
Ergod. Th. & Dynam. Sys., (2024), 44, 2199–2228 © The Author(s), 2023. Published by Cambridge
University Press. This is an Open Access article, distributed under the terms of the Creative Commons
Attribution licence (https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use,
distribution and reproduction, provided the original article is properly cited.
doi:10.1017/etds.2023.103

2199

Markov capacity for factor codes with an
unambiguous symbol

GUANGYUE HAN†, BRIAN MARCUS‡ and CHENGYU WU ‡

† Department of Mathematics, The University of Hong Kong, Pok Fu Lam, Hong Kong
(e-mail: ghan@hku.hk)

‡ Department of Mathematics, The University of British Columbia, Vancouver, Canada
(e-mail: marcus@math.ubc.ca, wuchengyu0228@gmail.com)

(Received 30 October 2022 and accepted in revised form 26 September 2023)

Abstract. In this paper, we first give a necessary and sufficient condition for a factor code
with an unambiguous symbol to admit a subshift of finite type restricted to which it is
one-to-one and onto. We then give a necessary and sufficient condition for the standard
factor code on a spoke graph to admit a subshift of finite type restricted to which it
is finite-to-one and onto. We also conjecture that for such a code, the finite-to-one and
onto property is equivalent to the existence of a stationary Markov chain that achieves the
capacity of the corresponding deterministic channel.
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1. Introduction
Shifts of finite type (SFT), and more generally sofic shifts, are spaces of bi-infinite
sequences that play a prominent role in symbolic dynamics. Of particular interest are factor
codes (onto sliding block codes) from one such space to another, as they represent ways
of encoding blocks in the domain space into blocks in the range space. However, typically,
such maps are badly many-to-one. So, it would be useful to know when one can restrict
to a subspace of the domain such that the code is still onto and one-to-one/finite-to-one.
Consider the following properties. Given an irreducible SFT X, a sofic shift Y, and a factor
code, φ : X → Y :

P1 there exists an SFT Z ⊂ X such that φ|Z is a conjugacy onto Y;
P2 there exists an SFT Z ⊂ X such that φ|Z is finite-to-one and onto Y;
P3 there exists a stationary Markov measure ν on X such that φ∗(ν) = μ0, the unique

measure of maximal entropy (mme for short) on Y.

We are interested in finding checkable, necessary and sufficient conditions for each of these
properties and in determining relationships among these properties. Clearly, property P1
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implies property P2 and property P2 implies property P3 because, given property P2, any
mme ν on Z satisfies property P3 (see Proposition 4.2).

A factor code φ : X → Y can be viewed as an input-constrained, deterministic, but
typically lossy channel in the information theoretic sense: an input x determines a channel
output y = φ(x). Our interest in property P3 stems from the fact that it is equivalent to the
condition that the Markov capacity achieves the capacity of this channel, that is, there is
an input Markov measure on X that achieves capacity (see §§3 and 4 for more details).

Since Y is the image of an irreducible shift space, it must be irreducible, and it follows
that μ0 is indeed unique and fully supported on Y. However, we do not require ν to be fully
supported on X.

For property P1, there are certainly some necessary conditions; for instance, if Y has a
fixed point, then X must have a fixed point and Y must be an SFT.

We consider the special class of factor codes with an unambiguous symbol. This means
that the alphabet of Y is {0, 1} and in the block code � that generates φ, there is exactly
one block u such that �(u) = 1. In Theorem 6.1, we characterize, for this class, all such φ

for which there exists a shift space Z ⊂ X such that φ|Z is a conjugacy onto Y and show
that such a Z must necessarily be an SFT, that is, property P1 is satisfied. In Theorem 6.5,
we give a refined version of this result when X is the full 2-shift.

Note that if a factor code φ defined on an irreducible SFT X is finite-to-one but not
one-to-one itself, then property P1 is not satisfied. This follows from the fact that if
property P1 is satisfied for some Z, then by [LM95, Corollary 4.4.9], htop(Z) < htop(X),
which contradicts [LM95, Corollary 8.1.20]. For a simple example of such a φ with an
unambiguous symbol, see Example 8.3.

For property P2, we recall from a counterexample [MPW84, pp. 287–289] that property
P2 is not always satisfied. Motivated by that counterexample, we consider a subclass of
factor codes with an unambiguous symbol, called standard factor codes on spoke graphs
(for the definition, see §7). In Theorem 8.1, for this subclass, we characterize all such
φ satisfying property P2, and we show that for any φ in this subclass, property P2 is
equivalent to the existence of an SFT Z ⊂ X, such that φ|Z is almost invertible and
onto Y.

The same counterexample in [MPW84, pp. 287–289] shows that for standard factor
codes on spoke graphs, property P3 is not always satisfied.

We conjecture that for standard factor codes on spoke graphs, properties P3 and P2
are equivalent, that is, if there exists a stationary Markov measure ν on X such that
φ∗(ν) = μ0, then there exists an SFT Z ⊂ X such that φ|Z is finite-to-one and onto Y;
if true, then for this class, the same characterization for property P2 holds for property P3.
In Proposition 9.6, we prove this in several special cases. The proof combines the Chinese
remainder theorem and a dominance condition.

We note that property P3 is related to the property that a factor code from an irreducible
SFT to an irreducible SFT is Markovian, although in that case, one assumes that such ν is
fully supported [BT84, BP11].

It was shown in [MPW84, Proposition 3.2] that property P2 always holds if we relax
SFT Z to sofic Z. Similarly, it was shown in [MPW84, Corollary 3.3] that if we relax
stationary Markov ν to stationary hidden Markov ν, then property P3 always holds.

https://doi.org/10.1017/etds.2023.103 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.103


Markov capacity for factor codes with an unambiguous symbol 2201

We point the reader to a related paper which considers factor codes φ : X → Y as
deterministic channels and for a given factor code φ, characterizes those subshifts of
entropy strictly less than that of Y that can be faithfully encoded through φ [Mac23].

The remainder of this paper is organized as follows. In §2, we give a brief background
on symbolic dynamics, focusing on SFTs, sofic shifts, and factor codes. In §3, we describe
a motivating problem from information theory. In §4, we describe factor codes as special
channels in information theory (as was done in [MPW84]). We introduce in §5 the class
of factor codes with an unambiguous symbol and, for this class, consider property P1 in
§6. In §7, we introduce the subclass of standard factor codes on spoke graphs and consider
property P2 for this subclass in §8. In §9, we consider property P3 for this subclass and
prove Proposition 9.6. Finally, in §10, we discuss standard factor codes on another class of
graphs.

2. Notation and brief background from symbolic dynamics
We introduce in this section some basic terms and facts in symbolic dynamics. For more
details, see [LM95].

Let A be a finite alphabet. The full A-shift, denoted by AZ, is the collection of all
bi-infinite sequences over A. When A = {0, 1, . . . , n − 1}, the full shift is called the full
n-shift and will be denoted by X[n]. For any point x = · · · x−1x0x1 · · · ∈ AZ, we use xi

to denote the ith coordinate of x and x[i,j ] to denote the block xixi+1 . . . xj . For a block
x1 . . . xm, we use (x1 . . . xm)k to denote its k-concatenation and (x1 . . . xm)∞ to mean
its infinite concatenation. The shift map σ on AZ is defined by (σ (x))i = xi+1 for any
x ∈ AZ. A subset of AZ is a shift space if it is compact and is invariant under σ . For any
positive integer m and a shift space X, we use Bm(X) to denote the set of all allowed blocks
of length m in X, and B(X) := ⋃

n Bn(X) is called the language of X. The Nth higher
block shift of X is the image βN(X) in the full shift over AN , where βN : X → (AN)Z is
defined by (βN(x))i = x[i,i+N−1] for any x ∈ X. A shift space X is irreducible if for any
u, v ∈ B(X), there is a w ∈ B(X) such that uwv ∈ B(X).

Let A1, A2 be two alphabets, s, t be two fixed integers, and let X be a shift space
over A1. The map φ : X → A2

Z defined by φ(x)i = φ(x[i−s,i+t]) for any i is called a
sliding block code with anticipation t and memory s. A sliding block code φ : X → Y is
finite-to-one if there is an integer M such that |φ−1(y)| ≤ M for every y ∈ Y , and it is
one-to-one when M = 1. Moreover, the sliding block code φ : X → Y is a factor code
if it is onto, in which case Y will be called the factor of X, and φ is a conjugacy if it is
one-to-one and onto.

A point diamond for φ is a pair of distinct points in X that differ in finitely many
coordinates and have the same image under φ. If X is irreducible, then φ is finite-to-one if
and only if it has no point diamonds [LM95, Theorem 8.1.16].

Let G be a directed graph with no multiple edges. For a path γ in G, V (γ ) denotes
the sequence of vertices of γ and |γ | is the length, that is, the number of edges, of γ (for
example, for γ = e1e2 . . . en, V (γ ) = I (e1)I (e2) . . . I (en)T (en) and |γ | = n, where for
any i, I (ei) and T (ei) denote the initial vertex and the terminal vertex of ei , respectively).
We use V(G) to denote the vertex set of G and X̂G to denote the vertex shift induced by G.
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That is, the shift space whose points are sequences of vertices of bi-infinite paths in G. Let
� : V(G) → A be a labeling of vertices of G over a finite alphabet A. A graph diamond
of � is a pair of distinct paths in G that have the same initial vertex, terminal vertex, and
label. It is well known that, assuming G is irreducible, the factor code generated by � is
finite-to-one if and only if � has no graph diamonds [LM95, §8.1].

A shift space X can be expressed as X = XF where F is a forbidden set, a list of
forbidden words such that x ∈ X if and only if x contains no element of F . The choice of
the forbidden set of X is in general not unique. When X = XF for some finite set F , X is
called an SFT. An SFT X is called M-step (or has memory M) if X = XF for a collection
F of (M + 1)-blocks. A vertex shift is always a 1-step SFT and conversely, by lifting to its
(M + 1)th higher block shift, an M-step SFT can always be represented as the vertex shift
of a graph. A shift space Y is sofic if there exist an SFT X and a sliding block code φ such
that φ(X) = Y . Clearly, SFTs must be sofic.

