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Abstract

Explicit formulae are derived for the projected gradient vector and trial
dual variables required in the application of Rosen's method [4] to the
solution of a Minimum Cost Network problem.

1. Introduction

This paper considers mathematical programmes of the form:

Minimize /(x)

subject to:

(1)

The components x) of the point x may represent chain flows on a multiple
origin-destination (OD) network. For example, the programme can be
interpreted as the mathematical formulation of a problem of practical
importance in the economic design of alternative routing telephone networks.
For each distinct OD pair k there exist <f>(k) routes (chains) available to carry
traffic. The equality constraints ensure that the total traffic carried on these
routes is a specified quantity bk. A feasible set of chain flows on the network
defines a chain flow pattern x, which incurs a corresponding cost f(x). The
problem is to determine a chain flow pattern x* with minimum cost /(**).
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Applications of the above type [1] give rise to large programmes,
typically 5,000-10,000 variables. The non-linear function /, which represents
the cost of circuits required to give specified OD performances, is a
differentiable function [2] permitting the use of gradient solution methods.

When formulae developed in this paper are incorporated, the Gradient
Projection algorithm becomes a very efficient method for solving the
minimum cost circuit allocation problem for Metropolitan Telephone Net-
works ([1], [3]).

Rosen noted that to make the Gradient Projection method computation-
ally practical for a general problem an efficient computational procedure was
required to find the inverse matrix (NN')'\ where the rows of JV are the
gradient vectors of the current active constraints. A new inverse obtained by
adding or deleting rows of N is usually required at each step. Rosen suggested
recursion relations to obtain the new inverse from the old inverse.

For the structured constraints given in (1) it is not necessary to perform
either matrix multiplication or inversion, as both the projected gradient
vector and trial dual variables (see (4)) can be expressed explicitly in terms of
the components of

2. Some properties of projection matrices

The projection matrix

P = I- N'[NN']~l N (2)

projects the vector - V/(x) into the subspace satisfying the active constraints.
The directions of search in Rosen's method are provided by the projected
gradient vector

» = - P V / ( x ) . (3)

Direct application of (2) and (3) in the projection algorithm is not practical.
Instead a suitable transformation is chosen which gives an equivalent
programme from which v can be deduced in explicit form. Suppose N is an
rXn matrix. It is assumed that N has full row rank (i.e. r < n).

LEMMA 1. / / T(r x r) is non-singular then TN determines the same
projection matrix as N.

PROOF:

I - (TN)'[TN{TN)'YX TN

= I - N'T'iT'Y1 [NN'Y1 T-1 TN

= I- N'[NN'Y' N.
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If PU--,P, are projection matrices the transformation Pi- • • PrV/(x) is
called a "successive projection" of the gradient vector.

LEMMA 2. If the row vectors of N are mutually orthogonal then successive
projection of a vector onto each individual active constraint is equivalent to a
single projection onto the intersection of the active constraints.

PROOF: We show that the two matrices transforming the vector are
identical. First consider projection onto the intersection. Let

n'ri

As

n[n,= 0 (iV/),

NN' = diag.(n'.it,).

Thus

The transformation matrix which projects a vector successively onto the r
active constraints is given by

ft [/- n, (n',n,r "J] = / - 2 »/ (»>/)"'«;.
i-\ - ,=\

the terms nn (n'„ n,)'1 n'„ n,2(n'p. n,2y
l n'p vanishing due to the orthogonality of

distinct vectors nn, nn.
During the application of the projection algorithm whenever v becomes

a null vector it is necessary to examine the trial dual variables, that is the
components of

[NN']-JJVV/(x). (4)

If each component is non-negative the Kuhn-Tucker optimality conditions
are satisfied and the algorithm terminates. Otherwise, a row of Ncorrespond-
ing to a negative component of (4) is deleted and a new projection matrix
determined. The following lemma is used to obtain explicit expressions for
the trial dual variables in terms of the components of V/(x).

LEMMA 3. / / the matrix T(r x r) is non-singular,

N = T'[(TN)(TN)']-1 TN.
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PROOF:

T'liTNXTN)']-1 TN = T'(T')-1 [NN']~l (T"1 T)N = [NN']~l N.

3. The projection vector

Let the component of v corresponding to variable x* be denoted by v).

THEOREM: Let p(k) be the number of routes with positive flow between
OD pair k at the current point x, that is

where

' 1 0 otherwise

then

0 if x * = 0 ,

v, - otherwise.

PROOF: Suppose the active constraints are

x,-,1 = 0

: (6)

Clearly an equivalent system of active constraints having the property that the
gradient vectors are mutually orthogonal is given by

; (7)

x£ = 0.

The result (5) was obtained by projecting - V/(x) 'successively' onto first the
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active non-negativity constraints and then the new equality constraints in
turn. To verify equation (5) we first show that the transformation of - V/(x)
to v is a projection.

(P-PVf))=(P(-v)))

_ df(x) 1 ^ ,kdf(x)
dx) p(k)£> d s dxi

'\ dx) & ds * j

= Mix) 2 W kd
dx) p(k),4, Os dxk

s

Next, we show that v is orthogonal to the gradient vectors for the new
constraint set. The case x) =0 is immediate. If x) >0 we have

Equations (5) show that the projection algorithm attempts to transfer
flow onto the y'th route for OD pair k if and only if its marginal cost is less
than the average marginal cost for routes with positive flow. On the other
hand, if the marginal cost on some route with positive flow is greater than the
average marginal cost for routes with positive flow then flow is removed.

4. The transformation matrix producing the orthogonalization

Let q(k)= <f>(k)- p(k), i.e. the number of routes with zero flow for OD
pair k. Suppose that there are q = 2£, , q(k) active non-negativity constraints.

We define the matrix

- 1 - 1 1 0
0 0 - - 0 - 1 - 1 - - - - 1 0 •••

Q(Kxq) =

0 ... 0 - 1 lJ

with row i having q(i) non-zero elements, each - 1. Then the matrix which
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transforms the constraint set (6) into the orthogonal system (7) is given by

T =
VI(KXK) I Q(KXq)l

lO(qXK) \ Hqxq)~]

5. Trial dual variables

Consider the active constraint set given by (7). Denote the i'th row of TN
by A',. For the equality constraints it is clear that (n'.n,)'' = l/p(i), whereas for
the active non-negativity constraints (win,)"1 = 1. From Lemma 2, the compo-
nents of [(77V)(77V)']-"rN are of the form (AA)'1 A'h thus

7WV/(x) =

1

P(K) ft

S)df(x)/dx)

:df{x)ldx\

df(x)/dxft'

df(x)ldxl-

By Lemma 3 "the trial dual variables for the original constraint set (6) are now
given by

I(KxK) 0(Kxq)l
Q'(qxK) I(qxq)\ V,df(x)/dx\

Iv. S\df{x)IBx\
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6. Equilibrium conditions

The necessary optimality conditions follow directly from the above
results. Firstly, the vector v is a null vector, hence if x) is positive,

9f(x)= 1 *fV#(x)
dx) P ( fe) ie ,O l dx", •

From the non-negativity of the dual variables, if x* =0,

f
dx) =p(fe),4i °' dx", •

It follows that at the optimal point for each OD pair k, there is an ordering of
the component of the gradient vector

**,*• ax* dxf. to,*., " a x ^ , '

where the routes /,, • • •,/„ are those with positive flow.

7. Remark

The above results generalize in a straightforward way to include upper
bounds on the variables and arbitrary coefficients of the variables in the
equality constraints. The inclusion of link capacity constraints introduces
some interesting problems which are currently under consideration.
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