : A [C]

and the judgment for extensional equivalence of values has the form

Σ � Σ1. v1 ∼ Σ2. v2 : A
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The first is defined by induction on the structure of A and C , by appealing to the

second judgment when the support C is empty. The second is defined by induction

on the structure of the type A.

Σ � Σ1. e1
∼= Σ2. e2 : A [ ] iff (Σ,Σ1), e1 �−→∗ (Σ,Σ′

1), v1, and

(Σ,Σ2), e2 �−→∗ (Σ,Σ′
2), v2, and

Σ � Σ′
1. v1 ∼ Σ′

2. v2 : A

Σ � Σ1. e1
∼= Σ2. e2 : A [C] iff Σ � Σ′

1. {σ1}e1
∼= Σ′

2. {σ2}e2 : A [ ] for

any Σ′
i ⊇ Σi, such that Σ � Σ′

1. σ1
∼=

Σ′
2. σ2 [C]

Σ � Σ1. v1 ∼ Σ2. v2 : b iff v1 = v2 ∈ �
Σ � Σ1. v1 ∼ Σ2. v2 : A → B iff vi = λx:A. ei and Σ � Σ′

1. [v′
1/x]e1

∼=
Σ′

2. [v2/x]e2 : B, for any Σ′
i ⊇ Σi, such

that Σ � Σ′
1. v

′
1 ∼ Σ′

2. v
′
2 : A

Σ � Σ1. v1 ∼ Σ2. v2 : �CA iff vi = box ei and e1 = e2 and Σ �
Σ1. e1

∼= Σ2. e2 : A [C]

Σ � Σ1. v1 ∼ Σ2. v2 : A � B iff vi = νX:A. ei and Σ � (Σ1, X:A). e1
∼=

(Σ2, X:A). e2 : B [ ], where X is a fresh

name.

Here we abbreviated:

Σ � Σ1. σ1
∼= Σ2. σ2 [C] iff σ1, σ2 are explicit substitutions for the names

in C , such that Σ � Σ1. σ1(X) ∼= Σ2. σ2(X) :

B [ ] for any name X ∈ C such that X:B ∈ Σ.

The most important parts of the above definition are the cases defining the

relation for values at functional, modal types and � types. The definition for values

at functional types formalizes the intuition that we outlined before: two functions

are related if they map related arguments to related results. The definition for values

at modal types contrasts the notions of intensional vs. extensional. We consider

two values box e1 and box e2 extensionally related iff the expressions e1 and e2

are intensionally related. Observe, however, that in the definition we actually insist

on the additional requirement that e1 and e2 be extensionally related as well. This

extra clause is added because, at this stage of development, it is not obvious that

intensional equivalence of expressions implies their extensional equivalence. For that

matter, it is not obvious at this point that that the two new relations are indeed

equivalences at all. We will prove both of these properties in due time, but we

need to start the development with a sufficiently strong definition. The definition for

values νX. e1 and νX. e2 at the A � B type generates a fresh name X, and then

tests e1 and e2 for equivalence in the local contexts extended with X.

Notice that the above definitions are well-founded. In order to establish this fact,

let us define ordΣ(X) to be the number of names in Σ on which X depends, and

which thus must appear to the left of X in Σ. This includes the names that appear in

the type of X, the names that appear in the types of these names, etc. The definition

of ordΣ(X) is then invariant of any dependence preserving reordering of Σ.
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In a similar manner, we define ordΣ(A[C]) to be the number of names in Σ on

which the type A and support C depend. These are the names that themselves

appear in the type A or support C , or in the types of these names, etc. Because

a type of a name cannot depend on that name itself, it is clear that if X:A ∈ Σ,

then ordΣ(A) = ordΣ(X). Also, if the name X appears in the type A or support C ,

then ordΣ(X) � ordΣ(A[C]) − 1. This holds because A[C] depends on X and all the

names on which X itself depends.

We can now order the pairs of type A and support C as follows. The pair A[C]

is smaller than B[D] iff

• ordΣ(A[C]) < ordΣ(B[D]), or

• ordΣ(A[C]) = ordΣ(B[D]), but the number of type constructors of A is smaller

than the number of type constructors of B.

It is now easy to observe that each inductive step in the definitions of the relations

strictly decreases this ordering. Indeed, the relation on values preserves the number

of names in the type and support, but makes inductive references using types of

strictly smaller structure. The relation on expressions with non-empty support C

relies on explicit substitutions over the names in C . But for each name X ∈ C with

X:B ∈ Σ, it is clear that ordΣ(B) = ordΣ(X) � ordΣ(A[C]) − 1.

We next extend our relations to handle expressions with free variables. We start

with expressions of empty support.

Σ; ·; Γ � Σ1. e1
∼= Σ2. e2 : A [ ] iff Σ � Σ′

1. [ρ1/Γ]e1
∼= Σ′

2. [ρ2/Γ]e2 :

A [ ] for any Σ′
i ⊇ Σi, such that

Σ � Σ′
1. ρ1 ∼ Σ′

2. ρ2 : Γ

In this definition, ρ1, ρ2 are arbitrary substitutions of values for variables in Γ, and

we write:

Σ � Σ1. ρ1 ∼ Σ2. ρ2 : Γ iff Σ � Σ1. ρ1(x) ∼ Σ2. ρ2(x) : A whenever

x:A ∈ Γ
In the next step, we consider expressions of arbitrary support.

Σ; ·; Γ � Σ1. e1
∼= Σ2. e2 : A [C] iff Σ; ·; Γ � Σ′

1. {σ1}e1
∼= Σ′

2. {σ2}e2 :

A [ ] for any Σ′
i ⊇ Σi, such that

Σ; Γ � Σ′
1. σ1

∼= Σ′
2. σ2 [C]

where σ1, σ2 are explicit substitutions, and

Σ; Γ � Σ1. σ1
∼= Σ2. σ2 [C] iff Σ; ·; Γ � Σ1. σ1(X) ∼= Σ2. σ2(X) : B [ ] for any

name X ∈ C such that X:B ∈ Σ

Finally, the relation is extended with the context ∆ as follows.