There is a general definition of the degree of a factor code on any subshift, see [LM95,
Definition 9.1.2]. For our purposes, we focus only on the following equivalent definition
of the degree of a 1-block finite-to-one factor code φ : X → Y , where X is an irreducible
M-step SFT X: let N := max{1, M}. The degree of φ is defined as the minimum over all
blocks w = w1w2 . . . w|w| in Y and all 1 ≤ i ≤ |w| − N + 1 of the number of distinct
N-blocks in X that we see beginning at coordinate i among all the pre-images of w [LM95,
Proposition 9.1.12]. A word w that achieves the minimum above with some coordinate i
is called a magic word, and the subblock wiwi+1 . . . wi+N−1 is called the corresponding
magic block.

A factor code φ is almost invertible if its degree is 1. While an almost invertible
code need not be finite-to-one, on an irreducible SFT, it must be finite-to-one [LM95,
Proposition 9.2.2].

The topological entropy of a shift space X is

htop(X) := lim
m→∞

1
m

log |Bm(X)|.

For a probability measure μ on X, let h(μ) denote its measure theoretic entropy. By the
variational principle [Wal82, Theorem 8.6],

htop(X) = sup
μ

{h(μ) : μ is a shift-invariant Borel probability measure on X}. (1)

An mme μ0 of X is a probability measure on X such that the supremum in equation (1) is
achieved.

Given S ⊂ Z≥0, an S-gap shift X(S) is a subshift of X[2] such that any x ∈ X(S) is
a concatenation of blocks of the form 0s1 with s ∈ S, where points with infinitely many
0s to both sides are allowed when S is infinite. Let λ be the unique positive solution to∑

m∈S x−m−1 = 1. Then htop(X(S)) = log λ [DJ12], and the unique mme μ0 of X(S) is
determined by

μ0(X0X1 . . . Xi+1 = 10i1)

μ0(X0 = 1)
= λ−i−1 for any i ∈ S
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and

μ0(X1 . . . Xn = x1 . . . xn|X−m . . . X−1X0 = x−m . . . x−11)

= μ0(X1X2 . . . Xn = x1 . . . xn|X0 = 1)

for any m, n, and any allowed block x−m . . . x−11x1 . . . xn [GP19, Corollary 3.9].
It has been proven in [DJ12] that X(S) is an SFT if and only if S is finite or cofinite.

Indeed, the forbidden set of X(S) is

F =
{

{10m1 : m ∈ {0, 1, 2, . . . , max S} \ S} ∪ {01+max S} when S is finite,

{10m1 : m ∈ Z≥0 \ S} when S is cofinite,
(2)

which will be called the standard forbidden set of X(S) in this paper.

3. A problem in information theory
A central object in information theory is a discrete channel. Here, there is a space X of
input sequences, a space Y of output sequences, each over a finite alphabet, and for each
x ∈ X, a probability measure λx on Y which gives the distribution of outputs, given that x
was transmitted. One assumes that the map x 
→ λx is at least measurable and the channel
is stationary in the sense that λσx = σ ∗λx , where σ is the left shift defined on X and σ ∗ is
the induced shift for measures.

Typically, X and Y are full shifts and in the simplest case, that of a discrete memoryless
channel, λx(y1 . . . yn) = 	n

i=1p(yi |xi); here, for each element a of the alphabet of X,
p(·|a) is a probability distribution on the alphabet of Y; the channel is memoryless in the
sense that conditioned on the input xi , the output yi is independent of all other inputs. For
example, the binary symmetric channel (BSC) is the memoryless channel where X and Y
are the full 2-shift and

p(b|a) =
{

ε, b �= a,

1 − ε, b = a.

Here, ε is a parameter, known as the crossover probability.
Given a stationary (that is, shift invariant) input measure ν on X, one defines the

stationary output measure κ(ν) on Y by κ(ν) = ∫
λx dν. The mutual information of κ(ν)

and ν is defined as

I (κ(ν), ν) = h(κ(ν)) − h(κ(ν)|ν) = h(ν) − h(ν|κ(ν)),

where h(·) denotes entropy and h(·|·) denotes conditional entropy (the second equality
follows from the chain rule for entropy, which is a fundamental equality in information
theory); in information theory, shift-invariant measures are viewed as stationary processes
and these entropies are often referred to as entropy rates.

There are several notions of channel capacity, which all agree under relatively mild
assumptions. The stationary capacity (capacity for short) of a discrete noisy channel is
defined as

Cap = sup
stationary ν

I (κ(ν), ν).
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For a discrete memoryless channel, the capacity can be computed effectively because it
agrees with the sup when restricted only to independent and identically distributed (that is,
stationary Bernoulli) measures, turning it into a finite dimensional optimization problem,
and, while there is no known closed form expression for capacity in general, the optimum
can be effectively approximated by the well-known Blahut–Arimoto algorithm [Ari72,
Bla72].

We define the kth-order Markov capacity by

Capk = sup
stationary kth-order Markov ν

I (κ(ν), ν).

We are interested in the problem: when does Markov capacity achieve capacity, that is,
when does Capk = Cap for some k?

It is known, using the ergodic decomposition, that under mild assumptions, Cap
(respectively, Capk) coincides with the maximum mutual information over all stationary,
ergodic input measures (respectively, stationary, irreducible, kth-order Markov input
measures) [Fei59, Gra11].

Again, with mild assumptions on the channel, one shows that limk→∞ Capk = Cap
[CS08]; informally, ‘Markov capacity asymptotically achieves capacity.’ This is important
because for fixed k, computation of Capk is a finite-dimensional optimization problem.
According to the discussion above, for discrete memoryless channels, Cap0 = Cap;
informally, ‘Bernoulli capacity achieves capacity.’ However, for channels with memory,
even just one step of memory, except in certain cases such as input-constrained noiseless
channels below, it is believed that Capk �= Cap for all k. However, we are not aware of any
such result.

If X is not a full shift, then the channel is called input-constrained. Typically, the input
constraint X is an SFT or sofic shift. Such a shift space can be considered a noiseless
channel in itself, in a trivial way: Y = X and for each x ∈ X, λx = δx , the point mass
on {x}. The capacity of this channel is easily seen to be the topological entropy, htop(X),
otherwise known as the noiseless capacity, which can be easily computed.

Now, consider the input-constrained binary symmetric channel. This is the BSC, where
the inputs are required to belong to a given SFT or sofic shift X over {0, 1}. While the
capacity of the BSC and the noiseless capacity of X are known explicitly, the capacity of
the X-constrained BSC is not known. And while Markov capacity asymptotically achieves
capacity of this channel, it is believed that Markov capacity does not achieve capacity, i.e.
for all k, Capk �= Cap. However, this has not been proven.

4. Factor codes as channels
This brings us to a main point of our paper: for a class of channels, albeit rather simple in
practice, we can rigorously decide whether or not Markov capacity achieves capacity. An
example of this was given in [MPW84, pp. 287–289]. Specifically, we view a factor code
φ : X → Y as an input-constrained, deterministic channel; here, λx = δφ(x), so the input
determines the output uniquely. Intuitively, for this channel, input sequences are distorted
in a deterministic way. It follows that, in this case, for any invariant input measure ν,
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h(κ(ν)|ν) = h(φ∗(ν)|ν) = 0, where φ∗ is the induced map (of φ) on stationary measures
on X. So

Cap = sup
stationary ν

h(φ∗(ν)).

According to [MPW84, Corollary 3.2], there exists a stationary input measure ν (in fact,
a stationary hidden Markov input measure) such that φ∗(ν) = μ0, the unique mme on Y.
Thus, by the variational principle [Wal82, Theorem 8.6], Cap = htop(Y ) (an alternative to
this argument is to show that the map ν 
→ φ∗(ν) is onto the set of all stationary measures
on Y: given stationary μ on Y, use the Hahn–Banach theorem to find a not necessarily
stationary ν′ on X such that φ∗(ν′) = μ and let ν be any weak limit point of the sequence
(1/n)(ν′ + σν′ + · · · + σn−1ν′)).

In summary, we have the following proposition.

PROPOSITION 4.1. Let φ : X → Y be a factor code from an irreducible SFT X to a sofic
shift Y. Let μ0 be the unique measure of maximal entropy on Y. For the input-constrained,
deterministic channel defined by φ:
(1) Cap (respectively, Capk) coincides with the maximum mutual information over all

stationary, ergodic input measures (respectively, stationary, irreducible, kth-order
Markov input measures);

(2) limk→∞ Capk = Cap;
(3) Cap = htop(Y );
(4) a stationary measure ν on X achieves Cap if and only if φ∗(ν) = μ0 if and only if

h(φ∗(ν)) = htop(Y ).

The following simple result gives a relation between properties P2 and P3.

PROPOSITION 4.2. With the same assumptions as in Proposition 4.1, if there is an SFT
Z ⊂ X such that φ|Z is finite-to-one and onto Y, then there is an irreducible stationary
Markov measure ν on Z of order at most the memory of Z such that φ∗(ν) = μ0.

Proof. Let ν be the unique mme of any irreducible component of Z with maximum
topological entropy. It is stationary, irreducible, and Markov. Since φ|Z is finite-to-one
and onto Y,

h(φ∗(ν)) = h(ν) = htop(supp ν) = htop(Z) = htop(Y ).

Since μ0 is the unique mme on Y, we have φ∗(ν) = μ0.

PROPOSITION 4.3. Let φ : X → Y be a factor code from an irreducible SFT X to a
sofic shift Y. Let ν be an irreducible stationary Markov measure on X and assume that
φ∗(ν) = μ0, the unique mme on Y (in particular, Markov capacity achieves capacity of
the input-constrained deterministic channel determined by φ).

The following are equivalent:
(1) φ|supp(ν) is finite-to-one and onto;
(2) htop(supp(ν)) = htop(Y );
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(3) h(ν) = htop(Y );
(4) for every periodic point in supp(ν), the weight per symbol, for ν, is e−htop(Y ) (the

weight per symbol of a periodic point (p0 . . . pn−1)
∞ for a kth-order Markov

measure ν on X is defined to be ν(p0 . . . pn−1|p−k . . . p−1)
1/n).

Proof. (1) ⇒ (2): This follows directly from [LM95, Corollary 8.1.2].
(2) ⇒ (3):

htop(Y ) = htop(supp(ν)) ≥ h(ν) ≥ h(φ∗(ν)) = h(μ0) = htop(Y ).

This yields item (3).
(3) ⇒ (1): Apply [Par97, Theorem 2].
((2) and (3)) ⇒ (4): The condition that for some c ≥ 0, for every periodic point in

supp(ν), the ν-weight per symbol is e−c, is equivalent to the condition that h(ν) = c and
that ν is an mme for supp(ν). This is essentially contained in [PT82, Proposition 44].

