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Abstract

This paper deals with a class of network optimization problems in which the flow is a
function of time rather than static as in the classical network flow problem, and storage
is permitted at the nodes. A solution method involving discretization will be presented
as an application of the ASG algorithm. We furnish a proof that the discretized solution
converges to the exact continuous solution. We also apply the method to a water distribution
network where we minimize the cost of pumping water to meet supply and demand, subject
to both linear and nonlinear constraints.

1. Introduction

The basic continuous-time network flow problem can be described as follows. Con-
sider a network in which some of the nodes produce or consume goods at a given rate
(which may change over time). The goods can either be stored at the nodes or they
can be passed on to adjacent nodes via a given set of arcs. The storage capacity of the
nodes and the rate at which the commodity can be transported across the arcs are both
limited. The aim is to find the cheapest way to satisfy the demands given some cost
for transporting the commodities across arcs and possibly also for storing them at the
nodes. The optimization is done over a fixed interval of time in which all parameters
(that is, the costs, capacities and demands) may vary.

Network optimization problems involving continuous-time flow arise naturally in
many situations, for example computer networks, transportation networks, flow of
water or gas through a system of pipes and reservoirs or financial transactions. The
case where the cost to be minimized is linear in the flows has been studied by Anderson
and Philpott [1]. This can be considered as a special case of more general continuous
linear programming problems, see for example Buie and Abrham [6] or more recently
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Pullan [10]. Hence in this paper we will concentrate on the quadratic cost case, which
to the best of our knowledge has not been treated before. Another way to look at this
problem is as a special case of the more general nonlinear optimal control problem.
The method of discretization presented in this paper can be viewed as a specialisation
of the control parameter approach taken by Teo etal. [11].

Network problems with quadratic costs may arise in a variety of ways. In financial
investments, a quadratic cost function may be used to measure variance. This was
originally proposed by Markowitz [9]. In traffic networks a quadratic cost term could
be used to penalize congestion. Another application, which will be addressed in this
paper, is in certain types of pipe networks. Here the quadratic term in the cost arises
from the hydraulic equation, relating pumping effort to the rate of flow in the pipes.

In the remainder of this section, the basic definitions and notations are introduced
as well as the general form of the problem. We then proceed to show how the problem
can be discretized, and that the solutions obtained using this discretization scheme
converge to an optimal solution. In the last section we show how a water distribution
problem can be brought into the form discussed in this paper. This is an application
relevant to the administration of the water supply in a city or other area connected by
a common water network. The objective is to determine how to meet the supply and
demand over a period of time, such that the pumping costs are minimized and none of
the physical constraints imposed on the system are violated. Some numerical results
are also presented in this last section, showing that it is computationally feasible to
find good approximate solutions to problems of this type.

1.1. Definitions and Notations Some of the definitions and notations used in this
paper are:

DEFINITION 1.

1. A directed graph or network is an ordered pair (V, A) where V is the set of nodes
or vertices and A is the set of directed arcs joining them. Each directed arc, a is
defined by a source and destination node, denoted by a(a) and co(a) respectively.
In this paper the number of nodes will be denoted by n = | V| and the number of
arcs by m = \A\.

2. The network structure may be represented by an arc-node incidence matrix E,
with entries of the form

+1 if i =«(*) ,

- 1 if i =&>(*),

0 otherwise.

3. The net flow out of the nodes is called the divergence of a the flow. If/ e K|A| is
the flow in the arcs, then the divergence is simply Ef.
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DEFINITION 2. The following matrix and vector notation will be used.

1. diag(rfi, d2,...,dk) denotes a diagonal matrix with entries dud2,... ,dk on the
main diagonal.

2. 1 is a vector of all ones, with the dimension given by the context.

1.2. The continuous-time problem The continuous-time quadratic network prob-
lem to be considered in this paper can be stated as follows.

PROBLEM CQNP.