Σ; ∆; Γ � Σ1. e1
∼= Σ2. e2 : A [C] iff Σ; ·; Γ � Σ′

1. [[δ1/∆]]e1
∼=

Σ′
2. [[δ2/∆]]e2 : A [C] for any Σ′

i ⊇ Σi,

such that Σ � Σ′
1. δ1 = Σ′

2. δ2 : ∆
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where δ1, δ2 are arbitrary substitutions of expressions for modal variables in ∆, and

Σ � Σ1. δ1 = Σ2. δ2 : ∆ iff δ1(u) = δ2(u) and Σ � Σ1. δ1(u) ∼=
Σ2. δ2(u) : A [C] whenever u:A[C] ∈ ∆

The above definitions are well-founded, as each one refers only to already

introduced definitions. For the sake of completeness, we also parametrize the

intensional relation = with the context ∆, as this will be needed in the statement of

Lemma 20.

Σ; ∆ � Σ1. e1 = Σ2. e2 : A [C] iff [[δ1/∆]]e1 = [[δ2/∆]]e2 for any Σ′
i ⊇ Σi,

such that Σ � Σ′
1. δ1 = Σ′

2. δ2 : ∆

Example 7 Let Σ = X:int. Then the following are valid instances of intensional

equivalence.

1. Σ; · � X + 1 = X + 1 : int [X]

2. Σ; u:int[X] � (Y :int). 〈X → 1, Y → 2〉u = 〈X → 1〉u : int [ ]

�

Example 8 Consider the simple expression e such that Σ; ∆; Γ � choose (νX:B. box e) :

�int. In such a case, it is easy to see that Σ; ∆; Γ � choose (νX:B. box e) ∼=
choose (νX:B. box e) : �int.

First notice that we can assume Γ to be empty as, by typing, e cannot contain

variables from Γ. We can assume that ∆ is empty as well; this will not result in

any loss of generality because the relation of intensional equivalence is closed with

respect to modal substitutions δ.

The above relation holds if and only if the two instances of the expression

choose (νX:B. box e) evaluate to related values. But, indeed they do, as the particular

choice of X in the evaluation of the expressions does not influence e. In fact, because

e is a simple expression, the only names that may appear in box e are the ones

appearing in its type. In this case, the type in question is �int, and it does not

contain any names.

Because of reflexivity of α-equivalence, e = e. By determinacy of evaluation, it is

also the case that Σ � e ∼= e : int. Thus, we can conclude that Σ � box e ∼= box e :

�int. �

Lemma 15 (Name permutation)

Let R1 : Σ1 → Σ′
1 and R2 : Σ2 → Σ′

2 be bijections where Σ′
1 and Σ′

2 are well-formed

in Σ. Then:

1. if Σ � Σ1. e1
∼= Σ2. e2 : A [C], then Σ � Σ′

1. R1 e1
∼= Σ′

2. R2 e2 : A [C]

2. if Σ � Σ1. v1 ∼ Σ2. v2 : A, then Σ � Σ′
1. R1 v1 ∼ Σ′

2. R2 v2 : A

Proof

By induction on the structure of the definition of the two judgments.
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For the first induction hypothesis, we start by considering the base case when C

is empty. In this case, if (Σ,Σi), ei �−→∗ (Σ,Σi,Ψi), vi, then by parametricity of the

evaluation judgment, we also have (Σ,Σ′
i), ei �−→∗ (Σ,Σ′

i,Ψi), Ri vi. Then we appeal to

the second induction hypothesis, to derive that Σ � (Σ′
1,Ψ1). R1 v1 ∼ (Σ′

2,Ψ2). R2 v2 :

A. The result is easily extended to the case when C is not empty.

For the second induction hypothesis, the only interesting case is when A = �DB,

which is proved by appealing to the first induction hypothesis, and the fact that

name permutation does not change the = relation on simple terms. �

Lemma 16 (Name localization)

If C is a well-formed support in Σ, then the following holds:

1. (Σ,Σ′) � Σ1. e1
∼= Σ2. e2 : A [C] if and only if Σ � (Σ′,Σ1). e1

∼= (Σ′,Σ2). e2 :

A [C]

2. (Σ,Σ′) � Σ1. v1 ∼ Σ2. v2 : A if and only if Σ � (Σ′,Σ1). v1 ∼ (Σ′,Σ2). v2 : A

Proof

By induction on the structure of the definition of the two judgments.

For the first induction hypothesis, we start by considering the case when C is

empty. Let (Σ,Σ′,Σi), ei �−→∗ (Σ,Σ′,Ψi), vi, and (Σ,Σ′) � Ψ1. v1 ∼ Ψ2. v2 : A. By

second induction hypothesis, Σ � (Σ′,Ψ1). v1 ∼ (Σ′,Ψ2). v2 : A, and thus also

Σ � (Σ′,Ψ1). e1
∼= (Σ′,Ψ2). e2 : A. The opposite direction is symmetric. The result is

easily extended to the case of non-empty C .

For the second induction hypothesis, we present the case when A = A1 → A2, and

vi = λx:A1. ei. In this case, consider Σ′
i ⊇ Σi, such that Σ � (Σ′,Σ′

1). v
′
1 ∼ (Σ′,Σ′

2). v
′
2 :

A1. We need to show Σ � (Σ′,Σ′
1). [v′

1/x]e1
∼= (Σ′,Σ′

2). [v′
2/x]e2 : A2. By induction

hypothesis at type A1, we have that (Σ,Σ′) � Σ′
1. v

′
1 ∼ Σ′

2. v
′
2 : A1, and therefore

(Σ,Σ′) � Σ′
1. [v′

1/x]e1
∼= Σ′

2. [v′
2/x]e2 : A2. By induction hypothesis at type A2, we

can push Σ′ back inside to get Σ � (Σ′,Σ′
1). [v′

1/x]e1
∼= (Σ′,Σ′

2). [v′
2/x]e2 : A2. The

opposite direction is symmetric. �

Lemma 17 (Weakening)

Let Σ′ ⊇ Σ, Σ′
1 ⊇ Σ1 and Σ′

2 ⊇ Σ2, so that Σ′
1 and Σ′

2 are well-formed with respect

to Σ′. Then the following holds:

1. if Σ � Σ1. e1
∼= Σ2. e2 : A [C], then Σ′ � Σ′

1. e1
∼= Σ′

2. e2 : A [C]

2. if Σ � Σ1. v1 ∼ Σ2. v2 : A, then Σ′ � Σ′
1. v1 ∼ Σ′

2. v2 : A

Proof

By name localization (Lemma 16), it suffices to consider Σ′ = Σ. The proof is by

simultaneous induction on the definition of the two judgments.