It follows from Propositions 4.2 and 4.3 that property P2 holds if and only if property
P3 holds with a measure ν that is also irreducible stationary Markov and satisfies any of
the equivalent conditions in Proposition 4.3. We will return to this point in §9.

5. Factor codes with an unambiguous symbol
We begin with a brief introduction to factor codes with an unambiguous symbol. Such
factor codes are also known as factor codes with a singleton clump [PQS03].

Let X be a shift space over an alphabet A and D = b1b2 . . . bk be an allowed block in
X. Define � : Ak → {0, 1} by

�(x[1,k]) =
{

1 if x[1,k] = D,

0 otherwise.
(3)

Then, the factor code φ : X → Y ⊂ X[2] induced by � is called a factor code with an
unambiguous symbol. Here, Y is the image of φ.

In the remainder of this paper, we focus on the case when X is an irreducible SFT. Note
that in this case, by passing to a higher block shift, in the preceding definition, we can and
sometimes will assume that k = 1 and that X is an SFT with memory 1.

The following propositions give some properties of Y.

PROPOSITION 5.1. Let φ : X → Y be a factor code with an unambiguous symbol. Then Y
is an S-gap shift.

Proof. The elements of Y are arbitrary concatenations of strings of the form 10s with s ∈ S

such that there exists some allowed block w of length k + s + 1 satisfying the following:
(1) w[1,k] = D;
(2) w[s+2,s+k+1] = D;
(3) for all 2 ≤ i ≤ s + 1, w[i,k+i−1] �= D.
Hence, Y is an S-gap shift.
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PROPOSITION 5.2. Let φ : X → Y be a factor code with an unambiguous symbol. If X =
X[2], then:
(1) 10k−11 is not allowed in Y if and only if D is purely periodic (that is, D = u
 for

some 
 ≥ 2 and some block u);
(2) for any j ≥ k, 10j 1 is allowed in Y.

Proof. To prove item (1), first observe that 10k−11 is allowed if and only if the image
of DD is 10k−11. If 10k−11 is not allowed, then the image of DD has a prefix of the
form 10c1 for some 0 ≤ c ≤ k − 2. Let d = c + 1 ≤ k − 1. Then for all 0 ≤ i ≤ k − 1,
bi = bi+d (here and below in this proof, subscripts are read modulo k). It follows that for all
integers m, n and all 0 ≤ i ≤ k − 1, bi = bi+md+nk . Let e = gcd(d, k). Then e = md +
nk for some m, n. Thus, for all 0 ≤ i ≤ k − 1, bi = bi+e. It follows that D = b1 . . . bk =
(b1 . . . be)

k/e. Since e < k, k/e ≥ 2. So, D is purely periodic.
Conversely, assume that D is purely periodic. Then the image of the block DD is not

10k−11 and so 10k−11 is not allowed.
We now prove item (2). For j ≥ k, we show 10j 1 is allowed in Y by finding a binary

block x1x2 . . . xj−k+1 such that

�(b1 . . . bkx1x2 . . . xj−k+1b1 . . . bk) = 10j 1. (4)

If b1 . . . bk = 0k , then one immediately verifies that �(b1 . . . bk1j−k+1b1 . . . bk) =
10j 1. By reversing the roles of 0 and 1 in the domain, a similar argument works when
b1 . . . bk = 1k .

Now assume that b1 . . . bk �= 0k and b1 . . . bk �= 1k . Express b1 . . . bk uniquely by

b1b2 . . . bk = (b1 . . . bm)sb1 . . . bt (m ≥ 2, s ≥ 1, 0 ≤ t < m), (5)

where ms + t = k and m is the smallest positive integer such that b1 . . . bk can be
expressed by equation (5). We consider the following two cases.

Case 1: j − k + 1 ≥ m. In this case, we claim that equation (4) is satisfied by letting
x1x2 . . . xj−k+1 = 1j−k+1. To see this, assume to the contrary that

�((b1 . . . bm)sb1 . . . bt1j−k+1(b1 . . . bm)sb1 . . . bt ) �= 10j 1.

This means that there is an extra 1 in addition to the two 1s at the first and the last
position in the image. Hence, there is an extra b1 . . . bk in the input in addition to the
two at the initial and tail end (these two b1 . . . bk terms will be called the head and the
tail, respectively). Since x1 . . . xj−k−1 = 1j−k+1 and b1 . . . bk �= 1k , this extra b1 . . . bk

must start with some b1 . . . bt in the head or end with some b1 . . . bt in the tail. Thus,
it must intersect the ‘intermediate’ subblock x1 . . . xj−k+1 in at least m bits. Therefore,
either

x1x2 . . . xm = bt+1 . . . bmb1 . . . bt (6)

or

xj−k−m+2 . . . xj−k+1 = b1 . . . bm. (7)
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Recalling that x1 . . . xj−m+1 = 1j−k+1, either equation (6) or equation (7) implies
b1b2 . . . bk = 1k , which is a contradiction.

Case 2: 1 ≤ j − k + 1 < m. In this case, an extra b1 . . . bk in the input must intersect
the head, the tail, and the ‘intermediate’ subblock x1x2 . . . xj−k+1 simultaneously. Thus,
this extra b1 . . . bk must start with some b1 . . . bt in the head and end with some b1 . . . bt

in the tail. Therefore, equation (4) holds as long as{
x1 �= bt+1 and xj−k+1 �= bm if j − k > 0,

x1 �= bt+1 if j − k = 0,
(8)

which is always possible for some binary x1x2 . . . xj−k+1.

6. Characterization of the one-to-one condition for factor codes with an unambiguous
symbol
In this section, we address property P1 for factor codes with an unambiguous symbol.
Through this section, a factor code with an unambiguous symbol always refers to the one
induced by � in equation (3) unless otherwise specified.

We have the following theorem which characterizes the existence of a subshift of finite
type, on which the restriction of φ is one-to-one and onto.

THEOREM 6.1. Let φ : X → Y be a factor code with an unambiguous symbol defined
on an irreducible shift space X. Let S be such that Y is an S-gap shift. Then, there is a
shift space Z ⊂ X such that φ|Z is a conjugacy from Z onto Y if and only if either of the
following conditions holds:
(C1) S is a finite set;
(C2) there is a fixed point (that is, fixed via the shift) in X other than D∞.
Moreover, Z and Y must be SFTs if either condition (C1) or (C2) holds.

(Note: D∞ may or may not be in X and even if D∞ ∈ X, it may or may not be a fixed
point.)

Remark 6.2. Note to say that S is finite means that there exists some M such that every
allowed block in X of length M contains D as a subblock. Sometimes, one says that in such
a case, D is a ‘Rome’.

Remark 6.3. According to Proposition 4.2, when condition (C1) or (C2) holds, the
capacity of the deterministic channel, defined by φ, is achieved by a Markov chain.

Proof of Theorem 6.1. Only if part: If S is finite, we are done. So assume that S is infinite.
Then 0∞ ∈ Y . Since there exists a shift space Z ⊂ X such that φ|Z is a conjugacy from Z
onto Y, Z must have a fixed point z such that φ(z) = 0∞. Finally, noting that D∞ /∈ X or
φ(D∞) �= 0∞, we conclude that z must be different from D∞.

If part: Assume condition (C2) of the theorem. Up to recoding, we may assume that X
is a (1-step) vertex shift X̂G, D is a vertex of the graph G, and there is a vertex A in G such
that A is distinct from D and G has a self-loop τ at A. Using irreducibility of X, there are
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paths in G, β+ from D to A and β− from A to D, neither of which contains D in its interior.
Let N := |β+β−| − 1.

Now Y is a gap shift with gap set of the form S := F ∪ {N , N + 1, . . .}, where each
element of F is less than N. For each s ∈ S, choose πs to be a first-return cycle of length
s from D to itself (‘first-return’ means that it does not contain D in its interior). We
will assume that for s ≥ N , we choose πs = β+τ s−Nβ−. For y ∈ Y , let Oy := {j ∈ Z :
yj = 1} and define η : Y → X as follows:
(D1) if i ∈ Oy , define (η(y))i = D;
(D2) if j , j ′ ∈ Oy and {l ∈ Z : j < l < j ′} ⊂ Oc

y , define (η(y))[j ,j ′] = V (πj ′−j );
(D3) if Oy has a maximum element s, define (η(y))[s,∞) = V (β+τ∞);
(D4) if Oy has a minimum element s, define (η(y))(−∞,s] = V (τ∞β−);
(D5) if Oy = ∅, define η(y) = A∞.

Observe that η is injective because if y, y′ ∈ Y and y �= y′, then for some i, without
loss of generality, we assume yi = 1 and y′

i = 0, and so (η(y))i = D and (η(y′))i �= D.
Furthermore, we claim that η is a sliding block code. To see this, note that η is
shift-invariant by virtue of its definition, and (η(y))i is a function of y[−N+i,N+i].

So, η is an injective sliding block code from Y into X = X̂G. Let Z be its image. Then,
η−1 is a bijective sliding block code from Z onto Y. Moreover, by the construction of η, for
every y ∈ Y ,

φ ◦ η(y) = y. (9)

It follows that η−1 = φ|Z . This completes the proof of the if part assuming condition (C2).
Now assume condition (C1). The proof follows along the same lines except that the

definition of η is even easier: S = F is a finite set, and we only need the first two cases,
definitions (D1) and (D2), of the definition of η because for any y ∈ Y , Oy is a non-empty
set with no maximum and no minimum.

Finally, we show that Y must be an SFT (and thus Z must also be an SFT) when
condition (C1) or (C2) holds. To see this, first note that an S-gap shift is an SFT if and
only if S is either finite or cofinite [DJ12]. If condition (C1) holds, there is nothing to
prove. If condition (C2) holds, then the proof of the ‘if part’ above in particular shows that
Y is an S-gap shift with S := F ∪ {N , N + 1, . . .}, where N is a positive integer and F is
a finite subset of non-negative integers. Thus, S is cofinite and therefore Y is an SFT.

Example 6.4. Let F1 = {111}, X = XF1 , and � : {0, 1}4 → {0, 1} be a 4-block code
defined by

�(x[1,4]) =
{

1 if x[1,4] = 1010,

0 otherwise.

