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Abstract. We consider the divisibility of the class numbers of imaginary quadratic
fields �(

√
22k − qn), where q is an odd prime number, k and n are positive integers.

Suppose that k ≡ 1 mod 2 or n �≡ 3 mod 6. We show that the class numbers of
imaginary quadratic fields �(

√
22k − qn) �= �(

√−3) are divisible by n for q ≡ 3 mod 8.
This is a generalization of the result of Kishi for imaginary quadratic fields
�(

√
22k − 3n) when k ≡ 1 mod 2 or n �≡ 3 mod 6. We also show that the class numbers

of imaginary quadratic fields �(
√

22k − qn) �= �(
√−1) are divisible by n for q ≡

1 mod 4 and the class numbers of imaginary quadratic fields �(
√

22k − qn) �= �(
√−3)

are divisible by n for q ≡ 7 mod 8.

2010 Mathematics Subject Classification. 11R11, 11R29.

1. Introduction. In [7] and [1], it was proved that for any positive integer n, there
exist infinitely many imaginary quadratic fields whose class numbers are divisible by n.
Their proofs were given by constructing such quadratic fields explicitly. We begin with
the result of Ankeny–Chowla.

THEOREM A (Ankeny–Chowla [1, Theorem 1]). Let n be a positive even integer and
d := x2 − 3n < 0 be a square-free integer with 2 | x and 0 < x < (2 · 3n−1)

1
2 . Then the

class numbers of imaginary quadratic fields �(
√

d) are divisible by n.

Next, we state the following theorem related with Theorem A.

THEOREM B. For any positive integers k and n with 22k < 3nand (n, k) �= (3, 2), the
class numbers of imaginary quadratic fields �(

√
22k − 3n) are divisible by n.

This theorem was proved by Kishi. (See [5, Theorem 1.2] and [6, Theorem].) In his
paper, it is written that the aim of [5, Theorem 1.2] is to remove the condition ‘square-
free’ in Theorem A for the case when x is a power of two. Our aim is to prove the same
type of his result for the divisibility of the class numbers of imaginary quadratic fields
�(

√
22k − qn), where q is any odd prime number. We obtain the following theorem that

is a generalization of Theorem B for imaginary quadratic fields �(
√

22k − 3n) when
k ≡ 1 mod 2 or n �≡ 3 mod 6.

THEOREM 1. Let q be an odd prime number, n and k be positive integers with 22k < qn.
(1) For the case q ≡ 3 mod 8, if n and k satisfy either (i) k ≡ 1 mod 2 or (ii) n �≡

3 mod 6, then the class numbers of imaginary quadratic fields �(
√

22k − qn)
except �(

√−3) are divisible by n.
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(2) For the case q ≡ 1 mod 4, the class numbers of imaginary quadratic fields
�(

√
22k − qn) except �(

√−1) are divisible by n.
(3) For the case q ≡ 7 mod 8, the class numbers of imaginary quadratic fields

�(
√

22k − qn) except �(
√−3) are divisible by n.

From this theorem, we obtain two corollaries. When q ≡ 11, 23 mod 24, we can
show �(

√
22k − qn) �= �(

√−3).

COROLLARY 1. Let q be an odd prime number such that q ≡ 11, 23 mod 24, n and k
be positive integers with 22k < qn. For q ≡ 11 mod 24, if k ≡ 1 mod 2 or n �≡ 3 mod 6,
then the class numbers of imaginary quadratic fields �(

√
22k − qn) are divisible by n.

For q ≡ 23 mod 24, the class numbers of imaginary quadratic fields �(
√

22k − qn) are
divisible by n.

When n is even, we can also obtain �(
√

22k − qn) �= �(
√−3) for any positive

integers k, where q ≡ 3 mod 4 is a prime number.

COROLLARY 2. Let q be an odd prime number such that q ≡ 3 mod 4 and n be a
positive even integer. For any positive integers k with 22k < qn, the class numbers of
imaginary quadratic fields �(

√
22k − qn) are divisible by n.