For the first statement, we only consider the case when C is empty, as the result

is easily generalized to non-empty C . In this case, let (Σ,Σi), ei �−→∗ (Σ,Σi,Ψi), vi,

such that Σ � (Σ1,Ψ1). v1 ∼ (Σ2,Ψ2). v2 : A. By name permutation, we could assume

that Ψ1,Ψ2 are disjoint from Σ′
1,Σ

′
2, so that also (Σ,Σ′

i), ei �−→∗ (Σ,Σ′
i,Ψi), vi. Then

by second induction hypothesis, Σ � (Σ′
1,Ψ1). v1 ∼ (Σ′

2,Ψ2). v2 : A, and therefore

Σ � Σ′
1. e1

∼= Σ′
2. e2 : A.
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For the second induction hypothesis, the only interesting case is when A =

A′ → A′′, and vi = λx:A′. ei. In this case, consider Σ′′
i ⊇ Σ′

i, such that Σ � Σ′′
1 . v

′′
1 ∼

Σ′′
2 . v

′′
2 : A′. By definition, Σ � Σ′′

1 . [v′′
1/x]e1

∼= Σ′′
2 . [v′′

2/x]e2 : A′′, simply because

Σ′′
i ⊇ Σ′

i ⊇ Σi. �

Lemma 18 (Symmetry and transitivity)

1. If Σ � Σ1. e1
∼= Σ2. e2 : A [C], then Σ � Σ2. e2

∼= Σ1. e1 : A [C].

2. If Σ � Σ1. v1 ∼ Σ2. v2 : A, then Σ � Σ2. v2 ∼ Σ1. v1 : A.

3. If Σ � Σ1. e1
∼= Σ2. e2 : A [C], and Σ � Σ2. e2

∼= Σ3. e3 : A [C], then

Σ � Σ1. e1
∼= Σ3. e3 : A [C]

4. If Σ � Σ1. v1 ∼ Σ2. v2 : A, and Σ � Σ2. v2 ∼ Σ3. v3 : A, then Σ � Σ1. e1 ∼
Σ3. v3 : A

Proof

Symmetry is obvious, so we present the proofs for transitivity. The proofs are by

induction on the definition of the judgments. For transitivity of the relation on

expressions, we only consider the case when the supports Ci are empty, as it is easy

to generalize to the case of non-empty supports.

By assumptions, (Σ,Σ1), e1 �−→ (Σ,Ψ1), v1, and (Σ,Σ2), e2 �−→ (Σ,Ψ2), v2, such

that Σ � Ψ1. v1 ∼ Ψ2. v2 : A. Also, (Σ,Σ2), e2 �−→ (Σ,Ψ′
2), v

′
2, and, (Σ,Σ3), e3 �−→

(Σ,Ψ3), v3, such that Σ � Ψ′
2. v

′
2 ∼ Ψ3. v3 : A.

By determinacy of evaluation, we know that there is a permutation of names π such

that Ψ2 = π(Ψ′
2) and v2 = π(v′

2), and thus by Lemma 15, Σ � Ψ2. v2 ∼ Ψ3. v3 : A.

Then, by the last induction hypothesis, Σ � Ψ1. v1 ∼ Ψ3. v3 : A, and therefore,

Σ � Σ1. e1 ∼ Σ3. e3 : A.

For the relation on values, we only present the case A = A1 → A2 and vi =

λx:A1. ei. In this case, let Σ′
1 ⊇ Σ1 and Σ′

3 ⊇ Σ3, such that Σ � Σ′
1. v

′
1 ∼ Σ′

3. v
′
3 : A1.

By name permutation, we can assume that Σ′
3 and Σ2 are disjoint; otherwise, we

can just rename the conflicting names in Σ2. By symmetry and transitivity at type

A1, we obtain Σ � Σ′
3. v

′
3 ∼ Σ′

3. v
′
3 : A1. By weakening, Σ � Σ′

1. v
′
1 ∼ Σ2,Σ

′
3. v

′
3 and

Σ � Σ2,Σ
′
3. v

′
3 ∼ Σ′

3. v
′
3; therefore Σ � Σ′

1. [v′
1/x]e1

∼= (Σ2,Σ
′
3). [v′

3/x]e2 : A2 and

Σ � (Σ2,Σ
′
3). [v′

3/x]e2
∼= Σ′

3. [v′
3/x]e3 : A2. Finally, by first induction hypothesis at

type A2, we get Σ � Σ′
1. [v

′
1/x]e1

∼= Σ′
3. [v

′
3/x]e3 : A2. �

It is simple now to extend the above results to logical relations over expressions

with free variables. The following lemma restates the relevant properties.

Lemma 19

1. (Name permutation) Let R1 : Σ1 → Σ′
1 and R2 : Σ2 → Σ′

2 be bijections where

Σ′
1 and Σ′

2 are well-formed in Σ. If Σ; ∆; Γ � Σ1. e1
∼= Σ2. e2 : A [C], then

Σ; ∆; Γ � Σ′
1. R1 e1

∼= Σ′
2. R2 e2 : A [C].

2. (Name localization) Let ∆, Γ, A, C are well-formed in Σ. Then (Σ,Σ′); ∆; Γ �
Σ1. e1

∼= Σ2. e2 : A [C] if and only if Σ; ∆; Γ � (Σ′,Σ1). e1
∼= (Σ′,Σ2). e2 : A [C].

3. (Weakening) Let Σ′ ⊇ Σ, and Σ′
1 ⊇ Σ1, Σ′

2 ⊇ Σ2, ∆′ ⊇ ∆, Γ′ ⊇ Γ and

C ′ ⊇ C , so that Σ′
1,Σ

′
2,∆

′, Γ′ and C ′ are well-formed with respect to Σ′. If

Σ; ∆; Γ � Σ1. e1
∼= Σ2. e2 : A [C], then Σ′; ∆′; Γ′ � Σ′

1. e1
∼= Σ′

2. e2 : A [C ′].
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4. (Symmetry) If Σ; ∆; Γ � Σ1. e1
∼= Σ2. e2 : A [C], then Σ; ∆; Γ � Σ2. e2

∼= Σ1. e1 :

A [C].