Min / ( * ) = / {xT(t)Q(t)x(t) + cT(t)x(t)dt (1)
Jo

subject to s(t) = -Ex{t) - r{t) Vt e [0, T] and s(0) = 0, (2)

0 < s(t) < a{t) V? e [0, T], (3)

0 < x(t) < b{t) for almost all t e [0, T], (4)

where

[0, T] is a given interval of time.
x : [0, T] —>• Km is the control vector denoting the rate of flow in each arc.
s : [0, T] -> K" is the state vector denoting the storage at the nodes. The notation

s(t \x) will be used to denote the storage at time t given by x and the state
equation (2).

a : [0, T] -> R" denotes the storage capacity at each node at any time in [0, T]. Each
component of a must be continuous and differentiable almost everywhere with
piecewise continuous derivatives. (Note that it would make no sense to allow
a to be discontinuous since the storage s is continuous everywhere.)

b : [0, T] —> Rm denotes the maximum rate of flow for each arc at any time in [0, T].
c : [0, T] - • Km is the linear cost coefficient.
Q = diag(<7i, q2, • • • , qm) is the quadratic cost. Each function qt : [0, T] -» K must

satisfy 9,(0 > 0, Vf e [0, T].
r : [0, T] —> W is the demand of each node (or supply when r,-(f) < 0). For

simplicity it will also be assumed that supply equals demand, that is,

fT

/ lTr(0 dt = 0, (5)
Jo

so that s(T) = 0 (since s(T) > 0 and from s(0) = 0 we get lTs(T) = 0).
In addition, we require that each of the above functions be bounded and Lebesgue

measurable functions of time. In particular, the minimization in problem CQNP is
only done over the set of measurable flows.
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REMARK 1. A storage cost of the form dT(t)s(t) could be added to the integrand of
the objective function. However this does not really make the problem any more
general since we can write

dT(t)s(t)dt= f dT(t)dts(T)- [ \ [ d(T)dx\ s(t)dt
Jo Jo LJo J

= 0 - / d (t){Ex{t)-r(t))dt, where d(t) = / d(r)dz.
Jo Jo

Hence the cost of storage can be included by modifying the linear cost c appropriately.

REMARK 2. CQNP is a special type of optimal control problem which in principle can
be solved by standard optimal control software. However a typical network will have
a large number of nodes and arcs, making the problem too large to be handled by
general purpose software. Furthermore, state constraints of type (3) are well-known
to be difficult to handle computationally, so special methods are warranted to exploit
the network structure.

REMARK 3. The method for solving CQNP can be extended to solve problems with
general convex cost functionals by a sequence of CQNPs in a similar fashion to the
sequential quadratic programming technique.

2. Solution by discretization

2.1. Discretizing the time variable To approximate the continuous time problem
by a more tractable static optimization problem, the interval [0, T] is partitioned into
subintervals. Note that even in the linear case, all methods for solving minimum
cost network flow problems resort to some form of discretization of the time variable.
The only exception to this is the attempt by Anderson and Philpott [1] to produce a
simplex-like method. However, as Pullan [10] has pointed out, this did not yield a
practical algorithm.

DEFINITION 3. A partition of the interval [0, T] is a set of intervals & = [Ik \ k =
1, 2 , . . . , K] of the form Ik = (tk-U tk], where 0 = t0 < tt < ... < tK = T (except
that /, = [to, r,]).
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DEFINITION 4. For any partition, we define for all k = 1, 2 , . . . , K

ak = a(tk), (6)

bk= f b{t)dt, (7)
JIk

r
(8)= — f

k 141A

Jik

ik

r(t)dt (9)

and

1 f
(10)

The discrete problem used to approximate CQNP can now be written as follows

PROBLEM DQNP.