We let φ : X → Y be the factor code with an unambiguous symbol induced by �.
According to Proposition 5.1, Y is an S-gap shift. Applying a similar argument as in
the proof of Proposition 5.2 to φ, one can verify that 3 /∈ S and {4, 5, 6, 7 . . .} ⊂ S.
Furthermore, a direct examination gives

0 /∈ S, 1 ∈ S and 2 /∈ S.

https://doi.org/10.1017/etds.2023.103 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.103


2210 G. Han et al

Thus, Y is an S-gap shift with S = {1, 4, 5, 6, 7 . . .}. Equivalently, Y is an SFT with the
forbidden set F = {11, 1001, 10001}. Moreover, since 0∞ ∈ X, condition (C2) is satisfied
and we conclude from Theorem 6.1 that there is an SFT Z ⊂ X such that φ|Z is a
conjugacy from Z to Y.

When the domain of φ is X[2], then condition (C2) in Theorem 6.1 holds and there is
always an SFT Z ⊂ X to which the restriction of φ is one-to-one and onto Y. Note that Y
must be an S-gap shift with S cofinite. Our next result gives an explicit description of Z for
some special cases.

THEOREM 6.5. Let φ : X = X[2] → Y be a factor code with an unambiguous symbol,
F be the standard forbidden set of Y, and F be the bitwise complement of F . Then, the
following are equivalent:
(1) at least one of the symbols from {0, 1} occurs at most once in D;
(2) either φ|XF or φ|XF is one-to-one and onto Y;
(3) either φ|XF or φ|XF is finite-to-one and onto Y;
(4) either φ|XF or φ|XF is onto Y.
(Note: When item (1) holds, φ|XF and φ|XF may not both satisfy item (2) (respectively,
items (3) and (4)). For example, suppose k = 4 and D = b1b2b3b4 = 0000. Then, one
verifies that φ|XF is one-to-one and onto, but φ|XF is not. See Example 6.6 for more
details.)

Proof. When k = 1, Y = X = X[2] and φ is trivially a conjugacy. Hence, we assume
k ≥ 2 throughout the remainder of the proof.

(1) ⇒ (2): We consider the following two cases.
Case 1: b1 . . . bk = 0k or b1 . . . bk = 1k . Assume b1 . . . bk = 0k . Then, Y is an S-gap

shift with S = {0, k, k + 1, . . .}. Equivalently, Y is an SFT with forbidden set

F = {101, 1001, . . . , 10k−11}.
Note that any y ∈ Y can be uniquely expressed by y = · · · 1m10n11m20n21m3 . . . with

mi ≥ 1, ni ≥ k. Define

x := · · · 0m1+k−11n1−k+10m2+k−11n2−k+10m3+k−1 . . . .

Then, x ∈ XF and φ(x) = y. Hence, φ|XF is onto.
We then claim that φ|XF is one-to-one. To see this, consider x, x′ ∈ XF and x �= x′.

Then, for some i, without loss of generality, we assume xi = 1, x′
i = 0. Now, xi = 1

implies (φ(x))[i,i+k−1] = 0k; however, recalling that F = {101, 1001, . . . , 10k−11}, we
deduce from x′

i = 0 that there is an i ≤ l ≤ i + k − 1 such that x′
[l−k+1,l] = 0k and

therefore (φ(x′))l = 1. Thus, φ(x) �= φ(x′) and φ|XF is one-to-one.
By reversing the roles of 0 and 1 in the domain, it follows that φ|XF : XF → XF is

also one-to-one and onto when b1 . . . bk = 1k .
Case 2: There is only one 0 or only one 1 in b1b2 . . . bk . We first assume that bj = 1 for

some 1 ≤ j ≤ k and bi = 0 for any 1 ≤ i ≤ k and i �= j . Let M := max{j − 1, k − j}.
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Then Y is an S-gap shift with S = {M , M + 1, . . .}. Equivalently, Y is an SFT with the
forbidden set F = {11, 101, . . . , 10M−11}. Expressing any x ∈ XF by

x = · · · 10m−110m010m11 . . .

with ml ≥ M for all l ∈ Z, one directly verifies that φ(x) = σ j−k(x). Thus, φ|XF must be
one-to-one and onto Y.

By reversing the roles of 0 and 1 in the domain, it follows that φ|XF → XF is also
one-to-one and onto when there is only one 0 in b[1,k].

(2) ⇒ (3): Obvious.
(3) ⇒ (4): Obvious.
(4) ⇒ (1): We prove by way of contradiction. Suppose there are at least two 1s and at

least two 0s in b[1,k]. Then, k ≥ 4 and 11 ∈ F . We will show that both φ|XF and φ|XF are
not onto by finding a y ∈ Y and two blocks B1 ∈ F and B2 ∈ F such that any x ∈ φ−1(y)

contains B1 and B2. Indeed, if such a y exists, then y /∈ φ(XF ) and y /∈ φ(XF ), and
therefore both φ|XF and φ|XF are not onto, contradicting item (4).

We consider the following cases.
Case 1: Both 00 and 11 are subblocks of b1b2 . . . bk . Choose y ∈ Y with y0 = 1. Then,

for any x ∈ φ−1(y), x[−k+1,0] = b[1,k]. Since 11 ∈ F , 00 ∈ F , and they are both subblocks
of x, we conclude that φ|XF and φ|XF are not onto.

Case 2: Neither 00 nor 11 is a subblock of b1b2 . . . bk . In this case, b1b2 . . . bk is a
binary block with 0 and 1 occurring alternately. We assume without loss of generality that
b1b2 . . . bk = 010101 . . ..

If k is odd, one verifies that b1 = bk = 0, F = {10j 1 : j ∈ {0, 2, 3, . . . k − 2}}, and
F = {01j 0 : j ∈ {0, 2, 3, . . . , k − 2}}. Consider y ∈ Y such that y[0,k] = 10k−11. For any
x ∈ φ−1(y), x[−k+1,k] = (b1b2 . . . bk)

2; in particular, x[−1,2] = bk−1bkb1b2 = 1001 ∈ F
and x[0,1] = bkb1 = 00 ∈ F . Thus, both φ|XF and φ|XF are not onto.

If k is even, F = {10j 1 : j ∈ {0, 2, 3, . . . , k − 1}} and F = {01j 0 : j ∈ {0, 2, 3, . . . ,
k − 1}}. Consider y ∈ Y such that y[0,k+1] = 10k1. Then for any x ∈ φ−1(y), either
x[−k+1,k+1] = b1b2 . . . bk0b1b2 . . . bk or x[−k+1,k+1] = b1b2 . . . bk1b1b2 . . . bk . In
the former case, x[0,3] = 1001 ∈ F and x[0,1] = 00 ∈ F ; in the latter case, x[0,1] =
11 ∈ F and x[−1,2] = 0110 ∈ F . Therefore, φ|XF and φ|XF are not onto in both
cases.

Case 3: Exactly one of 00 or 11 is a subblock of b1b2 . . . bk . We assume without loss
of generality that 11 is a subblock of b1b2 . . . bk yet 00 is not. If for any 2 ≤ j ≤ k − 2,
01j 0 is not a subblock of b1b2 . . . bk , then b1b2 . . . bk = 1m1(01)m21m3 , where either
m1 ≥ 2, m2 ≥ 2, m3 ≥ 0 or m1 ≥ 0, m2 ≥ 2, m3 ≥ 1. In either case, one directly verifies
that 11 ∈ F , 010 ∈ F . Consider any y ∈ Y with y0 = 1. Then, any x ∈ φ−1(y) satisfies
x[−k+1,0] = b1b2 . . . bk , and therefore it contains both 11 and 010. Thus, both φ|XF and
φ|XF are not onto.

Otherwise, there exists 2 ≤ j ≤ k − 2 such that 01j 0 is a subblock of b1b2 . . . bk . If
b1b2 . . . bk−j−1 �= bj+2 . . . bk , then 10j 1 ∈ F and therefore 01j 0 ∈ F . Let y ∈ Y be
such that y0 = 1. Then, for any x ∈ φ−1(y), x[−k+1,0] = b1b2 . . . bk , and therefore x
contains both 11 ∈ F and 01j 0 ∈ F . Hence, both φ|XF and φ|XF are not onto.
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If b1b2 . . . bk−j−1 = bj+2 . . . bk , then

b1b2 . . . bk =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1s1(01j )m1 with 0 ≤ s1 ≤ j , m1 ≥ 2

and s1 + m1(j + 1) = k

or

1s2(01j )m201t2 with 0 ≤ s2 ≤ j , m2 ≥ 1, 0 ≤ t2 ≤ j − 1

and s2 + m2(j + 1) + t2 + 1 = k,

and 10i1 ∈ F for any j + 1 ≤ i ≤ 2j .
Subcase 3.1: b1b2 . . . bk = 1s1(01j )m1 for some 0 ≤ s1 ≤ j and m1 ≥ 2. If s1 = 0,

b1b2 . . . bk = (01j )m1 and it is purely periodic. In this case, we infer from Proposition
5.2(1) that 10k−11 is not allowed in Y but 10k1 is. Consider y ∈ Y with y[0,k+1] = 10k1.
For any x ∈ φ−1(y), either x[−k+1,k+1] = b1b2 . . . bk0b1b2 . . . bk = (01j )m10(01j )m1 or
x[−k+1,k+1] = b1b2 . . . bk1b1b2 . . . bk = (01j )m11(01j )m1 . In the former case, x[0,1] =
00 ∈ F ; in the latter case, x[−j−1,1] = 01j+10 ∈ F . Since b1b2 . . . bk contains 11 ∈ F ,
we conclude that both φ|XF and φ|XF are not onto.

If s1 �= 0, b1b2 . . . bk is not purely periodic. Hence, we infer from Proposition 5.2(1)
that 10k−11 is allowed in Y. A similar argument as in Case 2 for odd k implies that both
φ|XF and φ|XF are not onto.

Subcase 3.2: b1b2 . . . bk = 1s2(01j )m201t2 for some 0 ≤ s2 ≤ j , m2 ≥ 1, and 0 ≤ t2 ≤
j − 1. If s2 = j and t2 = 0, b1b2 . . . bk = (1j 0)m2 . By reversing the roles of 0 and 1, a
similar argument as in Subcase 3.1 for s1 = 0 implies that both φ|XF and φ|XF are not
onto.

If s2 �= j or t2 �= 0, a similar argument as in Subcase 3.1 for s1 �= 0 again implies that
both φ|XF and φ|XF are not onto.

Example 6.6. Let � : {0, 1}2 → {0, 1} be a 4-block code defined by

�(0000) = 1 and �(b1b2b3b4) = 0 if b1b2b3b4 �= 0000.