5. (Transitivity) If Σ; ∆; Γ � Σ1. e1
∼= Σ2. e2 : A [C], and Σ; ∆; Γ � Σ2. e2

∼=
Σ3. e3 : A [C], then Σ; ∆; Γ � Σ1. e1

∼= Σ3. e3 : A [C]

Proof

The proofs proceed in a straightforward manner, following the definition of the

judgment on open expressions. First we consider the case when Γ is non-empty, but

both C and ∆ are empty. Then we generalize to the case of non-empty C , before

finally a non-empty context ∆ is considered. Just as in the definition of the logical

relations, it is easy to check that in each step of the proof we only rely on the

previously established results. �

To complete the logical relations argument, we need to define the notion of

extensional relation on the remaining syntactic category of ν� – the category of

explicit substitutions. This definition will be utilized in the statement and the proof

of Lemma 20 to establish that term constructors of ν� (in particular, the constructs

for explicit substitutions and modal variables) preserve extensional equivalence.

The judgment for logical relation of extensional equivalence between two explicit

substitutions Θ1 and Θ2 has the form

Σ; ∆; Γ � Σ1. 〈Θ1〉 ∼= Σ2. 〈Θ2〉 : [C] ⇒ [D]

and is defined by the following clauses:

Σ; ·; Γ � Σ1. 〈Θ1〉 ∼=
Σ2. 〈Θ2〉 : [C] ⇒ [D]

iff Σ; ·; Γ � Σ′
1. {Θ1}e1

∼= Σ′
2. {Θ2}e2 : A [D],

for any Σ′
i ⊇ Σi, such that Σ; ·; Γ � Σ′

1. e1
∼=

Σ′
2. e2 : A [C]

Σ; ∆; Γ � Σ1. 〈Θ1〉 ∼=
Σ2. 〈Θ2〉 : [C] ⇒ [D]

iff Σ; ·; Γ � Σ′
1. 〈[δ1/∆]Θ1〉 ∼=

Σ′
2. 〈[δ2/∆]Θ2〉 : [C] ⇒ [D] for any

Σ′
i ⊇ Σi, such that Σ � Σ′

1. δ1 = Σ′
2. δ2 : ∆

As in the case of previous judgments, the relation ∼= on explicit substitutions

satisfies the properties of name permutation, name localization, weakening, symmetry

and transitivity.

Lemma 20

Logical relation is preserved by all the expression constructors of ν�, except box.

The constructor box has a stronger requirement that the expressions are related

intensionally. More precisely:

1. (Σ, X:A); ∆; Γ � Σ1. X ∼= Σ2. X : A [X,C]

2. Σ; ∆; (Γ, x:A) � Σ1. x ∼= Σ2. x : A [C]

3. if Σ; (∆, u:A[D]); Γ � Σ1. 〈Θ1〉 ∼= Σ2. 〈Θ2〉 : [D] ⇒ [C], then

Σ; (∆, u:A[D]); Γ � Σ1. 〈Θ1〉u ∼= Σ2. 〈Θ2〉u : A [C]

4. if Σ; ∆; (Γ, x:A) � Σ1. e1
∼= Σ2. e2 : B [C], then Σ; ∆; Γ � Σ1. λx:A. e1

∼=
Σ2. λx:A. e2 : A → B [C]
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5. if Σ; ∆; Γ � Σ1. e1
∼= Σ2. e2 : A → B [C] and Σ; ∆; Γ � Σ1. e

′
1

∼= Σ2. e
′
2 : A [C],

then Σ; ∆; Γ � Σ1. e1 e
′
1

∼= Σ2. e2 e
′
2 : B [C]

6. If Σ; ∆ � Σ1. e1 = Σ2. e2 : A [C], and Σ; ∆; · � Σ1. e1
∼= Σ2. e2 : A [C], then

Σ; ∆; Γ � Σ1. box e1
∼= Σ2. box e2 : �CA [D]

7. if Σ; ∆; Γ � Σ1. e1
∼= Σ2. e2 : �DA [C] and Σ; (∆, u:A[D]); Γ � Σ1. e

′
1

∼= Σ2. e
′
2 :

B [C], then

Σ; ∆; Γ � Σ1. let box u = e1 in e′
1

∼= Σ2. let box u = e2 in e′
2 : B [C]

8. if Σ; ∆; Γ � (Σ1, X:A). e1
∼= (Σ2, X:A). e2 : B [C], then

Σ; ∆; Γ � Σ1. νX:A. e1
∼= Σ2. νX:A. e2 : A � B [C]

9. if Σ; ∆; Γ � Σ1. e1
∼= Σ2. e2 : A � B [C] then Σ; ∆; Γ � Σ1. choose e1

∼=
Σ2. choose e2 : B [C]

10. Σ; ∆; Γ � Σ1. 〈 〉 ∼= Σ2. 〈 〉 : [C] ⇒ [D] if C ⊆ D

11. if Σ; ∆; Γ � Σ1. e1
∼= Σ2. e2 : A [D], and Σ; ∆; Γ � Σ1. 〈Θ1〉 ∼= Σ2. 〈Θ2〉 :

[C \ X] ⇒ [D], and X:A ∈ Σ, then

Σ; ∆; Γ � Σ1. 〈X → e1,Θ1〉 ∼= Σ2. 〈X → e2,Θ2〉 : [C] ⇒ [D]

Proof

To reduce clutter, we just present the selected cases as if the contexts ∆, Γ and

the support C were empty. The general results are recovered by considering

the interaction between value substitutions ρ, explicit substitutions σ and modal

substitutions δ, which is well-behaved in all the cases of the lemma.

In case of (3), consider Σ′
i ⊇ Σi such that e1 = e2, and Σ � Σ′

1. e1
∼= Σ′

2. e2 : A [D].

We need to show that Σ; ·; · � Σ′
1. {[[e1/u]]Θ1}e1

∼= Σ′
2. {[[e2/u]]Θ2}e2 : A [ ]. From

the assumption, we have Σ; ·; · � Σ′
1. 〈[[e1/u]]Θ1〉 ∼= Σ′

2. 〈[[e2/u]]Θ2〉 : [D] ⇒ [ ],

and then the required equality follows by definition of extensional equivalence for

explicit substitutions

In case of (7), by equivalence of e1 and e2, there exist name sets Ψ1,Ψ2, such

that (Σ,Σ1), e1 �−→∗ (Σ,Ψ1), box t1 and (Σ,Σ2), e2 �−→∗ (Σ,Ψ2), box t2, where t1 =

t2 : A [D], and Σ � Ψ1. t1 ∼= Ψ2. t2 : A [D]. Then it suffices to show that Σ; ·; · �
Ψ1. [[t1/u]]e

′
1

∼= Ψ2. [[t2/u]]e
′
2 : B [ ]. But this follows from the second assumption, by

definition of extensional equivalence.

