TOPOLOGICAL INVARIANTS OF WEIGHTED HOMOGENEOUS POLYNOMIALS

by ZBIGNIEW SZAFRANIEC

(Received 23 January, 1990)

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a weighted homogeneous polynomial such that df(0) = 0, let $L = \{x \in S^{n-1} | f(x) = 0\}$, and let $\chi(L)$ be the Euler characteristic of L. The problem is how to calculate $\chi(L)$ in terms of f.

In the paper we shall show that there are maps $H_1, H_2: (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ defined explicitly in terms of f such that $0 \in \mathbb{R}^n$ is isolated in $H_i^{-1}(0)$, i = 1, 2, and

$$\chi(L) = 2 - (\deg_0(H_1) + \deg_0(H_2) + \chi(S^{n-1})),$$

where $deg_0(H_i)$ is the topological degree of the map

$$x \mapsto H_i(x) / \|H_i(x)\|$$

from a small sphere centered at the origin to S^{n-1} . If f is a homogeneous polynomial then the above formula is a consequence of results which have been proved in [6], [7], [8].

The paper has been written at the Department of Mathematics of the University of New Mexico in Albuquerque. I am very grateful to Professor Wojciech Kucharz for the opportunity to work here.

We start with a technical lemma.

LEMMA 1. Let $\omega_1, \omega_2, f: (\mathbb{R}^n, 0) \to (\mathbb{R}, 0)$ be polynomials such that $\omega_1 > 0, \omega_2 > 0$ everywhere, except at the origin, and $\lim \omega_1(x) = \lim \omega_2(x) = +\infty$ for $||x|| \to +\infty$. Let $N_r^i = \{x \mid \omega_i(x) = r, f(x) \le 0\}$. If r > 0 is small enough then $H_*(N_r^1, \mathbb{Z}_2) \cong H_*(N_r^2, \mathbb{Z}_2)$. In particular $\chi(N_r^1) = \chi(N_r^2)$.

Proof. Let $M_r^i = \{x \mid 0 < \omega_i(x) \le r, f(x) \le 0\}$, i = 1, 2. According to the local triviality of polynomial mappings (see [3]) there is $r_0 > 0$ such that $\omega_i : M_{r_0}^i \to (0, r_0]$ is a trivial fibration. Since $\omega_i \ge 0$, $\omega_i^{-1}(0) = \{0\}$, and $\omega_i(x) \to +\infty$ as $||x|| \to +\infty$, there are constants r_1, r_2 such that $0 < r_2 < r_1 < r_0$ and $M_{r_2}^1 \subset M_{r_1}^2 \subset M_{r_0}^1$. From the triviality of $\omega_1 \mid M_{r_0}^1$, the induced homomorphism $H_*(M_{r_2}^1, \mathbb{Z}_2) \to H_*(M_{r_0}^1, \mathbb{Z}_2)$ is an isomorphism. Hence the induced homomorphism $H_*(M_{r_2}^1, \mathbb{Z}_2) \to H_*(M_{r_0}^2, \mathbb{Z}_2)$ is injective. From the triviality of $\omega_i \mid M_{r_0}^i$, we may deduce that $H_*(M_{r_0}^1, \mathbb{Z}_2) \cong H_*(M_{r_0}^2, \mathbb{Z}_2)$. Hence the induced homomorphism $H_*(M_{r_0}^1, \mathbb{Z}_2) \to H_*(M_{r_0}^2, \mathbb{Z}_2)$. Using similar arguments we may prove that there exists the opposite injection, and then $H_*(M_{r_0}^1, \mathbb{Z}_2) \cong H_*(M_{r_0}^2, \mathbb{Z}_2)$. From the triviality of $\omega_i \mid M_{r_0}^i$ we also know that $N_{r_0}^i$ is a deformation retract of $M_{r_0}^i$, and then $H_*(N_{r_0}^1, \mathbb{Z}_2) \cong H_*(N_{r_0}^2, \mathbb{Z}_2)$.