Let φ : X = X[2] → Y be the factor code induced by �. Using Proposition 5.2, one verifies
that Y is an S-gap shift with S = {0, 4, 5, 6, . . .}. Equivalently, Y is an SFT with the
forbidden set F = {101, 1001, 10001}. Noting that 1∞ ∈ X, we deduce from Theorem 6.1
that there is an SFT Z ⊂ X such that φ|Z is a conjugacy. Note that φ|XF is not onto: since
010 ∈ F and �−1(100001) = 000010000, 100001 is not allowed in the image of φ|XF and
therefore φ|XF is not onto. It follows from Theorem 6.5 that we can choose Z to be XF .
The reader can verify this directly.

7. Standard factor codes defined on spoke graphs
In this section, we consider a class of factor codes with an unambiguous symbol motivated
by the example in [MPW84, pp. 287–289].

A graph U is called a spoke if U consists of a state B, a simple path γ + from B to a state
B ′ �= B, a simple path γ − from B ′ to B, a simple cycle C including B ′ such that γ +, γ −
and C are all disjoint (except that they all share the state B ′ and γ +, γ − share the state B).
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FIGURE 1. A spoke graph with two regular spokes and one degenerate spoke, where dots denote vertices.

We also allow degenerate spokes with one simple cycle C at B, which we indicate by
γ + = γ − = ∅.

A graph G is a spoke graph if it consists of a central state B and finitely many
distinct spokes Ui , i ∈ T such that for any i �= j ∈ T , Ui and Uj only intersect at B. Let
γ +
i , γ −

i , B ′
i and Ci denote the γ +, γ −, B ′ and C of the spoke Ui . Let T0 � {i ∈ T : γ + =

γ − = ∅} denote the indices of degenerate spokes and T1 � T \ T0 denote the indices of
regular spokes. See Figure 1 for an example of a spoke graph with two regular spokes and
one degenerate spoke.

Let � : V(G) → {0, 1} be defined by

�(x) =
{

1 if xi = B,

0 otherwise.
(10)

For a block x1 . . . xm with xi ∈ V(G) for any 1 ≤ i ≤ m, we use �(x1 . . . xm) to denote
�(x1)�(x2) . . . �(xm).

Consider the factor code φ : X̂G → Y ⊂ X[2] induced by �. We call φ the standard
factor code on G. The image Y of φ is a gap shift with gap set

S :=
⋃
i∈T

Si ,

where

Si :=
{

{di − 1} if i ∈ T0,

{n ∈ Z≥0 : n = ai (mod di), n ≥ mi} if i ∈ T1,

di := |Ci |, i ∈ T0 ∪ T1,

mi := |γ +
i | + |γ −

i | − 1, i ∈ T1,

ai := mi mod di , 0 ≤ ai ≤ di − 1.
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Let D = l.c.m.({di : i ∈ T1}) and n(i) := D/di . It is then immediate that for i ∈ T1,

Si = {n ∈ Z≥0 : n = b
(j)
i (mod D), 1 ≤ j ≤ n(i), n ≥ mi},

where b
(j)
i := ai + (j − 1)di and 0 ≤ b

(j)
i < D for any i ∈ T1 and any 1 ≤ j ≤ n(i). For

each i ∈ T1, denote

Ki := {b(1)
i , b

(2)
i , . . . , b

n(i)
i } and Ki mod D :=

n(i)⋃
j=1

{n : n = b
(j)
i (mod D)}.

Then the gap set S can be expressed by

S =
( ⋃

i∈T1

{n ∈ Z≥0 : n ∈ Ki mod D, n ≥ mi}
)

∪ {|Ci | − 1 : i ∈ T0}.

8. Characterization of the finite-to-one condition for standard factor codes on spoke
graphs
Here, we characterize property P2 for standard factor codes on spoke graphs.

THEOREM 8.1. Let G be a spoke graph and φ be the standard factor code on G. Then, the
following are equivalent.
(1) There is a W ⊂ T1 such that

⋃
i∈W Ki = ⋃

i∈T1
Ki and {Ki : i ∈ W } are pairwise

disjoint.
(2) There is an irreducible SFT Z ⊂ X̂G such that φ|Z is almost invertible and onto Y.
(3) There is an irreducible SFT Z ⊂ X̂G such that φ|Z is finite-to-one and onto Y.

(Note 1: If di ≥ 2 for all i ∈ T0 ∪ T1, then the vertex shift of a spoke graph does not
have a fixed point. If T1 �= ∅, then the image Y always has a fixed point 0∞. So, under
these assumptions, φ|Z cannot be a conjugacy.

Note 2: In items (2) and (3), it is not necessary to assume that Z is irreducible since
otherwise we can replace Z with an irreducible component with maximal topological
entropy.)

Proof. (1) ⇒ (2): Suppose there is a set W ⊆ T1 such that
⋃

i∈W Ki = ⋃
i∈T1

Ki and
{Ki : i ∈ W } are pairwise disjoint.

Denote

S(0) =
⋃
i∈W

{n ∈ Z≥0 : n ∈ Ki mod D, n ≥ mi},

S(1) =
⋃
i∈T1

{n ∈ Z≥0 : n ∈ Ki mod D, n ≥ mi},

S(2) = {|Ci | − 1 : i ∈ T0}.
We first construct a new graph H from the graph G through the following three steps:
(A) let H be the graph consisting of the central state B ∈ V(G) and all the spokes Ui ⊂

G with i ∈ W ;
(B) for each r ∈ S(1) \ S(0), add to H a simple cycle, denoted C(r), of length r + 1

starting and ending with B;
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FIGURE 2. An example of G and H, where dots denote vertices, and Ui terms and U ′
i terms are spokes in G and

H, respectively. For this example, T0 = {3, 4}, T1 = {1, 2}, W = {2} and H1 = U ′
2, H2 = U ′

1 ∪ U ′
3, H3 = U ′

4.

(C) for each s ∈ S(2) \ S(1), choose an i(s) ∈ T0 such that |Ci | = s + 1. Add the
degenerate spoke Ui(s) to H.

See Figure 2 for an example of the construction of H.
Let H1, H2, H3 denote subgraphs consisting of spokes added to H in steps (A), (B),

and (C), respectively. It is worth noting that any r ∈ S(1) \ S(0) corresponds to a ‘gap’ in
regular spokes of G that is missing from {Ui : i ∈ W }, and any s ∈ S(2) \ S(1) corresponds
to a ‘gap’ in degenerate spokes of G that is missing from {Ui : i ∈ T1}.

The following properties are immediate from the construction of H.
(a) H is a spoke graph. It consists of the central state B and several spokes intersecting

at B, where spokes in H1 are regular spokes and spokes in H2 ∪ H3 are degenerate
spokes.

(b) H1 ∪ H3 is a subgraph of G.
(c) If η1 and η2 are two different simple cycles at B in H, then |η1| �= |η2|.

Now, define a one-block map � : V(H) → V(G) as follows:
• for v ∈ V(H1 ∪ H3), let �(v) = v;
• for any r ∈ S(1) \ S(0), choose a cycle C̃(r) in G starting and ending with B with no B

in its interior such that |C̃(r)| = |C(r)|. Define

�(V (C(r))) := V (C̃(r)).

Note that for any two distinct vertices v1, v2 ∈ V(H), �(v1) = �(v2) only if there exist
r1, r2 ∈ S(1) \ S(0) with r1 �= r2 such that v1 ∈ V (C(r1)) and v2 ∈ V (C(r2)), where C(r1)

and C(r2) are constructed in step (B).
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Let ψ : X̂H → X̂G be the sliding block code induced by � and define Z := ψ(X̂H ).
Note that any point z ∈ Z is a concatenation of strings of the form

Bu1u2 . . . ukB, . . . v−3v−2v−1B, Bw1w2w3 . . . , . . . i−2i−1i0i1i2 . . . , (11)

where uj terms, vj terms, wj terms, and ij terms are vertices in G distinct from B. Thus, to
show that ψ is one-to-one, it suffices to show that any string in equation (11) has a unique
�-pre-image, and we prove this by considering the following cases.
(1) Any allowed block of the form Bu1u2 . . . ukB in X̂G must be the �-image of

some block of the form Bx1x2 . . . xkB with xi ∈ V(H) for any 1 ≤ i ≤ k. Noting
from property (c) that each Bx1x2 . . . xkB is uniquely determined by its length, we
conclude that the �-pre-image of Bu1u2 . . . ukB is unique.

(2) For simplicity, among the infinite paths in equation (11), we consider only those
of the form . . . v−3v−2v−1B in X̂G. Such a string must be the �-image of some
string of the form . . . x−3x−2x−1B with xi ∈ V(H1). Since � is the identity map on
V(H1 ∪ H3), . . . v−3v−2v−1B has a unique �-pre-image.

Let Z := ψ(X̂H ). Then Z is an irreducible SFT because it is conjugate to X̂H . We now
prove that φ|Z is almost invertible and onto Y. Note that by definition, � ◦ � maps the
central state B to 1 and maps all other vertices in H to 0. So φ ◦ ψ is the standard factor
code on the spoke graph H.

To see that φ ◦ ψ is onto, first note that the image (φ ◦ ψ)(X̂H ) is a gap shift with gaps
of the form

S′ := S(0) ∪ (S(1) \ S(0)) ∪ (S(2) \ S(1))

= S(0) ∪ S(1) ∪ S(2)

= S(1) ∪ S(2),

where we use the fact that S(0) ⊂ S(1) in the last equation. Since
⋃

i∈W Ki = ⋃
i∈T1

Ki ,
we have S′ = S, where S is such that Y is an S-gap shift. Therefore, φ ◦ ψ is onto.

We now show that φ ◦ ψ is finite-to-one. We first note from the construction of H that
for any t ∈ S, there is a unique cycle of length t + 1 in H starting and ending with B,
whose interior does not contain B. Hence, for any t ∈ S, there is a unique path in H whose
image under � ◦ � is 10t1. This implies that φ ◦ ψ has no graph diamond and therefore it
is finite-to-one.

Since the central state B is the only vertex in H whose (� ◦ �)-image is 1, and since
φ ◦ ψ is a finite-to-one 1-block code on a 1-step SFT, its degree is 1 (by [LM95, Theorem
9.1.11(3) and Proposition 9.1.12]) and therefore it is almost invertible.

Finally, since φ ◦ ψ is almost invertible and onto Y, and ψ is a conjugacy from X̂H to
Z, we conclude that φ|Z : Z → Y is almost invertible and onto.

(2) ⇒ (3): As we said in §2, any almost invertible factor code on an irreducible SFT is
finite-to-one [LM95, Proposition 9.2.2].