In case of (11), again consider Σ′
i ⊇ Σi, such that Σ′; ·; · � Σ′

1. e
′
1

∼= Σ′
2. e

′
2 : B [C].

To be consistent with the notation, in this case we assume that D, rather than C , is

empty. To reduce clutter, denote by σ1, σ2 the explicit substitutions σ1 = 〈X → e1,Θ1〉
and and σ2 = 〈X → e2,Θ2〉. Then we need to show that Σ; ·; · � Σ′

1. {σ1}e′
1

∼=
Σ′

2. {σ2}e′
2 : B [ ]. To establish this, it suffices to prove that Σ; · � Σ′

1. σ1
∼= Σ′

2. σ2 [C],

i.e., that Σ; ·; · � Σ′
1. σ1(Z) ∼= Σ′

2. σ2(Z) : A′ [ ] for any name Z ∈ C such that

Z:A′ ∈ Σ. Then the result would follow from the extensional equivalence of e′
1

and e′
2. We consider two cases: Z = X, and Z ∈ C \ X. If Z = X, then A′ = A

and σi(Z) = ei and by first assumption, Σ; ·; · � Σ1. σ1(Z) ∼= Σ2. σ2(Z) : A. By

weakening, this implies Σ; ·; · � Σ′
1. σ1(Z) ∼= Σ′

2. σ2(Z) : A. If Z ∈ C \ X, then

σi(Z) = {Θi}Z , and also obviously Σ; ·; · � Σ′
1. Z

∼= Σ′
2. Z : A′ [C \ X]. Then by the

second assumption, Σ; ·; · � Σ′
1. σ1(Z) ∼= Σ′

2. σ2(Z) : A′ [ ]. The two cases combined

demonstrate Σ; · � Σ′
1. σ1

∼= Σ′
2. σ2 [C], and this completes the proof. �
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Lemma 21 (Reflexivity)

1. If Σ; ∆; Γ � e : A [C], then Σ; ∆; Γ � e ∼= e : A [C]

2. If Σ; ∆; Γ � 〈Θ〉 : [C] ⇒ [D], then Σ; ∆; Γ � 〈Θ〉 ∼= 〈Θ〉 : [C] ⇒ [D]

Proof

By induction on the structure of e and Θ, using Lemma 20. �

The lemma has several more interesting consequences. As a first observation, it

shws that the ν�-calculus, as considered in this section (i.e., with no recursion), is

terminating. Indeed, our definition of logical relations on expressions required that

related expressions evaluate to related values. Thus, if a well-typed expressions of

the calculus is related to itself, than it must have a value.

The second consequence of the lemma is that intensionally related expressions are

at the same time extensionally related as well. In other words, if Σ; ∆ � Σ1. e1 =

Σ2. e2 : A [C], where e is a simple term, then Σ; ∆; · � Σ1. e1
∼= Σ2. e2 : A [C].

This property trivially follows from the reflexivity, simply because the intensional

equivalence, as defined on closed simple terms equates two terms if and only

if they are the same (up to α-renaming) and – more importantly – well-typed.

Then the reflexivity lemma can be applied As a result, extensional equivalence of

modal expressions box e1 and box e2 need not compare e1 and e2 for extensional

equivalence (as it is required by the definition), but can only rely on their intensional

equivalence. This is important, as intensional equivalence, contrary to the extensional

one, is defined inductively, and can be carried out as an algorithm.

Lemma 22 (Fundamental property of logical relations)

If Σ; ∆; Γ � Σ1. e1
∼= Σ2. e2 : A [C], then

1. if Σ; ∆; (Γ, x:A) � e : B [C], then Σ; ∆; Γ � Σ1. [e1/x]e ∼= Σ2. [e2/x]e : B [C]

2. if Σ; ∆; (Γ, x:A) � 〈Θ〉 : [C1] ⇒ [C], then

Σ; ∆; Γ � Σ1. 〈[e1/x]Θ〉 ∼= Σ2. 〈[e2/x]Θ〉 : [C1] ⇒ [C]

Proof

By straightforward simultaneous induction on the structure of the two typing

derivations, using the fact that the term constructors of the language preserve

the logical relation. �

After developing the theory of the two relations, we will use it to prove some

interesting equivalences in the calculus. But before we do that in the next lemma,

let us remark on an important property of the our presentation. If we dropped the

requirement of intensional equivalence when comparing values of modal types that

would correspond to treating modal values extensionally, rather than intensionally.

In fact, that may be a more relevant approach for this paper, as in the current

presentation of ν� we do not consider any constructs for structural analysis of

modal expressions. In this case, we do not have to limit the modal expressions to

only simple expressions.

Finally, the next lemma lists some equivalences which hold in ν� (irrespective of

the treatment of modal values as intensional or extensional entities). Observe that

the list includes all the β-reductions and η-expansions of ν�. In this sense, we can

claim that the calculus presented in this paper is purely functional.
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Lemma 23

In the logical equivalences below we assume that all the judgments are well-formed

and that the terms are well-typed in appropriate contexts.

1. Σ; ∆; Γ � (λx. e1) e2
∼= [e2/x]e1 : A [C]

2. Σ; ∆; Γ � e ∼= λx. (e x) : A → B [C]

3. Σ; ∆; Γ � let box u = box e1 in e2
∼= [[e1/u]]e2 : B [C]

4. Σ; ∆; Γ � e ∼= let box u = e in box u : �DB [C]

5. Σ; ∆; Γ � choose (νX:A. e) ∼= (X:A). e : B [C]

6. Σ; ∆; Γ � (X:A). e ∼= νX:A. choose e : A � B [C]

7. Σ; ∆; Γ � λz:A. choose (νX:A1. e) ∼= choose (νX:A1. λz:A. e) : A → B [C]

8. Σ; ∆; Γ � νX. νY . e ∼= νY . νX. e : A � A � B [C]

9. Σ; ∆; Γ � e1 (choose (νX:A. e2)) ∼= choose (νX:A. (e1 e2)) : B [C]

10. Σ; ∆; Γ � (choose (νX:A. e1)) e2
∼= choose (νX:A. (e1 e2)) : B [C]

Proof

Again, in order to reduce clutter, we present the proofs of these statements in the

case when ∆, Γ, C are empty. In the general cases, we need to consider interactions

between value substitutions ρ, explicit substitutions σ and modal substitutions δ,

but these pose no problems.