To show Theorem 1, it is essential to construct an ideal of O
�(

√
22k−qn)

such that

the order of the ideal class is n and we approach this point as follows. Let

α := 2k +
√

22k − qn ∈ �

(√
22k − qn

)
,

where q is an odd prime integer, n ≥ 1, and k ≥ 1 are integers with 22k < qn. Since
α ∈ O

�(
√

22k−qn)
, N(α) = qn, (q, 22k − qn) = 1 and q � α, it follows that

(α) = ℘n

for some ideal ℘ of O
�(

√
22k−qn)

, where N denotes the norm. Then, the order of the ideal

class [℘] divides n and we will show the order of [℘] is n. To prove it, it is important
to show that ±α is not a pth power in O

�(
√

22k−qn)
for any prime p dividing n (see

Lemma 4).
This paper is organized as follows. In Section 2, we state a result of Bugeaud–

Shorey on positive integer solutions of some Diophantine equation. In Section 3, we
prepare some lemmas for the proof of Theorem 1. By using the result of Bugeaud–
Shorey, we show that the number of positive integer solutions (x, y) of the equation
D1x2 + 22k = qy is at most one except for (D1, k, q) = (1, 1, 5), where D1 is an odd
positive integer (see Lemma 3). This is necessary to prove that ±α is not a pth power
in O

�(
√

22k−qn)
. In Section 4, we prove Theorem 1 and Corollaries 1, 2. In Section 5, we

state a remark on Theorem 1 (1) for the case when n ≡ 3 mod 6 and k ≡ 0 mod 2. We
obtain an example that the class number of the field �(

√
22k − qn) is not divisible by n

when q = 11 (see Example in Section 5).
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REMARK. Imaginary quadratic fields (whose class numbers are divisible by a
given positive integer) that are constructed in [3, 4] also do not have the ‘square-free’
condition.

2. A result of Bugeaud–Shorey. We state a result of Bugeaud–Shorey ([2, Theo-
rem 1)] which is necessary in Section 3.

We define the sets F ,G,Hλ ⊂ � × � × � by

F := {(Fk−2ε, Lk+ε, Fk) | k ≥ 2, ε ∈ {±1}},

G := {(1, 4pr − 1, p) | p is an odd prime, r ≥ 1},

Hλ :=

⎧⎪⎪⎨
⎪⎪⎩

there exist positive integers r, s, D1, D2

and an odd prime p with gcd (D1, D2) = 1,
(D1, D2, p)

p � D1D2 such that D1s2 + D2 = λ2pr

and 3D1s2 − D2 = ±λ2

⎫⎪⎪⎬
⎪⎪⎭ ,

where Fn denotes the nth number in the Fibonacci sequence defined by F0 := 0, F1 :=
1, Fn+2 := Fn+1 + Fn (n ≥ 0) and Ln denotes the nth number in the Lucas sequence
defined by L0 := 2, L1 := 1, Ln+2 := Ln+1 + Ln (n ≥ 0).

THEOREM C (Bugeaud–Shorey [2, Theorem 1]). For any given λ ∈ {1,
√

2, 2}, a
prime p and positive coprime integers D1 and D2, the number of positive integer solutions
(x, y ) of the equation

D1x2 + D2 = λ2py

is at most one except for

(λ, D1, D2, p) ∈ E :=
⎧⎨
⎩

(2, 13, 3, 2), (
√

2, 7, 11, 3), (1, 2, 1, 3), (2, 7, 1, 2),

(
√

2, 1, 1, 5), (
√

2, 1, 1, 13), (2, 1, 3, 7)

⎫⎬
⎭

and

(D1, D2, p) ∈ F ∪ G ∪ Hλ.

3. Some lemmas for the proof of Theorem 1. Our aim of this section is to show
Lemma 4 which is essential for the proof of our theorem. We prepare some lemmas for
the proof of Lemma 4.

Let q be an odd prime number.

LEMMA 1. The equation

2x − 3qy = −1

has no positive integer solutions (x, y) with x even.
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Proof. Suppose the equation has a positive integer solution (x, y). We obtain

2x = 3qy − 1 ≡ −1 ≡ 2 mod 3.

If 2x ≡ 2 mod 3, then the positive integer x is odd. �
LEMMA 2. The equation

2x − 3qy = 1

has no positive integer solutions (x, y) except for (q, x, y) = (5, 4, 1).

Proof. Suppose x = 1, 2. The equations 21 = 3qy + 1, 22 = 3qy + 1 have no
solution because q is a prime number. Next, we consider the case when x ≥ 3. If
the equation has a positive integer solution (x, y), we have

3qy = 2x − 1 ≡ 0 mod 3.

Then, we obtain x ≡ 0 mod 2. We write x = 2x′ with some x′ ∈ �. We have

3qy = 22x′ − 1 = (2x′ + 1)(2x′ − 1).