(3) ⇒ (1): Suppose that there is an irreducible SFT Z ⊂ X such that φ|Z is finite-to-one
and onto. Let k be the degree of φ|Z and L be the maximum length of words in a forbidden
list of blocks from X that defines Z. Then, it follows from our definition of the degree of
finite-to-one codes in §2 that there exist a word of the form u := 0e110e21 . . . 10en with
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ei ∈ S, an integer L ≤ M ≤ |u|, and an index 1 ≤ j ≤ |u| − M + 1 such that the set

E := {v[j ,j+M−1] : v ∈ B(Z), �(v) = u}
has cardinality k. Note that u is a magic word and u[j ,j+M−1] is the corresponding magic
block.

For notational convenience, in the remainder of this proof, for any block w with length
|u|, we use the following notation:

w := w[1,j−1], w̃ := w[j ,j+M−1], ŵ := w[j+M ,|u|],

where u, j, and M are defined as above.
Denote elements in E by a(1), a(2), . . . , a(k) and for any 1 ≤ l ≤ k, define

B(l) := {v ∈ B(Z) : �(v) = u, ṽ = a(l)} and R :=
⋃

1≤l≤k

B(l).

Note that R is the set of all φ|Z-pre-images of u. By a higher block recoding similar to
[LM95, Proposition 9.1.7], the following observation follows from [LM95, Proposition
9.1.9 (part 2)].

Observation 1. Let uxu be a word in B(Y ) and let A := {z ∈ B(Z) : �(z) = uxu}. Note
that any element in A is of the form v(l)wv(l′), where 1 ≤ l, l′ ≤ k and v(l) ∈ B(l),
v(l′) ∈ B(l′). Then, there exists a permutation τ = τuxu of {1, 2, . . . k} such that for any
pair (l, l′), v(l)wv(l′) ∈ A for some w only if l′ = τ(l).

For any 1 ≤ l ≤ k, define

F (l) := {i ∈ T1 :vV (γ +
i (Ci)

Lγ −
i )w ∈ B(Z) for some v ∈ B(l) and some w ∈ R}

to be the index set of regular spokes that can follow some pre-images of u in B(l) and
precede some pre-images of u in R. We claim that for any 1 ≤ l ≤ k, {Ki : i ∈ F (l)} are
pairwise disjoint and

⋃
i∈F (l) Ki = ⋃

i∈T1
Ki . We assume without loss of generality that

l = 1 in the following.
To show {Ki : i ∈ F (1)} are pairwise disjoint, we suppose to the contrary that there

exists f ∈ Ki1 ∩ Ki2 for some i1, i2 ∈ F (1) with i1 �= i2. Choose n(f ) = f (mod D) such
that n(f ) ≥ max{di1L + mi1 , di2L + mi2}. Then, n(f ) ∈ S and according to the definition
of F (1), there are v, x ∈ B(1), w ∈ B(l1), y ∈ B(l2) for some 1 ≤ l1, l2 ≤ k such that

�(vV (γ +
i1

(Ci1)
(n(f )−mi1 )/di1 γ −

i1
)w) = �(xV (γ +

i2
(Ci2)

(n(f )−mi2 )/di2 γ −
i2

)y) = u10n(f )1u,

and ṽ = x̃ = a(1), w̃ = a(l1), ỹ = a(l2).

Then, we infer from Observation 1 that l1 = l2 and therefore w̃ = ỹ = a(l1). Now, the two
words

ṽv̂V (γ +
i1

(Ci1)
(n(f )−mi1 )/di1 γ −

i1
)ww̃ and x̃x̂V (γ +

i2
(Ci2)

(n(f )−mi2 )/di2 γ −
i2

)yỹ (12)

are both φ|Z-pre-images of ũû10n(f )1uũ, and they both start with a(1) and end with a(l1).
Since a(1) and a(l1) both have length M, which is no less than L, we deduce that the two
words in equation (12) can be extended to a point diamond, contradicting the fact that φ|Z
is finite-to-one.
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B V1 V2

γ +

γ −

FIGURE 3. The graph G, which is a representation of XF .

To show
⋃

i∈F (1) Ki = ⋃
i∈T1

Ki , assume to the contrary that there is a g ∈ ⋃
i∈T1

Ki

but g /∈ ⋃
i∈F (1) Ki . Choose n(g) := g (mod D) such that n(g) > max{di : i ∈ T0} and

n(g) ≥ max{diL + mi : i ∈ T1}. Then, n(g) ∈ S and we deduce from the definition of
F (1) that the set

Q := {z[j ,j+M−1] : z ∈ B(Z), �(z) = u10n(g)1u}
does not contain a(1). Noting that Q ⊂ {a(1), a(2), . . . , a(k)}, since u is a magic word,
the cardinality of Q is at most k − 1. This contradicts the fact that φ|Z has degree k, and
therefore

⋃
i∈F (1) Ki = ⋃

i∈T1
Ki .

Now let W = F (1). Then, we immediately infer from above that W is the desired set and
therefore complete the proof.

Remark 8.2. Our proof indeed shows that conditions (2) and (3) in Theorem 8.1 are equiv-
alent for any 1-block factor code with an unambiguous symbol defined on a 1-step SFT.

Example 8.3. Let G be the graph in Figure 3 where B is the central state. Let φ be
the standard factor code on G. Then, one verifies that � (which generates φ) has no
graph diamond and so φ is finite-to-one; however, φ is not one-to-one: both (V1V2)

∞
and (V2V1)

∞ are pre-images of 0∞. In this case, there is no subshift Z ⊂ X̂G such that
φ|Z is one-to-one and onto.

Example 8.4. Let G be the 3-spoke graph defined by

d1 = d3 = 6, d2 = 3, m1 = m2 = 1, m3 = 4

and φ be the standard factor code on G. Then, T0 = ∅, T1 = {1, 2, 3}, D = l.c.m.(d1,
d2, d3) = 6 and

K1 = {1}, K2 = {1, 4}, K3 = {4}.
Here the image Y of φ is an S-gap shift with

S = {n ∈ Z≥0 : n = 1 mod 3}.
There are two ways to choose W.
(1) W = {1, 3}. It can be readily checked that

⋃
i∈W Ki = ⋃

i∈T1
Ki and K1 ∩ K3 = ∅.

So, by Theorem 8.1, there is an SFT Z ⊂ X̂G such that φZ is finite-to-one and onto Y. In
this case, the proof chooses Z to be X̂U1∪U3 .

(2) W = {2}. Here, the proof of Theorem 8.1 chooses Z to be X̂U2 .
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This shows that there are two irreducible Markov measures, ν1 and ν2, with ν1 supported
on X̂U1∪U3 and ν2 supported on X̂U2 , which both achieve the capacity of the channel given
by the standard factor code on G.

Example 8.5. Let G be the 4-spoke graph defined by

m1 = m2 = m3 = 1, m4 = 10, d1 = 2, d2 = 3, d3 = 4, d4 = 6

and φ be the standard factor code on G. Then,

T0 = ∅, T1 = {1, 2, 3, 4}, D = l.c.m.(d1, d2, d3, d4) = 12

and

K1 = {1, 3, 5, 7, 9, 11}, K2 = {1, 4, 7, 10}, K3 = {1, 5, 9}, K4 = {4, 10}.
Let Y be the image of φ. Since K1 ∩ K4 = ∅ and K1 ∪ K4 = ⋃

i∈T1
Ki , it follows from

Theorem 8.1 that there is an SFT Z ⊂ X̂G such that φ|Z is finite-to-one and onto Y. Note
that in this example, we cannot simply choose H in the proof of Theorem 8.1 to be the
graph obtained from G by deleting U2 and U3. This is because 1041 is allowed in Y, but
not allowed in φ(X̂U1∪U4): the only �-pre-image of 1041 is V (γ +

2 C2γ
−
2 ) and it comes only

from the spoke U2. Instead, we let H be the graph obtained from G by deleting U2 and U3,
and then adding to H a cycle of length 5 starting and ending with B. Then, according to
the proof of Theorem 8.1, X̂H is conjugate to some SFT Z ⊂ X̂G and φ|Z is finite-to-one
and onto Y.

Example 8.6. An example for which the conditions in Theorem 8.1 are not satisfied is
given in [MPW84, §3]. Here, G is the 4-spoke graph defined by

m1 = m2 = 1, m3 = 2, m4 = 6, d1 = 2, d2 = 3, d3 = 6, d4 = 6.

Let φ be the standard factor code on G. It was shown in [MPW84] that for this φ, property
P3 is not satisfied and therefore property P2 is not satisfied.

9. Conjecture: properties P2 and P3 are equivalent for standard factor codes on spoke
graphs
Having characterized the condition under which property P2 is satisfied for standard factor
codes on spoke graphs, we now turn to the question whether property P2 is equivalent to
property P3 for these codes. Recall from Proposition 4.2 that property P2 always implies
property P3 for a general factor code. For the converse, we have the following.

Conjecture 9.1. Let G be a spoke graph and φ be the standard factor code on G. Then
property P3 implies property P2.

Remark 9.2. It will be shown that if property P3 holds, that is, there is a kth-order Markov
measure ν on X̂G such that φ∗(ν) = μ0, the unique mme on Y, then ν(V (Ci)|V ((Ci)

k)) =
Q−di , where Ci is the cycle (disjoint from B) on the spoke Ui , Q = ehtop(Y ), and di is the
length of Ci . This is part (a) of the proof of Proposition 9.4 (see equation (13)). Hence,
the ν-weight-per-symbol of each such V ((Ci)

∞) is a constant Q−1. If it is true that the
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weight-per-symbol of each of the periodic points V ((γ +
i γ −

i )∞) is also Q−1, then one
would have condition (4) of Proposition 4.3 and property P2 would be true. It may be that
there is another Markov measure ν′ on X̂G with φ∗(ν′) = μ0 such that this condition is
satisfied.

In the remainder of this section, we will prove some special cases of Conjecture 9.1. To
this end, we begin with some lemmas.

LEMMA 9.3. (Consequence of strong form of Chinese remainder theorem) Let k be a
positive integer. If for any 1 ≤ i < j ≤ k, there exists xi,j such that xi,j = ai (mod di)

and xi,j = aj (mod dj ), then there exists x such that x = al (mod dl) for any
1 ≤ l ≤ k.

Proof. For any 1 ≤ i < j ≤ k, let gi,j = gcd(di , dj ). Then gi,j divides xi,j − ai and
xi,j − aj so gi,j divides ai − aj . Hence, the generalized Chinese remainder theorem
[Le56, Theorem 3-12] asserts that there is a common solution to x = ai (mod di),
i = 1, 2, . . . , k.