In the case ∆, Γ and C are empty, the statements (3) and (4) are trivial, as the two

expressions evaluate to the same value. In (5), the expressions evaluate to the same

value, modulo the choice of a local name Y to stand for X in choose (νX:A. e). But

this choice is irrelevant, by the name permutation property. The statement (10) is

completely symmetric to (9).

To establish (1), let Σ; ·; x:B � e1 : A, and Σ; ·; · � e2 : B. As the calculus is

terminating, there exist Ψ and v2 such that Σ, e2 �−→∗ (Σ,Ψ), v2, and therefore also

Σ � e2
∼= Ψ. v2 : B. By the fundamental property of logical relations (Lemma 22),

Σ � [e2/x]e1
∼= Ψ. [v2/x]e1 : A. But it is also the case that Σ � (λx. e1) e2

∼=
Ψ. [v2/x]e1 : A, simply because the two expressions evaluate to the same value. Then

by transitivity, we get Σ � (λx. e1) e2
∼= [e2/x]e1 : A.

To establish (2), let Σ, e �−→∗ (Σ,Ψ), (λx. e′), so that Σ; ·; · � e ∼= Ψ. (λx. e′) :

A → B. By transitivity, this holds if Σ � Ψ. λx. e′ ∼ λx. (e x) : A → B. To

prove this, consider Σ′
1,Σ

′
2 such that Σ � Ψ,Σ′

1. v1 ∼ Σ′
2. v2 : A. It suffices to

show Σ � (Ψ,Σ′
1). [v1/x]e′ ∼= Σ′

2. (e v2) : B. By the name permutation property

(Lemma 15), we can assume that Ψ and Σ2 are disjoint. By the properties of

evaluation, (Σ′,Σ′
2), (e v2) �−→∗ (Σ′,Σ′

2,Ψ), [v2/x]e′, and thus

Σ � Σ′
2. (e v2) ∼= (Ψ,Σ′

2). [v2/x]e′ (*)

By type preservation, (Σ,Ψ); ·; x:A � e′ : B [ ], and thus by reflexivity Σ; ·; x:A �
Ψ. e′ ∼= Ψ. e′ : B [ ]. Then by definition,

Σ � (Ψ,Σ′
1). [v1/x]e′ ∼= (Ψ,Σ′

2). [v2/x]e′ : B (**)

Finally, from (*) and (**), by transitivity, we obtain the required

Σ � (Ψ,Σ′
1). [v1/x]e′ ∼= Σ′

2. (e v2) : B.
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To establish (6), let (Σ, X:A), e �−→ (Σ, X:A,Ψ), (νY :A. e′). Then, by definition, we

have Σ � (X:A). e ∼= (X:A,Ψ). (νY :A. e′) : A � B. By transitivity, it suffices to show

that Σ � (X:A,Ψ). νY :A. e′ ∼ νX:A. choose e : A � B

By definition of the logical relation for values at the type A � B, this holds

if and only if Σ � (X:A,Ψ, Y :A). e′ ∼= X:A. choose e : B. Indeed, we could

chose X:A in the local context of the second argument by the name permuta-

tion property. But the last equation is obviously true, as (Σ, X:A), choose e �−→∗

(Σ, X:A,Ψ), choose (νY :A. e′) �−→ (Σ, X:A,Ψ, Y :A), e′.

For (7), the considered equivalence holds iff Σ � λz:A. choose (νX:A1. e) ∼=
(X:A1). λz:A. e : A → B, iff Σ; ·; z:A � choose (νX:A1. e) ∼= (X:A1). e : B. But this is

true by (6).

To establish (8), notice that by definition, the required equivalence holds if and

only if Σ � (X:A, Y :A). e ∼= (Y :A,X:A). e : B. In this equation, we are justified in

choosing the same names X and Y in both sides, by the name permutation property

(Lemma 15). But the contexts (X:A, Y :A) and (Y :A,X:A) are same, because the

type A does not depend on neither X nor Y . Thus, the result follows by reflexivity

of ∼=.

To establish (9), it suffices to show that Σ � e1
∼= (X:A). e1 : B′ → B and that

Σ � choose (νX:A. e2) ∼= (X:A). e2 : B′. Then the result would be implied by the fact

that term constructors preserve the equivalence. The first of the above equivalences

follows by reflexivity and weakening. The second has already been established as

the β-reduction for the type A � B′. �

The developed logical relations analyze the equivalence of terms from the outside,

rather than by considering their observable operational behavior. A more general

notion of equivalence is the contextual equivalence, by which two terms e1 and e2 are

related if and only if any observable behavior produced by a use of e1 in a complete

program is also produced by a use of e2, and vice versa.

Logical relations, however, are related to contextual equivalence in the following

sense: whenever two terms are logically equated, their behavior in any program

context is indiscernible. In other words, logical equivalence is sound with re-

spect to the contextual equivalence. We establish this result in the remainder of

the section. The opposite direction of this implication, that is, the completeness

of the logical relations with respect to contextual equivalence remains future

work.

We start by formalizing what it means to use an expression in a program.

For that reason, we define two notions of program contexts: a notion of expres-

sion contexts, and a notion of substitution context. An expression context (resp.

substitution context) is an expression E (substitution F) with a hole, where the

whole can be filled with some expression. We write E[e] (F[e]) for the expression

(substitution) obtained when the hole of E is filled with e. Furthermore, we

consider only contexts that are extensional, i.e. whose hole does not appear under a

box.

A more formal definition of extensional expression and substitution contexts is

given in the table below.
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Extensional expression contexts E ::= [ ] | X | x | 〈F〉u | λx:A. E | E1 E2 |
box e | let box u = E1 in E2 |
νX:A. E | choose E

Extensional substitution contexts F ::= · | X → E,F

The decision to restrict extensional contexts so that the hole does not appear

under box deserves further explanation: we do this in order to distinguish extensional

contextual equivalence from the related notion of intensional contextual equivalence.