Let $d_1, \ldots, d_n \ge 1$ be positive integers. For every $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$ and $\lambda \in \mathbb{C}$ we shall denote $\lambda \cdot z = (\lambda^{d_1} z_1, \ldots, \lambda^{d_n} z_n)$.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a weighted homogeneous polynomial such that df(0) = 0 and $f(\lambda \cdot x) = \lambda^d f(x), d \ge 2$, for every $x \in \mathbb{R}^n, \lambda \in \mathbb{R}$. Let p be the smallest positive integer such that 2p > d and each d_i divides p.

Glasgow Math. J. 33 (1991) 241-245.

Let $a_i = p/d_i$ and let

$$\omega = \omega(x_1, \ldots, x_n) = \frac{x_1^{2a_1}}{2a_1} + \ldots + \frac{x_n^{2a_n}}{2a_n}.$$
 (1)

Clearly $\omega > 0$ except at the origin. Let $g_1 = f - \omega$ and let $I_1 \subset \mathbb{R}[[x_1, \dots, x_n]]$ be the ideal generated by $\partial g_1 / \partial x_1, \dots, \partial g_1 / \partial x_n$. Since df(0) = 0, I_1 is a proper ideal.

LEMMA 2. dim $\mathbb{R}[[x_1, \ldots, x_n]]/I_1 < \infty$.

Proof. Because f is a weighted homogeneous polynomial,

$$\lambda^{d_i}\frac{\partial f}{\partial x_i}(\lambda \cdot z) = \lambda^d \frac{\partial f}{\partial x_i}(z);$$

thus

$$\frac{\partial f}{\partial x_i}(\lambda \cdot z) = \lambda^{d-d_i} \frac{\partial f}{\partial x_i}(z), \qquad (2)$$

for every $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$, $\lambda \in \mathbb{C}$. Hence

$$\frac{\partial g_1}{\partial x_i}(\lambda \cdot z) = \lambda^{d-d_i} \left(\frac{\partial f}{\partial x_i}(z) - \lambda^{2a_i d_i - d} z_i^{2a_i - 1} \right).$$

According to (1) we have

$$2a_id_i - d = 2p - d \ge 1.$$

Now it is easy to see that the set

$$\bigcap_{i=1}^{n} \left\{ (z, \lambda) \in \mathbb{C}^{n} \times \mathbb{C} \mid ||z|| = 1, \frac{\partial g_{1}}{\partial x_{i}} (\lambda \cdot z) = 0 \right\}$$

is compact in $\mathbb{C}^n \times \mathbb{C}$. The continuous map $S^{2n-1} \times \mathbb{C} \ni (z, \lambda) \mapsto \lambda \cdot z \in \mathbb{C}^n$ is onto, so $\{z \in \mathbb{C}^n \mid \text{grad } g_1(z) = 0\}$ is an algebraic, compact, and so finite subset of \mathbb{C}^n . This means that $0 \in \mathbb{C}^n$ is an isolated point in the set of critical points of g_1 , and so

$$\dim_{\mathbb{R}} \mathbb{R}[[x_1,\ldots,x_n]]/I_1 = \dim_{\mathbb{C}} \mathbb{C}[[z_1,\ldots,z_n]] / \left(\frac{\partial g_1}{\partial x_1},\ldots,\frac{\partial g_1}{\partial x_n}\right) < \infty. \quad \blacksquare$$

Let $H_1 = \operatorname{grad} g_1: (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$. According to Lemma 2, $0 \in \mathbb{R}^n$ is isolated in $H_1^{-1}(0)$, and so $\deg_0(H_1)$ is well-defined.

Let $A_1 = \{x \in S^{n-1} | f(x) \le 0\}$. Then we have

LEMMA 3. $\chi(A_1) = 1 - \deg_0(H_1)$.

If f is a homogeneous polynomial of degree d then $d_1 = \ldots = d_n = 1$, $p = \lfloor d/2 \rfloor + 1$ and $\omega = (x_1^{2p} + \ldots + x_n^{2p})/2p$. In that case the above formula has been proved in [7].

