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Abstract. 
Sub-seasonal variations and especially sub-seasonal oscillations with 

periods of about 120, 60, 50, 40 days in polar motion and of about 120, 
60-90, and 50 days in LOD are presented. Variations of amplitudes of 
these sub-seasonal oscillations of polar motion are shown. Maxima of 
these amplitudes are of the order of 2-4 mas. These oscillations are ellip­
tical ones. The correlation coefficients between geodetic and atmospheric 
excitation functions in this range of the spectrum are variable and have 
annual variations. Maxima of correlation coefficients are of the order of 
0.6-0.8. 

Modern geodetic VLBI experiments provide very accurate results 
in polar motion and UT1—UTC with a temporal resolution of 3-7 min­
utes. Several irregular, quasi-periodic variations were found. In many 
UT1—UTC data sets, oscillations with periods around 8 hours and be­
tween 5 and 7 hours can be seen. 

1. Introduction 

Improvement of the accuracy and temporal resolution of the Earth rotation 
parameters (ERP) achieved by the application of satellite (SLR, GPS) and 
VLBI methods in the last two decades have enabled detection and study of 
sub-seasonal, diurnal, sub-diurnal and even irregular variations of ERP (IERS, 
1988-1998). At present the accuracy of polar motion and length of day (LOD) 
determinations is of the order of 0.1 mas and 0.01 ms, respectively (see IERS 
Annual Report for 1998). 

The new methods of spectral analyses and filtration, for instance the Fourier 
Transform Band Pass Filter (FTBPF), the Wavelet Transform, the Kalman 
filter have been developed and applied to these studies improving analyses of 
variations of ERP (Brzezihski, 1995; Gambis, 1992; Kosek, 1987, 1995; Kosek 
et al., 1995a,b, 1998a; Morabito et al., 1988; Petrov et al, 1996; Popifiski et al., 
1994, 1995 a, b; Schmitz-Hiibsch and Schuh, 1999; Titov, 1999). 

The sub-seasonal variations of polar motion and LOD containing oscillations 
with periods shorter than half a year were not only detected (Eubanks et al., 
1988; Feissel et al, 1980; Hide et al, 1991; Kolaczek et al, 1987; Kolaczek, 
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1995; Kosek 1987, 1993; Nothnagel et ai, 1992; Schuh 1986, 1988) but their 
time variations have been found (Kolaczek 1992, 1993; Kolaczek et ai, 1993; 
Kosek et ai, 1995, 1998b, 1999a,b; Nastula, 1992; 1995; Popinski et ai, 1994; 
Schmitz-Hubsch and Schuh, 1999). 

Correlations between sub-seasonal variations of Earth rotation and sub-
seasonal variations of Effective Atmospheric Angular Momentum functions were 
determined and studied. Influences of El Nino events on this correlation have 
been established (Brzeziriski, 1992; Chao, 1989, 1993; Dickey 1993; Dickey et 
ai, 1991, 1992; Eubanks et ai, 1985; Freedman et al., 1994; Gambis, 1992; Hide 
et al., 1980, 1991; Eubanks, 1993; Kolaczek et ai, 1999; Kosek et at, 1995b; 
Kuehne et ai, 1993; Nastula, 1995; Nastula et ai 1997; Rosen and Salstein, 
1983; Schmitz-Hubsch and Schuh, 1999; Schuh 1999). 

Recently modern geodetic VLBI experiments provide very accurate results 
of polar motion and UT1—UTC with a temporal resolution of 3-7 minutes. 
Wavelet transformations of the time series obtained by VLBI allow us to detect 
several irregular quasi-periodic variations. In many UT1—UTC data sets oscil­
lations with periods around several hours were found (Schuh and Titov, 1999). 
Using the Least-Squares Collocation Method (LSCM) also high-resolution polar 
motion series were computed and analysed. Oscillations with periods around 
several hours were also found in these series (Schuh and Titov, 1999). 

In the paper the computed sub-seasonal variations of polar motion and 
LOD, especially their most energetic oscillations with periods of about 120, 
60-90, 60, 50, 40 days, are presented and discussed. Results of recent VLBI 
determinations of quasi-periodic subdaily oscillations of UT1—UTC and polar 
motion are shown. 

2. Sub-seasonal variations of ERP 

Sub-seasonal variations of ERP are still quite energetic in comparison with the 
present accuracy of ERP determinations and contain important information 
about geophysical influences on ERP variations. 