Intensional contextual equivalence studies the behavior of terms in a language with

intensional operations on the syntactic object-level terms – operations like syntactic

comparison or pattern-matching against a syntactic term. The associated notion of

intensional context would permit the hole to appear in a scope of a box, and allow

the intensional operations to act on the boxed hole.

The two contextual relations are obviously different. In a language with intensional

operations, conflating them leads to unsoundness, as has already been observed in

the case of MetaML in (Taha, 2000). Indeed, two expressions that should be

extensionally equal, like a function application and its β-reduction, cannot be

considered intensionally equal because they do have observably different shapes.

However, both contextual relations can be defined and studied; all it takes is to

appropriately restrict extensional contexts so that the context hole does not appear

in the scope of a box. This is justified because box turns intensionally related

expressions into extensionally related ones (as shown in Lemma 20), but does not

necessarily preserve the extensional relation itself.

We return now to our development of extensional equivalence, and prove that

the extensional relation on expressions and substitutions, as defined previously, is a

congruence with respect to extensional contexts.

Lemma 24 (Congruence)

If Σ; ∆; Γ � Σ1. e1
∼= Σ2. e2 : A [C], and E, F are an expression and substitution

context respectively, then the following holds.

1. Σ′; ∆′; Γ′ � Σ′
1. E[e1] ∼= Σ′

2. E[e2] : B [D], if E[e1], E[e2] are well-typed in their

appropriate variable contexts.

2. Σ′; ∆′; Γ′ � Σ′
1. 〈F[e1]〉 ∼= Σ′

2. 〈F[e2]〉 : [D] ⇒ [D′], if F[e1], F[e2] are

well-typed in their appropriate variable contexts.

Proof

By straightforward simultaneous induction on the structure of E and F, using

Lemma 20. �

The use of an expression in a complete program context of base type defines the

contextual equivalence between expressions in the following way.

Definition 25 (Extensional contextual equivalence)

Let e1, e2 be well-typed expressions such that Σ,Σ1; ∆; Γ � e1 : A [C], and Σ,Σ2; ∆;

Γ � e2 : A [C], where Σi are local to ei. Then e1 and e2 are contextually equivalent,

written

Σ; ∆; Γ � Σ1. e1
∼=ctx Σ2. e2 : A [C]
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if and only if for every extensional expression context E such that � E[e1] : b and

� E[e2] : b, we have

E[e1] �−→∗ v iff E[e2] �−→∗ v.

It is trivial to show that the defined relation is indeed an equivalence. We can now

proceed to establish the soundness of the logical relations with respect to contextual

equivalence, as we only need to restrict the attention to program contexts of base

types.

Lemma 26

If Σ; ∆; Γ � e1
∼= e2 : A [C], then Σ; ∆; Γ � e1

∼=ctx e2 : A [C].

Proof

By the congruence property of ∼= (Lemma 24), for any well-typed extensional context

E, we have that E[e1] ∼= E[e2]. In the special case when E[ei] are closed and of base

type b, the relation � E[e1] ∼= E[e2] : b by definition implies that E[e1] and E[e2]

evaluate to the same value. Because E is chosen arbitrarily, the expressions e1 and

e2 are contextually equivalent. �

6 Related work

The work presented in this paper lies in the intersection of several related areas:

staged computation and partial evaluation, run-time code generation, metaprogram-

ming, modal logic and higher-order abstract syntax.

An early reference to staged computation is Ershov (1977), which introduces staged

computation under the name of “generating extensions”. Generating extensions

for purposes of partial evaluation were also foreseen by Futamura (1971), and

the concept is later explored and eventually expanded into multi-level generating

extensions by others (Jones et al., 1985; Glück & Jørgensen, 1995; Glück &

Jørgensen, 1997). Most of this work is done in an untyped setting.

The typed calculus that provided the direct motivation and foundation for our

system is the λ�-calculus. It evolved as a type theoretic explanation of staged

computation (Davies & Pfenning, 2001; Wickline et al., 1998a), and run-time code-

generation (Nielson & Nielson, 1988; Lee & Leone, 1996; Wickline et al., 1998b),

and we described it in section 2.

A significant amount of work on functional metaprogramming today is related

to the development of MetaML (Taha & Sheard, 1997; Moggi et al., 1999; Taha,

1999; Taha, 2000) and its variant MetaOCaml (Calcagno et al., 2003b; Taha &

Nielsen, 2003), which are themselves extensions of the the λ©-calculus. Formulated

by (Davies, 1996), λ© features a type constructor © that classifies open object code.

The original motivation of λ© was to develop a type system for binding-time analysis

in the setup of partial evaluation, but it was quickly adopted for metaprogramming

through the development of MetaML.

MetaML builds upon the open code type constructor of λ© and generalizes the

language with several features. The most important one is the addition of a type

refinement for closed code. Values classified by the closed code types are those open
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code expressions that do not contain any free variables from the present stage. If

an expression is typed as a closed code, then it may be evaluated.

It might be of interest here to point out a certain similarity between our concept of

supports and the dead-code annotations used in MetaML with references (Calcagno

et al., 2003a). MetaML cannot naively allow references to open code, to avoid the

extrusion of scope of bound variables. At the same time, limiting references to closed

code types is too restrictive because it disallows references to functions. Thus, scope

extrusion has to be allowed, but only if the extruding variables are never encountered

during evaluation. As a solution, MetaML with references annotates each term with

the list of free variables that the term is allowed to contain in dead-code positions.

In contrast to MetaML, in the ν�-calculus, free variables are represented by

names, and they are built into the calculus from the beginning. As a consequence,

only one modal constructor suffices to classify both closed code and code with free

variables, leading to a conceptually simpler type system. Furthermore, we do not

foresee any significant problems in the extension of ν� with references.