LEMMA 9.4. Let ν be a kth-order Markov measure on X̂G such that property P3
holds. Define 	i := ν(V (γ +

i (Ci)
Dk/di )|B), P := {i ∈ T1 : 	i > 0} and Rj := {i ∈ T1 :

j ∈ Ki} = {i ∈ T1 : di divides j − mi}. Then:
(a) for each 0 ≤ j < D,

Q−Dk =
∑

i∈Rj ∩P

	iQ
mi+1(1 − Q−di ), (13)

where Q := ehtop(Y );
(b)

⋃
i∈T1\P Ki ⊂ ⋃

i∈P Ki;
(c) for each pair j , j ′, if Rj ′ ∩ P ⊂ Rj ∩ P , then Rj ′ ∩ P = Rj ∩ P .

Proof. Fix a congruence class 0 ≤ j < D and let μ0 be the unique mme on Y.
Since φ(ν) = μ0, for all n ≥ maxi∈T mi/D,

μ0(10Dk+j+Dn1) =
∑
i∈Rj

ν(V (γ +
i (Ci)

(1/di )(Dk+j+Dn−mi)γ −
i )).

Let

Qi := ν(V (Ci)|V (γ +
i (Ci)

(1/di )Dk)).

Since μ0(1) = ν(B), using the formula for the unique mme μ0, we have

Q−(Dk+j+Dn+1) =
∑
i∈Rj

	i(Q
1/di

i )−mi (Q
1/di

i )Dn+j (1 − Qi)

=
∑

i∈Rj ∩P

	i(Q
1/di

i )−mi (Q
1/di

i )Dn+j (1 − Qi)
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and so

Q−(Dk+1) =
∑

i∈Rj ∩P

	i(Q
1/di

i )−mi

(
Q

1/di

i

Q−1

)Dn+j

(1 − Qi).

Letting n → ∞, we have for all i ∈ Rj ∩ P ,

Q
1/di

i

Q−1 = 1. (14)

This yields equation (13) and proves item (a).
Since Y is a gap shift, μ0 is fully supported and so gives positive measure to each

allowed gap. Thus,
⋃

i∈T1\P Ki ⊂ ⋃
i∈P Ki , proving item (b).

To see item (c), we first derive from equation (13) that∑
i∈Rj ′∩P

	iQ
mi+1(1 − Q−di ) = Q−Dk =

∑
i∈Rj ∩P

	iQ
mi+1(1 − Q−di ).

Thus, ∑
i∈(Rj ∩P)\(Rj ′∩P )

	iQ
mi+1(1 − Q−di ) = 0,

which immediately implies (Rj ∩ P) \ (Rj ′ ∩ P) = ∅.

LEMMA 9.5. Let P be defined as in Lemma 9.4 and i1, i2 ∈ P with Ki1 ∩ Ki2 �= ∅. Then,
for any j ∈ Ki1 \ Ki2 , there exists i3 ∈ P such that:
(1) j ∈ Ki3 ;
(2) Ki2 ∩ Ki3 = ∅.

Proof. For notational convenience, we rewrite j by j1 and define S(i1, i2, j1) := (Rj1 ∩P)\
{i1, i2}, where Rj1 is defined in Lemma 9.4.

We first show that S(i1, i2, j1) �= ∅. Suppose to the contrary that S(i1, i2, j1) = ∅.
Then, Rj1 ∩ P = {i1}. Since Ki1 ∩ Ki2 �= ∅, there exists j2 ∈ Ki1 ∩ Ki2 and therefore
Rj2 ∩ P ⊃ {i1, i2}. Hence, Rj1 ∩ P � Rj2 ∩ P , contradicting Lemma 9.4(c).

We then claim that there exists i3 ∈ S(i1, i2, j1) such that Ki2 ∩ Ki3 = ∅. If not, then

Ki2 ∩ Ki �= ∅ for any i ∈ S(i1, i2, j1).

Recalling that j2 ∈ Ki1 ∩ Ki2 and j1 ∈ Ki1 ∩ (
⋂

i∈S(i1,i2,j1)
Ki), we derive from

Lemma 9.3 that there exists j4 ∈ Ki1 ∩ Ki2 ∩ (
⋂

i∈S(i1,i2,j1)
Ki). Hence,

Rj1 ∩ P = {i1} ∪ S(i1, i2, j1) � {i1, i2} ∪ S(i1, i2, j1) ⊂ Rj4 ∩ P ,

contradicting Lemma 9.4(c).

With these lemmas in hand, we prove the following.

PROPOSITION 9.6. Let G be a spoke graph, φ be the standard factor code on G, and P
be defined as in Lemma 9.4. If there is a stationary Markov measure ν on X̂G such that
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φ∗(ν) = μ0, the unique mme of the output Y, then there is an SFT Z ⊂ X̂G such that φ|Z
is finite-to-one and onto Y if any of the following hold:
(a)

⋂
i∈P Ki �= ∅ (in particular, this holds when mi = 1 for all i or the {di} are pairwise

co-prime (by the Chinese remainder theorem));
(b) for any i1, i2 ∈ P , Ki1 ∩ Ki2 �= ∅;
(c) there are subsets E1 and E2 of P such that {Ki : i ∈ E1} and {Ki : i ∈ E2} are

both pairwise disjoint and
⋃

i∈E1∪E2
Ki = ⋃

i∈T1
Ki . In particular, this condition

is satisfied if there are only two distinct di terms;
(d) |P | ≤ 5.

Proof. According to Theorem 8.1, it suffices to show that there is a W ⊂ T1 such that⋃
i∈W Ki = ⋃

i∈T1
Ki and {Ki : i ∈ W } are pairwise disjoint.

Proof of item (a): Let A := ⋃
i∈P Ki . Note that P �= ∅ by the existence of ν. Let

j ∈ ⋂
i∈P Ki . Apply Lemma 9.4(c) to this j and an arbitrary j ′ ∈ A to get that for all

i ∈ P , i ∈ ⋂
j ′∈A Rj ′ and so each Ki = A. By Lemma 9.4(b), A = ⋃

i∈T1
Ki . Hence, W

can be taken to consist of only one element, namely any element of P.
Proof of item (b): Since Ki terms are pairwise intersecting, an application of Lemma

9.3 to {Ki : i ∈ P } implies that
⋂

i∈P Ki �= ∅ which is item (a).
Proof of item (c): We assume without loss of generality that the Ki terms are distinct.

Denote

F := {i ∈ E1 : Ki ∩ Ki′ = ∅ for all i′ ∈ E2}. (15)

We claim that for any i ∈ E1 \ F , Ki ⊂ ⋃
i′∈E2

Ki′ . To see this, assume to the contrary that
there are i1 ∈ E1 \ F and j ∈ Ki1 such that j /∈ ⋃

i′∈E2
Ki′ . Recalling that Ki1 ∩ Ki2 = ∅

for i1, i2 ∈ E1 with i1 �= i2, we have Rj ∩ P = {i1}. However, i1 ∈ E1 \ F implies that
there exists j ′ ∈ Ki1 and i3 ∈ E2 such that j ′ ∈ Ki1 ∩ Ki3 . Hence, Rj ′ ∩ P ⊃ {i1, i3} �
{i1} = Rj ∩ P , which contradicts Lemma 9.4(c).

Now let W := F ∪ E2. Clearly {Ki : i ∈ W } are pairwise disjoint by the definition of F.
Since Ki ⊂ ⋃

i′∈E2
Ki′ for any i ∈ E1 \ F ,

⋃
i∈W Ki = ⋃

i∈P Ki = ⋃
i∈T1

Ki , proving
item (c).

Proof of item (d): By adding repeated spokes (for which the choice of the set W is not
affected), we can regard the cases |P | < 5 as special cases of |P | = 5. Hence, we assume
|P | = 5 in the following.

Let P = {1, 2, 3, 4, 5}. A pair i, i′ ∈ P is called an intersecting pair if Ki �= Ki′ and
Ki ∩ Ki′ �= ∅. We consider the following cases.

Case 1: For any intersecting pair i, i′ ∈ P , either Ki ⊂ Ki′ or Ki′ ⊂ Ki .
In this case, we define a partial order � in the following way: if i, i′ is an intersecting

pair and Ki ⊂ Ki′ , then Ki � Ki′ ; if i, i′ is not a intersecting pair, then Ki and Ki′ are
incomparable.

The partial order � partitions the set {Ki : i ∈ P } into several classes such that:
(1) each class is a chain with a unique maximal element (under �);
(2) if Ki and Ki′ are from different classes, then Ki ∩ Ki′ = ∅.
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j4 × • ×
j3 • × •
j2 • × •
j1 • • ×

(i, j) K1 K2 Kl K4 K5

FIGURE 4. Relationship between K1, K2, and Kl if l1 = l2 = l.

j4 × • × × •
j3 • × ?1 • ×
j2 • × • ?2 ×
j1 • • × × ×

(i, j) K1 K2 K3 K4 K5

FIGURE 5. Relationship between K1, K2, K3, K4, K5 with some unknowns.

Hence, letting W be the indices of all the maximal elements, we have {Ki : i ∈ W } are
pairwise disjoint and

⋃
i∈W Ki = ⋃

i∈P Ki = ⋃
i∈T1

Ki .
Case 2: There exists an intersecting pair i, i′ ∈ P such that both Ki � Ki′ and

Ki′ � Ki .
First note that in this case, we necessarily have di �= di′ . We may assume that i = 1,

i′ = 2, and l.c.m.(d1, d2)/d1 ≥ 3. Let j1 ∈ K1 ∩ K2, j2 � (j1 + d1) mod (l.c.m.(d1, d2)),
and j3 � (j2 + d1) mod (l.c.m.(d1, d2)), where 0 ≤ j2, j3 < l.c.m.(d1, d2). Then j2, j3 ∈
K1 \ K2. Furthermore, there is also a j4 ∈ K2 \ K1. Applying Lemma 9.5 to j2, j3, j4, we
deduce that there exist l1, l2, l3 ∈ {3, 4, 5} such that

j2 ∈ K1 ∩ Kl1 , Kl1 ∩ K2 = ∅, (16)

j3 ∈ K1 ∩ Kl2 , Kl2 ∩ K2 = ∅,

j4 ∈ K2 ∩ Kl3 , Kl3 ∩ K1 = ∅. (17)

Note that we necessarily have l3 �= l1 and l3 �= l2. We now claim that l1 �= l2. To
see this, suppose that l1 = l2 = l. Then j2 ∈ Kl , j3 ∈ Kl . Since j3 = (j2 + d1) mod
(l.c.m.(d1, d2)) and j2 ∈ K1, j3 ∈ K1, we have Kl ⊂ K1. Hence, j1 ∈ K1 ∩ K2 ∩ Kl ,
contradicting the fact that K2 ∩ Kl = ∅. (See Figure 4, where for any r , s, a • (respectively,
a ×) on the (r , s) position means that jr ∈ Ks (respectively, jr /∈ Ks)).