Sub-seasonal variations of polar motion filtered from the IERS C04 pole 
coordinate data using the Butterworth high pass filter (HPF) (Otnes et ai, 1972) 
with a cutoff period of 150 days have variable amplitudes reaching maxima of 
about 10 mas (Fig. 1). Perturbations of polhodia caused by these short-period 
variations are shown in Figure 2. Several energetic oscillations are visible in the 
spectra of these short-period variations computed by the FTBPF (Kosek, 1995; 
Popinski et ai, 1995b). The prograde oscillations with periods of about 120, 60, 
50, 40 days are the most energetic ones (Fig. 3). 

These oscillations were filtered by the FTBPF (Kosek, 1995) and are shown 
in Figure 4. Amplitudes of these oscillations vary in time and are modulated 
with a period of about 2-4 years. These elliptical oscillations are presented 
in Figure 5, where polhodia of these oscillations are drawn for some years for 
example. 120, 60 and 40 day oscillations can be of seasonal origin. 

Time variable spectra of the short-period variations of the IERS C04 polar 
motion filtered by the Butterworth HPF with cutoff period of 90 and 150 days 
computed by the FTBPF are shown in Figure 6. We can easily notice amplitude 
variations of these oscillations and not very stable periods. These oscillations 
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Figure 1. Short-period oscillations of polar motion IERS C04 filtered 
by the Butterworth HPF with 150-day cutoff period. 
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Figure 2. Polar motion IERS C04 determined in 1994-1999. The 
thin line represents the short-period variations with periods less than 
150 days increased by 5 times. The scale of their amplitudes is given 
in the lower left corner. 
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Figure 3. The FTBPF amplitude spectra (A = 0.001) of x-iy IERS 
C04 pole coordinate data in 1984.0-1999.0 filtered by the Butterworth 
HPF with 150-day cutoff period (Kosek et al. 1998b). 
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Figure 4. 120, 62 and 49 days oscillations filtered by the FTBPF 
(A = 0.001) from the IERS C04 pole coordinates data. 
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Figure 5. The polhodes of 120, 62 and 49 days oscillations filtered 
by the FTBPF (A = 0.001) from the IERS C04 pole coordinate data. 
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Figure 6. The time variable FTBPF amplitude spectra (A = 0.001) 
of x-iy IERS C04 pole coordinates data filtered by the Butterworth 
HPF with 150 and 90 day cutoff periods (Kosek et at, 1998b). 

are not very strong. Thus they can be easily disturbed by different geophysical 
phenomena. 

Sub-seasonal variations of polar motion are correlated with short-period 
variations of equatorial components of Atmospheric Angular Momentum (AAM). 
In the spectra of AAM there are short-period oscillations with periods of about 
120, 90, 60, and 50 days, similar to those in polar motion (Kosek et al., 1995). 
The running correlation coefficients between short-period variations of the at­
mospheric equatorial components (NCEP/NCAR w+p+ib) and geodetic IERS 
C04 excitation function of polar motion were computed (Fig. 7) (Kosek et al., 
1998b). The correlation coefficients are time variable and have seasonal varia­
tions. Their maxima reach values of 0.6-0.7. 

LOD sub-seasonal variations obtained by filtering the IERS C04 data using 
the Butterworth HPF with cutoff period of 150 days have amplitudes reaching 
maxima of 0.5 ms. Before the filtering, the influence of solid Earth tides was 
removed according to the IERS Conventions (IERS, 1996). 

The computed amplitude spectrum and time variable spectrum of the LOD 
sub-seasonal oscillations shows that the most energetic oscillations are the os­
cillations with periods of about 120, 60-90, 50 and 40 days (Fig. 8). The 
sub-seasonal variations of LOD are highly correlated with the variations of the 
axial component of the Atmospheric Angular Momentum and the correlation co­
efficients are close to 1 for oscillations with periods longer than 20 days (Kosek 
et al., 1999a). This correlation was studied by many authors (Dickey, 1989; Eu-
banks 1993; Hide et al, 1991). As in the case of polar motion the oscillations of 
LOD with periods of 120, 60-90 and 40 days can be of seasonal origin. The 50 
day oscillation in LOD is considered to be connected with stratospheric winds. 