The approach of MetaOCaml to the problem of combining closed and open

code is based on environment classifiers (Taha & Nielsen, 2003). MetaOCaml has

also been extended with type inference for a relatively expressive subset of its

type system in Calcagno et al. (2004). Intuitively, environment classifiers serve as

labels for various object stages of computation; because the stages are labeled, each

stage can be revisited multiple times and variables declared in previous visits can

be reused. This feature provides the functionality of open code. The environment

classifiers are related to our support variables in the sense that they both are

bound by universal quantifiers and they both abstract over sets. Indeed, our support

polymorphism explicitly abstracts over sets of names, while environment classifiers

are used to name parts of the variable context, and thus implicitly abstract over

sets of variables. Syntactically, this implicitness may allow for a more compact

programming idiom. For example, the exponentiation function from section 3, can

be written in MetaOCaml as shown below. In this example we paraphrase the syntax

of MetaOCaml as follows. The type constructor (’a,’b)code classifies object code

of an arbitrary stage ’a and type ’b. Here ’a is an environment classifier. The

constructors .< and >. enclose object code, .~ splices code into a larger context,

and .! explicitly evaluates object code.

fun exp (n:int) (x:(’a, int)code) : (’a, int) code =

if n = 0 then .<1>. else .< .~ x * .~(exp (n-1) x)>.

When applied to an argument 2, the function exp generates an object-level code

for squaring, which can then be explicitly evaluated using the constructor .! to

obtain a function for squaring.

- sqmeta = .<λ x. ~(exp 2 .<x>.)>.

val sqmeta : .<λx. (x * (x * 1))>. : (’a, int -> int) code

- sq = .! sqcode

val sq = [fn] : int -> int
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In contrast to .! from MetaOCaml (which is called run in MetaML), the

ν�-calculus does not need any special constructors for code evaluation. For ex-

ample, if e : �A, then a ν� program for evaluating e can be written simply as

let box u = e in u. In this sense, ν� is more strongly grounded in logic. On

the other hand, the explicit support annotations and support polymorphism of ν�

certainly make it much more verbose than MetaOCaml, and we plan to address

these issues in future work on type and support inference. However, we believe

that the current explicitness of type annotations may also prove beneficial. For

example, explicit support polymorphism, in addition to the type polymorphism,

seems essential for metaprogramming languages that allow recursion over syntactic

object expressions. Such recursion ought to be name-polymorphic (and will thus

require explicit term constructors for abstraction over sets of names), because

scanning past variable binders will have to generate new names to be used as

placeholders for these variables.

Coming from the direction of higher-order abstract syntax, probably the first

work pointing to the importance of binders like ν-abstraction is Miller (1990).

The connection of higher-order abstract syntax to modal logic has been recognized

by Despeyroux, Pfenning and Schürmann in the system presented in Despeyroux

et al. (1997), which was later simplified into a two-level system in Schürmann’s

dissertation (Schürmann, 2000). The system presented in Bjørner (1999) is capable

of pattern-matching against object-level programs, but is not concerned with their

evaluation. There is also Hofmann (1999), which discusses various presheaf models

for higher-order abstract syntax, then Fiore et al. (1999), which explores untyped

abstract syntax in a categorical setup, and an extension to arbitrary types (Fiore,

2002).

However, the work that explicitly motivated our inclusion of names in the calculus

is the series of papers on Nominal Logic and FreshML (Gabbay & Pitts, 2002; Pitts

& Gabbay, 2000; Pitts, 2001; Gabbay, 2000). The names of Nominal Logic are

introduced as the urelements of Fraenkel-Mostowsky set theory. FreshML is a

language for manipulation of object syntax with binding structure based on this

model. Its primitive notion is that of swapping of two names which is then used

to define the operations of name abstraction (producing an α-equivalence class

with respect to the abstracted name) and name concretion (providing a specific

representative of an α-equivalence class).

On the logical side, the most direct influence comes from (Pfenning & Davies,

2001) which presents a natural deduction formulation for propositional S4. But in

general, the interaction between modalities, syntax and names has been of interest

to logicians for quite some time. For example, logics that can encode their own

syntax are the topic of Gödel’s Incompleteness theorems, and some references in

that direction are Montague (1963) andSmoryński (1985). Viewpoints of Attardi &

Simi (1995) and contexts of McCarthy (1993) are similar to our notion of support,

and are used to express relativized truth. Finally, the names from ν� resemble

non-rigid designators of Fitting & Mendolsohn (1999), names of Kripke (1980) and

virtual individuals of Scott (1970), and also touch on the issues of existence and

identity explored in Scott (1979).
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7 Conclusions and future work

This paper presents the ν�-calculus, which is a typed functional language for

metaprogramming, employing a novel way to define a modal type of object

expressions with free variables. The system combines the λ�-calculus (Pfenning

& Davies, 2001) with the notion of names inspired by developments in FreshML

and Nominal Logic (Pitts & Gabbay, 2000; Gabbay & Pitts, 2002; Pitts, 2001;

Gabbay, 2000). The motivation for combining λ� with names comes from the long-

recognized need of metaprogramming to handle object programs with free variables

(Davies, 1996; Taha & Sheard, 1997; Taha, 1999; Moggi et al., 1999). In our setup,

the λ�-calculus provides a way to encode closed object expressions, and names

serve to stand for possibly free variables. Names can be operationally thought of

as locations that are tracked by the type system, so that a name cannot escape the

scope of its introduction form. The set of names appearing in the meta level of a

term is called support of a term. Support of a term is reflected in the typing of a

term, and a term can be evaluated only if its support is empty. We also considered

constructs for support polymorphism.

Names in the ν�-calculus are second-class objects, and it is an important future

work to consider extensions with first-class names and name equality. For example,

it may be possible to define a new type constructor

N : Type → Type,

so that N(A) classifies all the names of type A. The question then becomes how

first-class names interact with the modal operators and with explicit substitutions.

It is likely that such an extension will require explicit substitutions over (ordinary)

variables.

Even when dealing with second-class names, it seems possible that other ap-

proaches may be employed for managing dynamic name generation. For example,

the variable declaration u:A [C] may be viewed as binding the names listed in C ,

so that these names have scope local to the explicit substitutions associated to u.

This idea has been employed in Nanevski et al. (2003) to define a dependently typed

calculus for representing metavariables in logical frameworks.

Finally, it is an important future work to investigate embeddings of λ© and

MetaML into ν�, in order to formally compare the expressiveness of the three

metaprogramming systems. An interesting step in this direction may be to consider

the proof-irrelevance of Pfenning (2001) and Awodey & B auer (2001), as a way to

represent cross-stage persistence of MetaML.
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