K

Min F{z,y) = 2_\z[QkZk +clzk (11)

subject to yk — y k - \ = — Ezk — rk Vfc and y0 = 0, (12)

iTyK = o, (13)

0<yk<ak Wk = l,2,...,K, (14)

0 < z * < 6 * VJfc = 1,2, ...,K, (15)

where F(z,y) is a discrete approximation to /(*(•)) (in the discrete context^ may
be thought of as an independent variable although it is really dependent on z by the
constraint (12))

j> = [yjyj .. .y],] e RKn,yk € W is the storage at the end of each interval Ik,

z = [zjzj ... zT
K] € RKm, zk € IRm is the accumulated flow in interval Ik.

REMARK 4. Equation (13) is dependent on (12) since £f=1 lJrk = 0, by (5). The
reason for including it is to give the problem a proper network structure as shown
below.

The problem DQNP is in the form of a static quadratic cost network problem which
can be expressed in matrix notation as

Min F(z, y) = k T Qz + cTz (16)
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subject to
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0

0

/
- /
0

0

0

E
E
0

—r
, (17)

(18)

The node-arc incidence matrix of this problem defines a network consisting of K
copies of the original network stacked on top of each other with arcs going from
each node to the corresponding node below and arcs from the last copy to a dummy
node. A similar type of discretization has been suggested by Ford and Fulkerson [8]
for maximal dynamic flow problems, and this scheme has since been used by other
authors, for example [6, 10].

DEFINITION 5. It is convenient to letj>(z) represent the value of y given by z, resulting
from (12).

There are a number of algorithms which can be used to solve the discrete quadratic
cost problem. The most popular algorithm for this type of problem is the convex
network simplex algorithm. However it was shown in [4, 2] that a specialisation
of the active set algorithm for network problems performs significantly better than
the convex network simplex algorithm (by more than two orders of magnitude). A
description of the algorithm and some of the underlying theory is given as an appendix
to this paper.

2.2. Convergence of the discrete approximation We shall now show that the op-
timal solutions to a sequence of problems of the form DQNP, with increasing partition
size, define a sequence of continuous flows which converge to the optimal solution
of CQNP. Our presentation follows closely the exposition given by Teo et al. [11] for
general optimal control problems. We define a sequence of partitions used to define
discrete problems from CQNP as follows.

DEFINITION 6. The notation {//}f=, for p = 1,2, 3 , . . . will be used to denote a
sequence of partitions of [0, T], where / / = (f/Lp t£]. The intervals //" are chosen
so that the they have the following properties.

1. Vfc 3 j such that I£ c / / " ' , or equivalently {fo
p

' * „ - , ' ^= tf.
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2. lim max | / t " |=0.
p-*ook=\,2 Kp

The notation ap, bp, etc. will be used to denote the discretized variables with respect
to the p'h partition.

The correspondence between the discrete solutions and time variable flows is given
by the next definition.

DEFINITION 7. For any given z, let the corresponding flow rate for an equivalent
continuous problem, x(t \z) be defined by

k=\ I'* I

where

10 otherwise.

Also define s(t\z) = s(t\x(t\z)).

Consider the sequence of functions x(t \zp) forp — 1, 2, 3 . . . , where each zp is
optimal for the discretized problem corresponding to partition p. Since each of these
functions is measurable and almost everywhere bounded by essup[0 n b, independent
of p, the sequence converges to a bounded and measurable function x°°(t). The proof
that this function is feasible for CQNP is contained in Lemmas 1 and 3. The optimality
of x°°(0 is proven in Theorem 1.

LEMMA 1. Let [zp}^Lx be a sequence of feasible solutions to the discretized network
problem DQNP. Then the arc capacity violation of the corresponding continuous
solution approaches zero as p goes to infinity. More precisely,

lim f max{jt(r|zp) - b{t), 0} dt = 0,

where the maximum is taken component-wise.

REMARK 5. The advantage of dealing with the integral of the arc capacity violation,
is that no special allowance has to be made for violations on sets of measure zero.
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PROOF OF LEMMA 1.