3. Daily and sub-daily variations of Earth rotation parameters ob­
served by VLBI 

Today, a very high temporal resolution of the Earth rotation parameters can be 
achieved by VLBI using the least-squares collocation method (LSCM). It allows 
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Figure 7. The running correlation coefficient between the atmo­
spheric (NCEP/NCAR (w+p+ib)) and geodetic IERS C04 excitation 
functions filtered by the Butterworth HPF with a 150-day cutoff period, 
(thin and dotted lines denote 1 year and 0.5 year means, respectively) 
(Kosek et al, 1998b). 
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Figure 8. Amplitude spectrum and time variable amplitude spec­
trum (A = 0.001) of LOD IERS C04 data filtered by the Butterworth 
HPF with 150-day cutoff period (Kosek et al., 1998b). 
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Figure 9. UT1-UTC parameters with high temporal resolution de­
termined during five days of the VLBI session CONT which started on 
September 30, 1996 (ocean tidal terms were removed from the obser­
vations using the IERS Conventions (IERS, 1996) model). 

us to estimate the Earth rotation parameters every 3-7 minutes (Titov, 1999). 
This paragraph concentrates on short-period variations of the Earth rotation 
parameters which can be seen when analysing the VLBI results. More than 
300 VLBI experiments (NEOS-A from 1993 till 1998, CONT'96, CORE) each 
of them covering 24h or 120h were analysed by the OCCAM 3.4 VLBI software 
(Titov et a/., 1997). The high-resolution UT1—UTC data series and polar motion 
data series obtained by the VLBI solutions were analysed with respect to periodic 
variations. First, the main diurnal and semidiurnal variations due to the ocean 
tides were removed using the IERS Conventions (IERS, 1996) correction model. 
As an example Figure 9 shows UT1—UTC parameters determined during five 
days of the VLBI campaign CONT in 1996. 

The residuals, i.e. after correction of oceanic tidal terms, offer the oppor­
tunity to search for even smaller variations in the rotation of the Earth. Those 
are supposed to be e.g. due to resonances with modes of the Earth, the oceans 
or the atmosphere or due to excitation by earthquakes or by strong typhoons. 
The wavelet transformation was applied to search for transient and irregular 
variations. Although ocean tidal influences had been already corrected, many 
of the wavelet spectra of the UT1 series show residual energy in the diurnal 
and semidiurnal period range. Additionally, most of the data sets revealed ir­
regular quasi-periodic fluctuations which are non-diurnal and non-semidiurnal. 
Very often (but not always) periods at 20 hours and 40 hours, around 8 hours, 
between 5 and 7 hours and even down to 2 to 3 hours were found. To give 
an example of that, the wavelet spectrum for the CONT'96 UT1—UTC series 
shown in Figure 9 is plotted in Figure 10 for periods below 36 hours. Besides 
the residual diurnal and semidiurnal bands mentioned above, irregular periodic 
variations can be seen at 20h, 8h, 5h and 2h-3h that are above the error level of 
the individual UT1—UTC parameters of about 10 microseconds. The VLBI so-
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Figure 10. Wavelet spectrum for periods below 36 hours of the high-
resolution UT1—UTC series shown in Figure 9. 

lutions using the LSCM yielded also high-resolution polar motion series. These 
were analysed as complex values by the wavelet transformation. The wavelet 
spectra revealed irregular prograde and retrograde short-period fluctuations in 
polar motion, again very often around 8 hours and even with shorter periods, 
e.g. at 5-7 hours. 

4. Conclusions 

In the paper the character of variations of the most energetic sub-seasonal os­
cillations of polar motion with periods of 120, 60, 50 days and of LOD with 
periods of 120, 60-90, 50 and 40 days is described. They have variable am­
plitudes modulated with a period of 2-4 years. The sub-seasonal variations of 
polar motion and LOD are correlated with sub-seasonal variations of AAM. The 
running correlation coefficients are variable with maxima ranging between 0.6 
and 0.8. They have seasonal variations. 

High resolution Earth rotation data observed by VLBI have begun to reveal 
hitherto unseen phenomena. Irregular, quasi-periodic variations can be seen in 
the wavelet spectra besides the well-known diurnal and semidiurnal periods. 
Possible excitation mechanisms for the observed variations of the Earth rotation 
parameters such as terdiurnal tides, the free oscillations of the oceans (lOh, 20h, 
40h, 50h), atmospheric modes and resonances with free oscillations of the Earth 
(e.g. the Slichter mode) are under discussion. A triggering by strong earthquakes 
or by a typhoon should also be considered. Although the tiny variations which 
could be seen are above the error level of the observations careful tests have to be 
done to check their significance. In particular, the correlation with tropospheric 
refraction at the observing stations is going to be investigated. 
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