CLUSTER CORRELATIONS FOR SCALE-FREE SPECTRA

J.L. Sanz and E. Martínez-González Departamento de Física Moderna Universidad de Cantabria 39005-Santander, Spain.

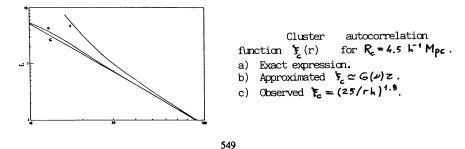
The cluster autocorrelation function $\frac{1}{2}$ and the galaxy-cluster cross correlation $\frac{1}{2}$ are used to test the biased structure formation for scale-free spectra $P(k) \ll k^n$. Following Kaiser (1984), we assume that rich clusters form only at high density regions with the matter distribution represented by a Gaussian random field. Then, the correlation $\frac{1}{2}$ of two regions with characteristic scales R_1 and R_2 lying above the thresholds ν_1 and ν_2 $(\delta \equiv \nu \sigma)$, is given by the expression for the bivariate Gaussian

$$(r_1 R_1, \nu_1 R_2, \nu_2) = -1 + \frac{2}{\pi^{1/2}} \left[erfc(\frac{\nu_1}{2^{1/2}}) erfc(\frac{\nu_2}{2^{1/2}}) \right]^{-1} \int_{z^{-1/2}}^{\infty} dx e^{-x^2} erfc\left[\frac{z^{-1/2} \nu_2 - zx}{(1 - z^2)^{1/2}} \right]$$

where $\mathbf{z}(\mathbf{r})$ is the coviance function, i.e. $\mathbf{z} = \mathbf{x}_{p}(\mathbf{r})/\mathbf{x}_{p}(\mathbf{o})$ and $\mathbf{x}_{p}(\mathbf{r})$ is the correlation of the matter distribution Gaussian filtered on the conoving scales R_{1} and R_{2} . From the previous equations, one can obtain for $P(\mathbf{k})\mathbf{z}\mathbf{k}^{n}, \mathbf{z} \ll 1$ and large \mathbf{r} a power-law form either for \mathbf{x}_{c} or \mathbf{x}_{sc} . Moreover, the amplification factor $A_{c-1c} \equiv \mathbf{x}_{c}/\mathbf{x}_{sc}$ is

$$A_{c-gc} \simeq \left[\frac{G(\nu_1)}{G(\nu_2)}\right]^{1/2} 2^{n+1} \left(\frac{R_2}{R_1}\right)^{\frac{n+3}{2}} , \quad G(\nu) \equiv e^{-\nu^2} \left[erfc\left(\frac{\nu}{2^{1/2}}\right)\right]^{-2}$$

If we want to reproduce the observed autocorrelation $f_c = (r_o/r)^{1.5}$, $r_o \approx 25$ h⁻¹ Mpc, we should then take n=-1.2, $R_c = 4.5$ h⁻¹ Mpc (which implies $\nu_c = 2.9$ for the observed number density $n_c \approx 6 \times 10^{-6}$ h⁻³ Mpc⁻³). Let us consider that the same index n=-1.2 applies to galaxies, then one obtain in the best case for the values of R_g - allowed by the observed masses of galaxies - a decrement $A_{c-gc} \approx 0.2$. This is in clear contrast with the observations, where it is found an amplification of ≈ 4 . The previous result do not changes for different R_c . Therefore, our conclusion is that a scale-free spectrum can reproduce f_c (see Fig.) but is in contradiction with f_{ac} .



J. Audouze et al. (eds.), Large Scale Structures of the Universe, 549. © 1988 by the IAU.