Hence, l1, l2, and l3 are distinct. We may assume that l1 = 3, l2 = 4, and l3 = 5. The
current relation between {K1, K2, K3, K4, K5} is given in Figure 5, where ? means that
whether this position is • or × is unknown up to now.

We then claim that j3 /∈ K3 and j2 /∈ K4 (that is, ?1 =?2 = × in Figure 5). To verify
this claim, assume without loss of generality that j3 ∈ K3. Then j2 ∈ K1 ∩ K3 and
j3 ∈ K1 ∩ K3. Noting that j3 − j2 = d1 mod (l.c.m.(d1, d2)), we must have K3 ⊃ K1,
which contradicts the fact that j1 ∈ K1 \ K3. Hence, j3 /∈ K3. A similar argument shows
that j2 /∈ K4, proving the claim.

Now the relationship between {K1, K2, K3, K4, K5} is partially characterized in
Figure 6.
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j4 × • × × •
j3 • × × • ×
j2 • × • × ×
j1 • • × × ×

(i, j) K1 K2 K3 K4 K5

FIGURE 6. Relationship between K1, K2, K3, K4, K5.

We then claim that K3 ∩ K4 = ∅. To see this, suppose to the contrary that there is a
j5 ∈ K3 ∩ K4. Since j2 ∈ K1 ∩ K3, j3 ∈ K1 ∩ K4, we infer from Lemma 9.3 that there is
a j6 ∈ K1 ∩ K3 ∩ K4, contradicting Lemma 9.4(c).

Now let E1 := {1, 5}, E2 := {2, 3, 4}. Since {Ki : i ∈ E1} and {Ki : i ∈ E2} are both
pairwise disjoint, the desired result follows from item (c).

Remark 9.7. When |P | ≤ 4, by carefully going through a similar argument as in the proof
of item (d), one can show that for any i �= j ∈ P , Ki ∩ Kj = ∅ or Ki ⊂ Kj or Kj ⊂ Ki .

10. Standard factor codes defined on another class of graphs
We believe that our approach in the proof of Theorem 8.1 also works for more general
graphs. Note that for a graph G with one (regular) spoke, Theorem 8.1 implies that property
P2 always holds. In this section, as an example, we show that property P2 also holds for
standard factor codes defined on a different kind of spoke graph. To be specific, let G be
a graph which consists of a central state B, a simple path γ + from B to B ′ �= B, a simple
path γ − from B ′ to B, and two simple cycles C1 and C2 including B ′ such that:
(a) |Ci | > 0 for i = 1, 2;
(b) γ + and γ − only intersect at B and B ′;
(c) γ +, γ −, C1 and C2 share the vertex B ′, and there is no other common vertex among

γ +, γ −, C1, and C2.
Here, we implicitly assume that γ + �= ∅ and γ − �= ∅.

Just as in §7, a standard factor code φ on G is induced by a one-block map � : V(G) →
{0, 1} that maps the central state B to 1 and any other vertex to 0.

Let Y be the image of φ. We have the following.

PROPOSITION 10.1. Let G be the graph defined above and φ be the standard factor code
on G. Then, there is an SFT Z ⊂ X̂G such that φ|Z is finite-to-one and onto Y.

We need the following lemma.

LEMMA 10.2. Suppose d1, d2 are two positive integers. Let

E = {n ∈ Z≥0 : n = s · d1 + t · d2, s, t ∈ Z≥0},
u : = l.c.m.(d1, d2)

d2
.

Then for any n ∈ E, the equation

x · d1 + y · d2 = n such that x, y ∈ Z≥0, 0 ≤ y < u (18)

has a unique solution.
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Proof. We first show that equation (18) has a solution. Suppose n = s · d1 + t · d2 for
some s, t ∈ Z≥0. If t < u, then x = s, y = t is a solution to equation (18); otherwise, if
t ≥ u, then there exist non-negative integers k, r with 0 ≤ r < u such that t = ku + r .
Hence, we have

n = s · d1 + t · d2

= s · d1 + (ku + r)d2

= s · d1 + k · (l.c.m.(d1, d2)) + rd2

=
(

s + k · l.c.m.(d1, d2)

d1

)
d1 + rd2. (19)

Since d1 | l.c.m.(d1, d2) and 0 ≤ r < u, we conclude from equation (19) that x = s + k ·
l.c.m.(d1, d2)/d1, y = r is a solution to equation (18).

We now prove that equation (18) has no more than one solution. Suppose to the contrary
that there exist two different pairs of integers (x1, y1) and (x2, y2) that satisfy equation
(18) and without loss of generality y1 < y2. Now we have x1 · d1 + y1 · d2 = x2 · d1 + y2 ·
d2 = n, which implies (y2 − y1)d2 = (x1 − x2)d1. Hence, d1 | (y2 − y1)d2 and it follows
that

(y2 − y1)d2 ≥ l.c.m.(d1, d2), (20)

since d2 | (y2 − y1)d2. However, recalling that y1, y2 < u, we have y2 − y1 < u and

(y2 − y1)d2 < u · d2 = l.c.m.(d1, d2)

d2
· d2 = l.c.m.(d1, d2),

contradicting equation (20).

Proof of Proposition 10.1. We first note that the image Y of φ is a gap shift with gap set

S := {n ∈ Z≥0 : n = m + s · d1 + t · d2 with s, t ∈ Z≥0},
where m = |γ +| + |γ −| − 1 and di = |Ci | for i = 1, 2.

Let u := l.c.m.(d1, d2)/d2 and denote the vertices on the cycle C2 and path γ + by

V (C2) = f1f2 . . . fd2 ,

V (γ +) = Bg1g2 . . . g|γ +|−1f1,

where f1 = B ′. We then construct a new graph H from G through the following steps:
(A) let H be the graph obtained from G by deleting the cycle C2;
(B) if u > 1, add to H a simple path β from B to B ′ such that

|β| = |γ +| + (u − 1)d2,

V (β) = Bg′
1g

′
2 . . . g′

|γ +|−1f
(1)
1 f

(1)
2 . . . f

(1)
d2

. . . . . . f
(u−1)
1 f

(u−1)
2 . . . f

(u−1)
d2

B ′;

(C) for each 1 ≤ j ≤ u − 2, add to H an edge from f
(j)
d2

to B ′.
See Figure 7 for an example of G and H when m = 3, |C1| = 4, and |C2| = 3.
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FIGURE 7. An example of G and H with m = 3, |C1| = 4, |C2| = 3.

We now construct a sliding block code ψ : XH → XG such that ψ is one-to-one and
φ ◦ ψ is finite-to-one and onto. It will follow that Z := ψ(XH ) is an SFT and φ|Z is
finite-to-one and onto.

Let � : V(H) → V(G) be the 1-block map defined by:
(a) for any vertex v on γ +, γ − or C1, �(v) = v;
(b) for any 1 ≤ i ≤ |γ +| − 1, �(g′

i ) = gi ; for any 1 ≤ j ≤ d2 and 1 ≤ k ≤ u − 1,
�(f

(k)
j ) = fj .

Let ψ be the sliding block code induced by �. To show that ψ is one-to-one, it suffices
to show that there exists some M such that whenever ψ(x) = y, then x0 can be uniquely
determined from y[−M ,M]. We show this by considering the following possibilities for y0:
(1) if y0 is on γ− or C1 and y0 �= B ′, then x0 = y0;
(2) if y0 = gi for some i, let

N1 := min{l ≥ 0 : yl = g|γ +|−1} ≤ |γ +| − 2.

Then x0 = g′
i if yN1+2 = f2 and x0 = gi otherwise;

(3) if y0 = fj for some j, let

N2 := min{
 ≥ 0 : y−
 = g|γ +|} ≤ (u − 1)d2.

If y1 �= fl for any 1 ≤ l ≤ d2, then x0 = f1; otherwise, x0 = f
(k)
j where k =

�N2/d2�.
This shows that ψ meets the criterion above to be one-to-one with M := max{|γ +|,
(u − 1)d2}.

Now we show that φ ◦ ψ : X̂H → Y is finite-to-one and onto. Note that by definition,
φ ◦ ψ maps the central state B of H to 1 and maps any other vertex to 0.

To this end, first observe that any k ∈ S must satisfy k = m + s · d1 + t · d2 for some
s, t ∈ Z≥0. Noting from Lemma 10.2 that there is a unique pair (x, y) with x, y ∈ Z≥0 and
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0 ≤ y < u such that s · d1 + t · d2 = x · d1 + y · d2, we conclude that

(� ◦ �)−1(10k1) =
{

V (γ +(C1)
xγ −) if y = 0,

V (β(C1)
xγ −) if 0 < y < u.

In particular, any block of the form 10k1 with k ∈ S has a unique pre-image under
� ◦ �. Similarly, one can show that |(� ◦ �)−1(0∞1)| = 1, |(� ◦ �)−1(10∞)| = u, and
|(� ◦ �)−1(0∞)| = d1. Since each element y ∈ Y is a concatenation of blocks of the form
10k , 0∞1, 10∞, and 0∞ with k ∈ S,

1 ≤ |(φ ◦ ψ)−1(y)| ≤ max(u, d1).

So φ ◦ ψ is finite-to-one and onto Y.

Remark 10.3. The subshift of finite type Z is not unique: indeed, by interchanging the role
of C1 and C2, we can construct another SFT Z′ ⊂ X̂G such that φ|Z′ is finite-to-one and
onto Y.

11. Concluding remarks
In this paper, we have interpreted input-constrained deterministic channels as factor codes
on irreducible SFTs. We introduced two properties, properties P1 and P2 (weaker than
property P1), of such factor codes sufficient for Markov capacity to achieve capacity of
the corresponding channel. We characterized property P1 for a class of factor codes and
property P2 for a more specialized class of factor codes. For the latter class, we conjectured
that property P2 is equivalent to the condition that Markov capacity achieves capacity and
gave several special cases to support this conjecture.
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