[ max (x(t\zp) - b{t), 0) dt = V / max I A - - 6(0,0
Jo k^iJ'l \\lk\

< > / max 7-^- - 6 (0 , 0

For any Lebesgue point T of b,

If bp

*(T) = lim - F - / ft(/) dt = lim - ^ ,

where for any p, k{p) is chosen so that r e //(p+D C /t
p

(p).
Almost all points of [0, T] are Lebesgue points of b. Hence

V f vaax(-^r-b(t),o)dt^O asp oo.

LEMMA 2. For any partition of[0, T] with end-points t0, tu ... ,tK

yk{z) == s{tk\z) Wk = 0,l,...,K.

PROOF. This just requires some straightforward manipulation of the definition of s(tk \z)

mdyk.

LEMMA 3. Let {zp}c°=x be a sequence of feasible solutions to the discretized network

problem DQNP. Then

lim sup (s(t\zp) -a(t)) < 0,

where the supremum is taken component-wise.

PROOF. For all times t such that t = tk for some p, k, s(t\zp) — a(t) < 0 by the
previous lemma. For the points in between, the result follows from the continuity of
s and a and from the observation that both s and a are bounded.

LEMMA 4. Let z be a feasible solution for DQNP with partition {/*}f=1. Then
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PROOF.

(cT{t)dtTn
Jit \h\

Qkzk + cjzt = F(z,y(z)).
k=l

LEMMA 5. Let £ be an optimal solution ofCQNP. Let zp = f,P x(t) dt. Then

lim
p—>oo

PROOF. For any Lebesgue point x of x such that r e

X(T) = lir

Almost all points in [0, 7] are Lebesgue points of x since i is a Lebesgue measurable
function. Hence x(- \zp) —> x pointwise almost everywhere as p -> oo. Therefore

T

T(t\zp)lim / xT(t\zp)Q(t)x(t\zp) + cT(t)
^OO In

•/ u

= I xT(t)Q(t)x(t) + cT(t)x(t)dt.
Jo

THEOREM 1. For any partition {Ip}k=\ let zp be an optimal solution to the discrete
quadratic cost network problem. Let x denote the optimal solution of the continuous
problem. Then

lim
p-*oo

PROOF. This follows in a straightforward manner from the previous lemmas and the
optimality of x and zp:

) < f(x(-\zp)) = F(zp,y(zp)) < F(zp,y(zp))

Therefore FQ.p,y{zp)) -+ /(x(-)) as p -*• oo.
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3. Water distribution networks

3.1. Problem description As an application of the theory above, we will consider
the following pipe network problem. Let the arcs represent a set of pipes connecting
some storage tanks. The flow in each pipe is assisted by a pump, which may be used
to control the flow through the pipe at a cost which is proportional to the amount of
power used to pump water through the pipe. This cost may well vary with time since
the cost of the electricity used by the pumps is usually cheaper during off-peak times
for large power users. The rate at which water actually flows through the pipe depends
not only on the setting of the pump but also on the pressure difference between the
two tanks connected by the pipe. The nonlinear equation relating water flow rate to
pump assisted pressure difference is called the hydraulic equation, which is usually
determined empirically. Note that depending on such factors as the flow speeds
involved and the pipe diameters, some quite different equations may be appropriate
for modelling this relationship between pressure difference, pump activity and flow
speed; for more details on this subject see for example [7, 5]. The pressure at the
ends of the pipe, in turn, depends on the amount of water in the tank, as well as the
height at which the tank is located relative to the other nodes in the network. The
problem is to minimize the pumping costs while meeting all of the demands. The
demand is assumed to be known since accurate forecasts of the daily water demand
can generally be made on the basis of data about the past demands. Also the supply
in the form of water available in reservoirs or the amount of ground water that can be
pumped into the system is sufficiently well-known. There are of course restrictions
on the amount of water that can be stored in the tanks as well as on the maximum
pressure and possibly on the rate of flow in the pipes. Taking into account all of these
constraints, the problem can be written as