Since 2x′ + 1 and 2x′ − 1 are coprime integers and y > 0, we obtain two cases: (i)
2x′ + 1 = qy, 2x′ − 1 = 3 or (ii) 2x′ + 1 = 3qy, 2x′ − 1 = 1. Then, this equation has a
positive integer solution (x, y) only in the case when (q, x, y) = (5, 4, 1). �

LEMMA D ([2, Lemma 3]). For any integer k ≥ 2, we have

4Fk − Fk−2ε = Lk+ε,

where ε = ±1.

We use Lemma 1, Lemma 2 and Lemma D to show the following lemma.

LEMMA 3. For any given positive integer k and positive odd integer D1, the number
of positive integer solutions (x, y) of the equation

D1x2 + 22k = qy

is at most one except for (D1, k, q) = (1, 1, 5).

Proof. We will show (λ, D1, D2, p) = (1, D1, 22k, q) �∈ E and (D1, D2, p) =
(D1, 22k, q) �∈ F ∪ G ∪ H1 to use Theorem C with λ = 1. Since k > 0 and 22k is even,
we have

(1, D1, 22k, q) �∈ E, (D1, 22k, q) �∈ G.

Suppose (D1, 22k, q) ∈ F . There exists h ≥ 2 such that

Fh−2ε = D1, Lh+ε = 22k, Fh = q,

where ε = ±1. Using Lemma D, we have

4q − D1 = 22k.
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Since D1 is odd, 4q − D1 is also odd. This contradicts that Lh+ε = 22k is even. Next
suppose (D1, 22k, q) ∈ H1. Then both D1s2 + 22k = qr and 3D1s2 − 22k = ± 1 hold for
some positive integers r and s. Then, we have

22(k+1) − 3qr = ±1.

This is a contradiction with Lemma 1, Lemma 2 except for (q, 2(k + 1), r) = (5, 4, 1),
that is, (q, k, r) = (5, 1, 1). From the equation D1s2 + 22k = qr, we have D1 = 1 when
(q, k, r) = (5, 1, 1). �

We show the following Lemma 4 by using Lemma 3.

LEMMA 4. Let n be a positive integer, k be a positive integer with 22k < qn and

α := 2k +
√

22k − qn ∈ �

(√
22k − qn

)
.

(1) For the case q ≡ 3 mod 8, if k ≡ 1 mod 2 or n �≡ 3 mod 6, ±α is not a pth power
in O

�(
√

22k−qn)
for any prime p dividing n.

(2) For the case q ≡ 1 mod 4, ±α is not a pth power in O
�(

√
22k−qn)

for any prime p

dividing n except for the case when �(
√

22k − qn) = �(
√−1) with (q, k) = (5, 1).

(3) For the case q ≡ 7 mod 8, ±α is not a pth power in O
�(

√
22k−qn)

for any prime p
dividing n.

Proof. Let p be a prime number and D denotes the square-free part of 22k − qn.
Then, D < 0 is an odd integer and we can write 22k − qn = m2D for some odd positive
integer m.

(I) We show that ±α are not square numbers in �(
√

22k − qn). The proof of this
case is obtained in a way similar to that in [5, Lemma 2.3].

(II) We consider the case p ≥ 3. It is sufficient to prove that α is not a pth
power in O

�(
√

22k−qn)
. Suppose that α is a pth power in O

�(
√

22k−qn)
, that is, we can

write

α =
(

a + b
√

D
2

)p

,

where a, b ∈ �, a ≡ b mod 2. We have

2k +
√

22k − qn = 1
2p

⎛
⎝

p−1
2∑

j=0

(
p
2j

)
ap−2jb2jDj + w

√
D

⎞
⎠

for some w ∈ �. Comparing the real parts of this formula, we obtain

2k+p =
p−1

2∑
j=0

(
p
2j

)
ap−2jb2jDj = a

p−1
2∑

j=0

(
p
2j

)
ap−2j−1b2jDj.

Then, we get

a | 2k+p.
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(II-1) Assume that a is odd. Then, a | 2k+p is possible only if

a = ±1.

Since a ≡ b mod 2, b is also odd. We have

D ≡ 1 mod 4

in this case because α ∈ O
�(

√
22k−qn)

.

(II-1-1) We can show a contradiction when k = 1 in a way similar to that in [5,
Lemma 2.3].

(II-1-2) We consider the case when k ≥ 2. Since D ≡ 1 mod 4 and m is odd, we
have

−qn ≡ 22k − qn = m2D ≡ 1 mod 4.

This contradicts −qn ≡ −1 mod 4 for q ≡ 1 mod 4. Next, we consider the case when
q ≡ 3 mod 8. Only if n is odd, we can obtain −qn ≡ 1 mod 4 because q ≡ 3 mod 4. If
n is odd, we have

D ≡ m2D = 22k − qn ≡ −qn ≡ −3n ≡ −3 ≡ 5 mod 8.

