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SHARP BOUNDS FOR EXPONENTIAL
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Abstract

Consider an absolutely continuous distribution on [0, ∞) with finite mean μ and hazard
rate function h(t) ≤ b for all t . For bμ close to 1, we would expect F to be approximately
exponential. In this paper we obtain sharp bounds for the Kolmogorov distance between
F and an exponential distribution with mean μ, as well as between F and an exponential
distribution with failure rate b. We apply these bounds to several examples. Applications
are presented to geometric convolutions, birth and death processes, first-passage times,
and to decreasing mean residual life distributions.
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1. Introduction

Consider an absolutely continuous distribution on [0, ∞) with finite mean μ possessing
a version of its hazard function h(t) = f (t)/F̄ (t) satisfying h(t) ≤ b for all t . It appears
plausible that if bμ is close to 1, then F should be approximately exponential. The purpose of
this paper is to quantify this approximation. Examples will be discussed in Section 4, which
show that the problem does arise naturally.

For approximating F by an exponential distribution with mean μ (denoted by μE with E
exponential with mean 1), we define δ = 1 − (bμ)−1. The quantity δ is a scale-invariant
measure of the proximity between μ and b−1 (equivalently, between b and μ−1). We would
like to quantify the idea that small δ implies that F is close to μE . To measure proximity
between distributions we employ the Kolmogorov distance

D(F1, F2) = sup |F̄1(t) − F̄2(t)|
as well as its one-sided versions

D+(F1, F2) = sup(F̄1(t) − F̄2(t)), D−(F1, F2) = D+(F2, F1) = sup(F̄2(t) − F̄1(t)).

In Proposition 2 (see Section 4) we derive our main results:

D+(F, μE) = sup(F̄ (t) − e−t/μ) ≤ 1 − e−δ, (1)

D−(F, μE) = sup(e−t/μ − F̄ (t)) ≤ g(δ) = δ(1 − δ)(1−δ)/δ. (2)

Both bounds (1) and (2) are sharp.
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Thus, it follows that

−δ(1 − δ)(1−δ)/δ ≤ F̄ (t) − e−t/μ ≤ 1 − e−δ for all t ≥ 0

and
D(F, μE) = sup

t
|F̄ (t) − e−t/μ| ≤ max(1 − e−δ, g(δ)). (3)

The quantity on the right-hand side of (3) equals 1 − e−δ for δ ≤ c ≈ 0.8167 and equals
g(δ) for δ > c. As we would only find the bounds useful for small δ, the sharp upper bound
for cases of practical interest is 1 − e−δ .

As b−1E and μE are close in Kolmogorov distance for small δ, we could also approximate F

by b−1E . Since F is stochastically larger than b−1E , D(F, b−1E) and D+(F, b−1E) coincide.
Our main result for this exponential approximation (see Proposition 1) is

D(F, b−1E) = sup(F̄ (t) − e−bt ) ≤ 1 − e−(bμ−1) = 1 − e−(δ/(1−δ)). (4)

The bound in (4) is sharp.
Exponential approximation under the constraint considered here does not appear to have been

previously considered. In Section 4 we apply the methodology to obtain improved bounds in
examples previously studied (geometric convolutions and first-passage times in time-reversible
chains). In Example 3 of Section 5, we obtain a sharp bound for decreasing mean residual life
(DMRL) distributions, based on knowledge of the first two moments as well as the hazard rate
upper bound. It is hoped that these examples demonstrate that the bounds developed here are
a useful addition to the methodology of exponential approximation.

2. Preliminary results

Since μ = b−1 implies that F is exponential with mean μ, a trivial case, we assume that
μ > b−1.

Lemma 1. Fix t = t1 ≥ 0 and p in [0, 1]. Consider the class of distributions with F̄ (t1) =
e−bpt1 and sup h(t) ≤ b. The stochastically smallest member of this class is given by

F̄0(x) =

⎧⎪⎨
⎪⎩

e−bx, x ≤ pt1,

e−bp1 , pt1 < x ≤ t1,

e−bpt1 e−b(x−t1), x > t1.

Consequently, the smallest mean among distributions in this class is the mean of F0,

μ0(t1, p) = 1

b
+ qt1e−bt1p.

For fixed t1, μ0(t1, p) is strictly decreasing in p.