lin / cT

Jo
Min / c1 (t)p(t) dt

Jo
subject to s(t) = —Ex — r,

pa{t) + haW(f) - haW(f) = 0a(jcfl(O) Va € A, t e [0, T],

hn(f) = *M0) Vn 6 V,

0 < *(0 < h(t),

0 < s(t) < s(r),

0

where

p is the pump assisted pressure vector for each pipe;
c is a vector of costs;
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h, h are the pressure vectors at the tank and the maximum allowable pressure;
s, s represent the tanks' storage vector and the tanks' capacity vector respectively;

x, x represent the rate of flow vector and the upper bound on this flow rate;
r is the demand vector as before;

<t>a is a continuous function in its arguments, which models the physical relation-
ship between pump speed, pressure difference and flow rate for each pipe a;
and

Vo, is a continuous function giving the pressure created in tank n by a given amount
of water stored.

According to Collins et al. [7], the hydraulic equation can be approximated by a
function <pa which may, in the first instance, be assumed to be quadratic in the flow
rate. Hence we can write for each pipe a

Pai.0 = haW(t) -hwia)(t) + pax
2
a(t) + yaxa(t) + 8a,

for some empirically determined constants ySfl, ya, Sa. If we assume that the storage
tanks have vertical walls, then the relationship between storage and pressure is linear,
so for each tank n

By substituting these equations into the problem definition above, we get a new
problem involving only x and s:

fT T
Min i cj

Jo subject to s(t) = —Ex — r,

0 < x(t) < x(t),

0 < s(0 < s(f),

where

cj = cT diag(aj,... , an)E
T,

Q = 2diag(ci)3i, c2/92, • • • , cmjim),

cT
Y =cTdiag()/i,)/2,... , ym),

5^(0 = min | i v ( / ) , A » ( f ) ~ ^ ) y v € V, / € [0, T).
[ 1v J

Integrating the term involving s in the objective function by parts gives

f cT
t{t)s(f)dt= t c]{t)dts(T)- f \ f cj(r)dx]s(t)dt

Jo Jo Jo \.Jo J
= ° + / [/ c^r^dT]Ex^dt

constant.
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This finally gives us a problem in the form of CQNP described above.

541

3.2. An example As an illustration, we shall present a small numerical example that
models the movement of water in a small network over a twenty-four hour period. The
topology of the network consisting of four nodes and five arcs is shown in Figure 1.

FIGURE 1. The network structure.

15 18 21 24 Time

FIGURE 2. Demand function for nodes 3 and 4.

The water supply comes from two sources: node 1 is a ground water pump,
supplying water at constant rate of two units per hour and node 2 is a reservoir which
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supplies the remaining demand. The reservoir is modeled as a source where the water
arrives in the first hour to bring it into the form discussed above. The remaining two
nodes both consume water at the same rate. The demand function for nodes 3 and 4
is shown in Figure 2.

The capacities of all of the pipes is 2, except pipe 3 which has a capacity of 3.
The ground water pump has no storage capacity, while the reservoir has an unlimited
storage capacity. Node 3 can store at most 7 units of water at any particular time,
while node 4 has a storage tank of size 15. The relationship between pump generated
pressure, pressure difference and flow rate in the pipes is approximated by

po(0 = 5(ha(a)(t) - - xa(t)

for each pipe a and all times / € [0,24]. The units are assumed to be scaled such that
the pressure has the same value as the storage in the tanks. Finally the power cost of
operating the pumps is $0.10 per hour per unit of power consumed between 5am and
9pm and only $0.06 at night.
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FIGURE 3. Optimal flow in the pipes: the flow is plotted for each arc with time along the *-axis and
the rate of flow along the y-axis. The top line indicates the bound on the rate of flow, while the bottom
line is the actual flow rate.

The appropriately discretized problem was solved by the ASG algorithm resulting
in an optimal control with a cost of approximately $178.75. The optimal flows and
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the storage generated by these are shown in Figures 3 and 4.