Proof. Set

$$V = \{(x, r, y) \in \mathbb{R}^n \times \mathbb{R} \times \mathbb{R} \mid \omega(x) = r^{2p}, \operatorname{rank}(d\omega(x), df(x)) \le 1, y = f(x)\}$$

Thus V is an algebraic subset of $\mathbb{R}^n \times \mathbb{R} \times \mathbb{R}$. Put $\Sigma_r = \{x \in \mathbb{R}^n \mid \omega(x) = r^{2p}\}$, where $r \neq 0$. Clearly Σ_r is a smooth manifold diffeomorphic to S^{n-1} . Let $\pi : \mathbb{R}^n \times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ be

242

the natural projection. If $r \neq 0$ then

 $\pi(V) \cap \{r\} \times \mathbb{R} = \{r\} \times \{\text{critical values of } f \mid \Sigma_r\}.$

The set of critical values of a polynomial mapping restricted to an algebraic manifold is finite (see [5, p.16]), so $\pi(V) \cap \{r\} \times \mathbb{R}$ is finite.

Let us take $(x, r, y) \in V$ and $\lambda \in \mathbb{R}$. Then

$$\begin{split} \omega(\lambda \cdot x) &= \frac{(\lambda^{d_1} x_1)^{2a_1}}{2a_1} + \ldots + \frac{(\lambda^{d_n} x_n)^{2a_n}}{2a_n} \\ &= \frac{\lambda^{2d_1a_1} x_1^{2a_1}}{2a_1} + \ldots + \frac{\lambda^{2d_na_n} x_n^{2a_n}}{2a_n} \\ &= \lambda^{2p} \omega(x) = (\lambda r)^{2p}, \end{split}$$
(i)
$$\det \begin{bmatrix} \frac{\partial \omega}{\partial x_i} (\lambda \cdot x) & \frac{\partial \omega}{\partial x_j} (\lambda \cdot x) \\ \frac{\partial f}{\partial x_i} (\lambda \cdot x) & \frac{\partial f}{\partial x_j} (\lambda \cdot x) \end{bmatrix} \\ &= \det \begin{bmatrix} \lambda^{d_1(2a_i-1)} \frac{\partial \omega}{\partial x_i} (x) & \lambda^{d_1(2a_j-1)} \frac{\partial \omega}{\partial x_j} (x) \\ \lambda^{d-d_i} \frac{\partial f}{\partial x_i} (x) & \lambda^{d-d_j} \frac{\partial f}{\partial x_j} (x) \end{bmatrix} \\ &= \det \begin{bmatrix} \lambda^{2p-d_i} \frac{\partial \omega}{\partial x_i} (x) & \lambda^{2p-d_j} \frac{\partial \omega}{\partial x_j} (x) \\ \lambda^{d-d_i} \frac{\partial f}{\partial x_i} (x) & \lambda^{d-d_j} \frac{\partial f}{\partial x_j} (x) \end{bmatrix} \\ &= \lambda^{2p+d-d_i-d_j} \det \begin{bmatrix} \frac{\partial \omega}{\partial x_i} (x) & \frac{\partial \omega}{\partial x_j} (x) \\ \frac{\partial f}{\partial x_i} (x) & \frac{\partial f}{\partial x_j} (x) \end{bmatrix} = 0, \end{split}$$
(ii)

because rank $(d\omega(x), df(x)) \le 1$. Hence rank $(d\omega(\lambda \cdot x), df(\lambda \cdot x)) \le 1$ too. We have

$$f(\lambda \cdot x) = \lambda^d f(x) = \lambda^d y.$$
(iii)

So, if $(x, r, y) \in V$ then $(\lambda \cdot x, \lambda r, \lambda^d y) \in V$ too. Hence $\pi(V)$ is a finite union of curves and if $(r, y) \in \pi(V)$ and $\lambda \in \mathbb{R}$ then $(\lambda r, \lambda^d y) \in \pi(V)$. Because 2p > d,

$$|y| > r^{2p} \tag{iv}$$

for every point $(r, y) \in \pi(V)$, $y \neq 0$, sufficiently close to the origin. Set

$$V' = \{(x, r, y) \mid \omega(x) = r^{2p}, \operatorname{rank}(d\omega(x), dg_1(x)) \le 1, y = g_1(x)\}.$$