For any integer s > 0, we can obtain(
a + b

√
D

2

)s

∈ �[
√

D] ⇔ 3 | s

if D ≡ 5 mod 8. Then, p must be 3 and we get k is odd from the assumption of
Lemma 4 and

2k+3 = a

3−1
2∑

j=0

(
3
2j

)
a3−2j−1b2jDj = a3 + 3ab2D = ±1 ± 3b2D.

Since D < 0, a must be −1. Then, we have

2k+3 = −1 − 3b2D ≡ −1 ≡ 2 mod 3.

This contradicts 2k+3 ≡ 1 mod 3 because k is odd. Finally, we consider the case when
q ≡ 7 mod 8. Since −qn ≡ 1 mod 4, n is odd and we have

D ≡ m2D = 22k − qn ≡ −qn ≡ −7n ≡ −7 ≡ 1 mod 8.

We show that, for any integer s > 0,(
a + b

√
D

2

)s

�∈ �[
√

D]

if D ≡ 1 mod 8. To show the above, it is enough to show that

1
2

{(
a + b

√
D

2

)s

+
(

a − b
√

D
2

)s}
�∈ � (1)
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for any integer s > 0. Since D ≡ 1 mod 8, we can consider
√

D ∈ �×
2 . Then, to show

(1) is equivalent to show that

1
2

{(
a + b

√
D

2

)s

+
(

a − b
√

D
2

)s}
�∈ �2.

Since
√

D ≡ 1 mod 2�2 and b is odd, we have

b
√

D ≡ 1, 3 mod 4�2.

By checking four cases (i) (a, b
√

D) = (1̄, 1̄), (ii) (a, b
√

D) = (1̄, 3̄), (iii) (a, b
√

D) =
(3̄, 1̄), (iv) (a, b

√
D) = (3̄, 3̄), where a = j̄ denotes a ≡ j mod 4�2, we obtain

a + b
√

D
2

�≡ a − b
√

D
2

mod 2�2.

Then, we have (
a + b

√
D

2

)s

+
(

a − b
√

D
2

)s

≡ 1 mod 2�2,

that is,

1
2

{(
a + b

√
D

2

)s

+
(

a − b
√

D
2

)s}
�∈ �2.

(II-2) We consider the case when a is even. In this case, b is also even and we can
write a = 2u, b = 2v (u, v ∈ �). Since

α = 2k +
√

22k − qn = (u + v
√

D)p,

we have

2k = u

p−1
2∑

j=0

(
p
2j

)
up−2j−1v2jDj = up + u

p−1
2∑

j=1

(
p
2j

)
up−2j−1v2jDj ≡ up ≡ u mod p.

By taking the norm of α, we have

(u2 − v2D)p = N((u + v
√

D)p) = N(α) = qn.

Then, u2 − v2D is odd. Hence, we get

u �≡ v mod 2.

(II-2-1) Suppose u is odd and v is even. We can show a contradiction in a way
similar to that in [5, Lemma 2.3].

(II-2-2) Suppose u is even and v is odd. We can obtain

q
n
p = 22k − v2D
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in a way similar to that in [5, Lemma 2.3]. This implies that both

(x, y) = (m, n) and (x, y) =
(

|v|, n
p

)

are positive integer solutions of the equation

−Dx2 + 22k = qy.

Since D is odd and

n �= n
p
,

this contradicts Lemma 3 except for (D, k, q) = (−1, 1, 5). The case (D, k, q) =
(−1, 1, 5) is not contained in the assumption of this lemma. �

4. Proof of Theorem 1. In this section, we show Theorem 1 and Corollaries 1, 2
by using Lemma 4.

Proof of Theorem 1. Since N(α) = qn, (q, D) = 1 and q � α, we can write

(α) = ℘n,

where ℘ is a prime factor of (q) which splits completely in �(
√

D)/�. Let s be the
order of the ideal class [℘]. We can write

n = sn′

for some n′ ∈ �. Since ℘s ∼ (1), there exists some element β ∈ O
�(

√
22k−qn)

such that

(α) = ℘n = (℘s)n′ = (β)n′ = (βn′
).