543

0 5 Mode;?5

FIGURE 4. Storage in nodes 2 to 4 generated by optimal flows: the storage for each node is plotted
with time along the jt-axis and the amount stored along the y-axis. The capacity of the node is indicated
by the top line.

TABLE 1. Numerical results for the pipe network example.

Number of
Intervals

7
15
20
30
40
50
60

144

Optimal
Cost
179.61
178.77
178.75
178.76
178.75
178.74
178.75
178.75

CPU Time
0.09
0.61
1.19
3.85
7.57

16.39
29.37

359.03

Finally to show that one can get quite accurate results with a reasonably small
number of intervals, Table 1 shows the optimal value and running times for different
numbers of intervals used to discretize the problem. The running times are from
a computer using the Intel 80486DX2 CPU running at 66 MHz. Note that the
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running time is purely a function of the number of intervals; it does not depend on
the complexity of the problems parameter functions. Of course if, for example, the
demand function is highly nonlinear then more intervals are needed to obtain the
same accuracy. Hence the amount of computation time required increases. However
the objective function is not very sensitive to the number of intervals used, even for
examples more nonlinear than the one presented here.
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Appendix A: The ASG algorithm

In this section, the Active-Set-on-a-Graph (ASG) algorithm for quadratic cost
network flow problems is described. This is a variation of the general active set al-
gorithm for quadratic programming problems specialized for quadratic cost networks.
The version of the algorithm presented in this paper is based on a combination of [4,2]
but includes a slightly different treatment of the linear cost arcs. For further details
see [3,4,2].

The quadratic network program may be stated as:

PROBLEM QNP.

Min {xTQxT + cTx (20)

subject to Ex = b, (21)

0 < x < u, (22)

where Q = diagO?,, q2, •• • , qm) is a positive semidefinite matrix; c, u, x e W and
&eR". The basic strategy of the ASG algorithm is to repeatedly fix the flow in some
arcs at the upper or lower bound, then find the optimal solution for the remaining
arcs without considering the capacity constraints, until the solution to this modified
problem is feasible and optimal for the original QNP.

DEFINITION 8. An arc a e A is active ifae#/ = sf+ U srf~, where

srf+ = {a\xa = ua] and $4~ = [a \xa = 0}.

and ^ is called the active set. The complement jV = A\g/ is the non-active set.
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A.I The unbounded subproblem For any given active set si', the 'Network
Quadratic Equality Program' is solved.

PROBLEM NQEP(^).

Min \xTQxT + cTx (23)

subject to Ex = b, (24)

xa = 0 Vaesrf-, (25)

xa = ua Va e ^ + . (26)

Before proceeding further it is convenient to introduce some more notation. Let
the sets of linear and quadratic cost arcs be denoted by

^f^{a€A\qa = O} and £ = {a e A | qa > 0}.

Also define S£ = S£r\jYttAh = £C\Jf.
By defining bn = bn - £flei;,+ :a(a)=u

 u° + Ea e^+ :<«(<,)=«««' and dropping the
constant terms in the objective function, we arrive at the slightly simpler but equivalent
version of the NQEP(^).

Min XI ( 2 ^ A + ca xa)

subject to ^ xa — ^2 xa = bv Vu e V.

a(a)=v w(a)=:v

The first order necessary conditions for optimality of this problem are

V a e i qa xa + ca + na(a) - nwia) = 0, (27)

VaeJi? ca + na(a) - TiaW = 0, (28)

WveV

where n-v is the dual variable associated with the flow conservation constraint at node
v, called the node potential. From (28) we can see that analogous to the purely linear
network flow problem the following condition holds.