Since $g_1 = f - \omega$, we have rank $(d\omega(x), dg_1(x)) = \operatorname{rank}(d\omega(x), df(x))$, and then

$$V' = \{(x, r, y) \mid \omega(x) = r^{2p}, \operatorname{rank}(d\omega(x), df(x)) \le 1, y = f(x) - r^{2p}\}$$

Define $\Theta(r, y) = (r, y - r^{2p})$. Then

$$\pi(V') = \Theta(\pi(V)). \tag{v}$$

Let $N = \{x \in \Sigma_r \mid f(x) \le 0\}$, $N_1 = \{x \in \Sigma_r \mid g_1(x) \le 0\} = \{x \in \Sigma_r \mid f(x) \le \omega(x)\}$. Clearly $N \subset int(N_1)$.

From (iv) and (v), if r > 0 is small enough then the function $g_1 | \Sigma_r$ has no critical points in $N_1 - N$. In particular, the function g_1 has an isolated critical point at the origin. The set N is closed, semialgebraic and hence, according to [4], can be triangulated. So N is a deformation retract of N_1 , and then $\chi(N) = \chi(N_1)$. Let $M_1 = \{x \mid ||x|| = r, g_1(x) \le 0\}$. According to [1], [9], $\chi(M_1) = 1 - \deg_0(H_1)$. Of course $M_1 = \{x \mid ||x||^{2p} = r^{2p}, g_1(x) \le 0\}$, $N_1 = \{x \mid \omega(x) = r^{2p}, g_1(x) \le 0\}$ and then from Lemma 1 we have $\chi(M_1) = \chi(N_1)$ (where $\omega_1 = ||x||^{2p}, \omega_2 = \omega$). The polynomial f is weighted homogeneous and so $\chi(A_1) = \chi(N)$. Hence $\chi(A_1) = 1 - \deg_0(H_1)$.

Let $g_2 = -(f + \omega) = -f - \omega$, let $A_2 = \{x \in S^{n-1} | f(x) \ge 0\}$, and let $I_2 \subset \mathbb{R}[[x_1, \ldots, x_n]]$ be the ideal generated by $\partial g_2 / \partial x_1, \ldots, \partial g_2 / \partial x_n$. Using the same arguments as above we can prove that dim $\mathbb{R}[[x]]/I_2 < \infty$, so $0 \in \mathbb{R}^n$ is isolated in $H_2^{-1}(0)$, where $H_2 = \operatorname{grad} g_2: (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$. Clearly $A_2 = \{x \in S^{n-1} | -f(x) \le 0\}$, so from Lemma 3 we have

LEMMA 4. $\chi(A_2) = 1 - \deg_0(H_2)$.

Let $L = \{x \in S^{n-1} | f(x) = 0\}$. Since $L = A_1 \cap A_2$ and $S^{n-1} = A_1 \cup A_2$, we have $\chi(L) = \chi(A_1) + \chi(A_2) - \chi(S^{n-1})$; thus

THEOREM 5. $\chi(L) = 2 - (\deg_0(H_1) + \deg_0(H_2) + \chi(S^{n-1})).$

If d is odd then $\tau:\tau(x) = (-1) \cdot x$ is an involution on S^{n-1} such that $f(\tau(x)) = (-1)^d f(x) = -f(x)$. It follows that $\tau(A_1) = A_2$ and then A_1 is homeomorphic to A_2 . From Lemmas 3, 4 and Theorem 5 we have

COROLLARY 6. If d is odd then

$$\chi(L) = 2(1 - \deg_0(H_1)) - \chi(S^{n-1}).$$

According to Lemma 2, dimensions of local algebras associated to H_1 , H_2 are finite, so we may compute $\deg_0(H_i)$ using the Eisenbud-Levine algorithm (see [2]). In the following examples we shall apply a computer program by Andrzej Łęcki from the Institute of Mathematics in Gdańsk which is able to calculate $\deg_0(H_i)$ using that algorithm.

The author wants to express his gratitude to Andrzej Łęcki for his cooperation.