We show that �(
√

22k − qn) is different from �(
√−1) (resp. �(

√−3)) when q ≡ 3 mod
4 (resp. q ≡ 1 mod 4). First, we consider the case when q ≡ 3 mod 4. Suppose that
�(

√
22k − qn) = �(

√−1), that is, there exists t > 0 ∈ � such that 22k − qn = −t2. Then,
we have

22k ≡ −t2 mod q

by n �= 0. Since q � t, the existence of x such that −t2 ≡ x2 mod q is equivalent to the
condition that −t2 ∈ (

�×
q

)2
. We know that −t2 ∈ (

�×
q

)2
is equivalent to

(−t2

q

) = 1. By
q ≡ 3 mod 4, we have (−t2

q

)
=

(−1
q

)(
t
q

)2

=
(−1

q

)
= −1.

This contradicts
(−t2

q

) = 1. Secondly, we consider the case when q ≡ 1 mod 4. Suppose

that �(
√

22k − qn) = �(
√−3), that is, there exists t > 0 ∈ � such that 22k − qn = −3t2.

Since t is odd, we have

−qn ≡ 22k − qn = −3t2 ≡ −3 mod 4.
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This contradicts −qn ≡ −1 mod 4. Since �(
√

22k − qn) �= �(
√−1), �(

√−3), we
obtain

O×
�(

√
22k−qn)

= {±1},

that is,

±α = βn′
.

From Lemma 4, we get n′ = 1 and then we have

n = s.

The proof of Theorem 1 is completed. �

Proof of Corollary 1. We can prove �(
√

22k − qn) �= �(
√−3) for q ≡ 11, 23 mod 24

in a way similar to the proof of �(
√

22k − qn) �= �(
√−1) for q ≡ 3 mod 8 (see the proof

of Theorem 1). Suppose that there exists t > 0 ∈ � such that 22k − qn = −3t2. Then,
we have

22k ≡ −3t2 mod q

by n �= 0. Since(−3t2

q

)
=

(−1
q

) (
3
q

) (
t
q

)2

=
(−1

q

) (
3
q

)
= −

(
3
q

)

and (
3
p

)
= 1 ⇔ p ≡ 1 or 11 mod 12

and

q ≡ 11 mod 12,

we have (−3t2

q

)
= −1.

Then, we get a contradiction. Using this and Theorem 1 (1), (3), the proof of Corollary
1 is completed. �

Proof of Corollary 2. Suppose �(
√

22k − qn) = �(
√−3). Then, we have qn ≡

3 mod 4. This contradicts qn ≡ 1 mod 4 since n is even. Using this and Theorem 1
(1), (3), the proof of Corollary 2 is completed. �

5. Additional Remarks. We conclude this paper with remarks on Theorem 1 (1).

EXAMPLE. We give an example for Theorem 1 (1) that the class number is not
divisible by n when n ≡ 3 mod 6 and k ≡ 0 mod 2. For (q, n, k) = (11, 3, 4), we have
22k − qn = 28 − 113 = −1075 = 52 × (−43). The class number of the field �(

√−43) is
1 and is not divisible by 3.
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For Theorem B, the class number of the field �(
√

22k − 3n) is not divisible by n only
in the case when (n, k) = (3, 2), that is, the class number of the field �(

√
22×2 − 33) =

�(
√−11) is 1 and not divisible by 3. But we do not know how many quadratic fields

�(
√

22k − qn) exist, whose class numbers are not divisible by n when q ≡ 3 mod 8,
n ≡ 3 mod 6 and k ≡ 0 mod 2. As for this point, we give the following remark
(cf. Lemma 4). We can prove that Lemma 4 also holds except for Case (II-1-2) when
q ≡ 3 mod 8, k is even and p = 3. For the proof of Case (II-1-2) of Lemma 4, we have
to consider whether we can show a contradiction with

2k+3 = −1 − 3b2D (2)

when k is even. By taking the norm of both sides of the equation

(α =) 2k +
√

22k − qn =
(

a + b
√

D
2

)3

,

we have

qn =
(

a2 − b2D
4

)3

.

Then, we obtain

4q
n
3 = a2 − b2D.

From the above equation and (2), we have

2k+1 + 1 = 3q
n
3 .

Then, this consideration is related to the determination of positive integer solutions
(q, x, y) of the equation 2x − 3qy = −1, where x, y are odd and q ≡ 3 mod 8 are prime
numbers (see Lemma 1). We can obtain that, if (n, k) does not satisfy 2k+1 − 3q

n
3 = −1,

the class numbers of imaginary quadratic fields �(
√

22k − qn) except �(
√−3) are also

divisible by n when q ≡ 3 mod 8, n ≡ 3 mod 6 and k ≡ 0 mod 2. For the case when
q = 3, the result on positive integer solutions of the equation 2x − 3y = −1 is written
in [5, Lemma 2.1].
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