PROPOSITION 1. If x is optimal then there does not exist a cycle C c jSf such that
0 < xa < uaVa € C.
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In other words, the set Jz? determines a forest in the graph. For each tree in the forest
we can pick an arbitrary root node r. For each node v in the same tree let Pv be the
unique path from r to v, then the potential of v is just the potential of the root node
plus some constant,

Ttv = Sir + ^ Ca - ^ Ca. (30)

Equation (30) can now be substituted into (27). Also adding together all the equations
(29) corresponding to nodes of the same tree will eliminate all xa joining two nodes
in the same tree. The result of these operations is to contract each tree of linear arcs
into a single node, to arrive at a new network which has only strictly convex arcs.
That is we have a network (V, A) with each node representing a (possibly trivial)
tree in the original network. Each arc in A corresponds to an arc in J? but the linear
cost coefficient may be different. Let E be the node-arc incidence matrix for this new
network, x the components of x corresponding to arcs joining two different trees etc.
Then the optimal flows and potentials satisfy

Qx + c + ETn = 0, (31)

Ex = b. (32)

Substituting for x in (32) using (31) gives

lETK = -b- EQ~lc. (33)

Since Q~l is positive definite, we have rank(E Q~l Er) = rank(£) = | V \ — 1 provided
(V, A) is connected. Hence if J/ spans V, (33) can be solved for TT once one of
the values has been set arbitrarily. This gives the potential of all the root nodes from
which the remaining potentials and the arc flows can be found using (30), (27) and
(29).

DEFINITION 9. The difference in potential across arc a is called the tension xa =

A.2 The algorithm The optimality conditions for the original problem QNP
consist of the optimality conditions of NQEP(^) plus (22) and the inequalities ra <
C j V a e srf~ and xa > qaua + ca V a € s/+. All the algorithm does is to swap all arcs
which don't satisfy these conditions for any particular solution of NQEP(,c^) between
sf and Jf to produce a new active set until the solution of NQEP(^) is optimal for
QNP. Unfortunately this process is complicated slightly, since one always needs to
ensure that (V, jV) is connected and j£? contains no cycles, so that the subproblem

can be solved. The outline of the ASG algorithm is as follows.
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Algorithm 1
Find a spanning forest of (N, j£?), denote i t s arcs by S(Jz?);
Set at +- S(Sf);
Solve NQEP(.e/) to get primal-dual solution x, it;
while x, 7T is not optimal do

for all arcs a with xa = 0 & xa > 0, or j ; a = «„ & xa < qaua do
if a € jSf and JfU{a} contains a cycle then

Pick some arc ft ^ a in the cycle;
^ <- ^ U {ft};

endif

next a
for all arcs a with xa > ua do

ifc/KU{<2} does not span V then
Find a cut ^ = ^+ U ^ - with a € <tf+ and <?f\{a} Q &',
if 3ft e (*Z+ n if") U ( ^ - U tf+) then ^ <- ^\{ft};
else STOP /* the problem is inf easible */

endif
£/+ «- ^ + U {a}

next a
for all arcs a with xa < 0 do

if^U{a} does not span V then
Find a cut tf = <a?+ U ^ " with a € •*?+ and ^\{a} c si';
if 3ft € (s/+ n ^ + ) U {si- U ̂ ~) then ^ <- ^\{b];
else STOP /* the problem is inf easible */

endif
si~ <- si~ U {a};

next a
Resolve NQEPCsO for the new x and it;

wend
end algorithm 1.

REMARK 6. There are two places in the above algorithm where an arc has to be chosen
to be (de)activated so that the conditions on the active set hold. In both cases a random
choice could lead to cycling. For the choice of linear arcs to activate, the obvious
method is to go around the cycle of linear cost arcs in the direction of flow increase,
and pick the arc which has the smallest capacity. Using this rule the above algorithm
reduces to the network simplex algorithm for purely linear problems.

The choice of arc to deactivate, to prevent a cut, can be made similarly by choosing
the arc which is closest to the dual variable bound xa = ca. Note that although this
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method works in practice, a somewhat more complicated version of this algorithm is
required to allow a proof of convergence. However that is beyond the scope of this
paper.
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