EXAMPLE 1. Let $f(x, y, z) = x^2y - y^4 - yz^3$. The polynomial f is weighted homogeneous, where $d_1 = 3$, $d_2 = d_3 = 2$, d = 8. Clearly p = 6 has the property (1), and so $a_1 = 2$, $a_2 = a_3 = 3$. Hence $\omega = x^4/4 + y^6/6 + z^6/6$, and

$$H_1 = \operatorname{grad}(f - \omega) = (2xy - x^3, x^2 - 4y^3 - z^3 - y^5, -3yz^2 - z^5),$$

$$H_2 = \operatorname{grad}(-f - \omega) = (-2xy - x^3, -x^2 + 4y^3 + z^3 - y^5, 3yz^2 - z^5).$$

Thanks to the computer program by Andrzej Łęcki we have been able to calculate that $\deg_0(H_1) = \deg_0(H_2) = 1$. From Theorem 5, $\chi(L) = -2$. Since

$$L = \{(x, y, z) \in S^2 \mid y(x^2 - y^3 - z^3) = 0\}$$

is homeomorphic to a union of two circles with two common points, the solution is correct.

EXAMPLE 2. Let $f(x, y, z) = x^3 + x^2z - y^2$. The polynomial f is weighted homogeneous, where $d_1 = d_3 = 2$, $d_2 = 3$, d = 6. Then p = 6, $a_1 = a_3 = 3$, $a_2 = 2$ and $\omega = x^6/6 + y^4/4 + z^6/6$. Hence

$$H_1 = \operatorname{grad}(f - \omega) = (3x^2 + 2xz - x^5, -2y - y^3, x^2 - z^5),$$

$$H_2 = \operatorname{grad}(-f - \omega) = (-3x^2 - 2xz - x^5, 2y - y^3, -x^2 - z^5).$$

A computer has calculated that $\deg_0(H_1) = 1$, $\deg_0(H_2) = -1$, and so $\chi(L) = 0$. The reader may easily check that the solution is correct.

EXAMPLE 3. Let $f(x, y, z) = x^3 - xy^2 + xyz + 2x^2y - 2y^3 - y^2z - xz^2 + yz^2$. The polynomial f is homogeneous of degree d = 3, so $d_1 = d_2 = d_3 = 1$, p = 2, $a_1 = a_2 = a_3 = 2$ and $\omega = (x^4 + y^4 + z^4)/4$. Hence $H_1 = (3x^2 - y^2 + yz + 4xy - z^2 - x^3, -2xy + xz + 2x^2 - 6y^2 - 2yz + z^2 - y^3, xy - y^2 - 2xz + 2yz - z^3)$. A computer has calculated that $deg_0(H_1) = 3$. According to Corollary 6, $\chi(L) = -6$. The reader may check that f = (x - y)(x + y + z) (x + 2y - z), so the solution is correct.

REFERENCES

1. V. I. Arnold, Index of a singular point of a vector field, the Petrovski-Oleinik inequality, and mixed hodge structures, *Functional Anal. Appl.* 2 (1978), 1–11.

2. D. Eisenbud and H. I. Levine, An algebraic formula for the degree of a C^{∞} map germ, Ann. of Math. (2) **7** (1977), 19-44.

3. R. Hardt, Semi-algebraic local triviality in semi-algebraic mappings, Amer. J. Math. 102 (1980), 291-302.

4. S. Łojasiewicz, Triangulation of semi-analytic sets, Ann. Scuola Norm. Sup. Pisa (3) 18 (1964), 449-474.

5. J. Milnor, Singular points of complex hypersurfaces (Princeton University Press, 1968).

6. Z. Szafraniec, On the Euler characteristic of analytic and algebraic sets, Topology 25 (1986), 411-414.

7. Z. Szafraniec, On the Euler characteristic of complex algebraic varieties, Math. Ann. 280 (1988), 177-183.

8. Z. Szafraniec, On the Euler characteristic mod 2 of real projective varieties, Math. Proc. Cambridge Philos. Soc. 104 (1988), 479-481.

9. C. T. C. Wall, Topological invariance of the Milnor number mod 2, *Topology* 22 (1983), 345-350.

Institute of mathematics University of Gdańsk 80–952 Gdańsk Wita Stwosza 57 Poland