Proof. Let F belong to the above class. We have

F̄ (x) = e− ∫ x
0 h(s) ds ≥ e− ∫ x

0 b ds = e−bx = F̄0(x) for x ≤ pt1,

F̄ (x) ≥ F̄ (t1) = e−bpt1 = F̄0(x) for pt1 < x ≤ t1,

and

F̄ (x) = F̄ (t1)

(
F̄ (x)

F̄ (t1)

)
≥ e−bpt1 e−b(x−t1) = F̄0(x) for x > t1.
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Thus, F is stochastically larger than F0 for all F in the class (sup h(t) ≤ b, F̄ (t1) = e−bpt1),
and F0 belongs to this class as well. The rest of Lemma 1 now easily follows.

Lemma 2. Assume that sup h(t) ≤ b. Fix t = t1 and μ > b−1. Then

F̄ (t1) ≤ e−bt1p
∗(t1) for t1 > t0 = μ − b−1, (5)

where p∗(t1) is the unique solution of

qt1e−bpt1 = μ − 1

b
, (6)

where q = 1 −p. The bound is sharp. For t1 ≤ t0 = μ−b−1 the sharp upper bound for F̄ (t1)

equals 1.

Proof. Consider the set of achievable pairs

S = {(p, μ), F̄ (t1) = e−bpt1 , μF = μ}
among distributions F with sup h(t) ≤ b. By Lemma 1,

μ ≥ μ0(t1, p) = 1

b
+ qt1e−bt1p

and μ0 is strictly decreasing in p. Thus, for fixed μ > b−1 the section of S at μ, Sμ =
{p : (p, μ) belongs to S} consists of p such that μ0(t1, p) ≤ μ. This reduces to [p∗(t1), 1],
where p∗(t1) is the unique solution to μ0(t1, p) = μ, equivalently, the unique solution to (6).

It follows that (5) holds for all F with sup h(t) ≤ b and μF = μ0(t1, p). For each
t1 > μ − b−1 the bound (5) is sharp. It is realized by the distribution

F̄ ∗(x) =

⎧⎪⎨
⎪⎩

e−bx, x ≤ t1p
∗(t1),

e−bt1p
∗(t1), t1p

∗(t1) < x ≤ t1,

e−bt1p
∗(t1)e−b(x−t1), x > t1.

Note that F ∗ has mean μ with sup h(t) ≤ b and achieves (5).
For t ≤ t0 = μ − b−1, we cannot have a lower bound smaller than 1. This is true because

Z =
(

μ − 1

b

)
+ E

b
(7)

with E ∼ exponential(1) has mean μ with sup h(t) ≤ b, and F̄ (t) = 1 for t ≤ μ − b−1.

Lemma 3. For fixed μ > b−1 and t > μ−b−1, let p∗(t) denote the solution to (6). Then both
tp∗(t) and tq∗(t) are strictly increasing in t ∈ (t0, ∞).

Proof. Abbreviate p∗(t) by p∗ and q∗(t) by q∗ = 1−p∗. Denote the derivative of a function
f by f ′. By (6),

(q∗t)′ − bq∗t (p∗t)′ = 0, (8)

(q∗t)′ = (t − p∗t)′ = 1 − (p∗t)′. (9)

Substituting (9) into (8), we obtain

(p∗t)′ = 1

1 + q∗tb
> 0, (q∗t)′ = q∗tb

1 + q∗tb
> 0. (10)
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Lemma 4. Define t̂ = b−1 + e(μ−b−1) and p∗ as in Lemma 3. Then p∗ is strictly increasing
in (t0, t̂), achieves a maximum value of (1 + e(bμ − 1))−1 at t̂ , and is strictly decreasing in
(t̂ , ∞). Each value of p in (0, (1 + e(bμ − 1))−1) is achieved twice, once for a value tε(t0, t̂)

and once for a value t > t̂ .

Proof. Since (tp∗)′ = p∗ + tp∗′
, it follows from (10) that

p∗′ = q∗(1 − btp∗)
t (1 + btq∗)

. (11)

As tp∗ is strictly increasing (see Lemma 3), it follows from (11) that p∗ is maximized at the
unique value t̂ for which t̂p∗(t̂) = b−1. Since t̂q∗(t̂) = t̂ − t̂p∗(t̂) = t̂ − b−1, it follows from
(6) that

μ − 1

b
= q∗ t̂e−p∗bt̂ = t̂ − b−1

e
;

thus, t̂ = b−1 + e(μ − b−1) and

p∗(t̂) = 1

(bt̂)
= 1

1 + e(bμ − 1)
.

Since p∗(t0) = 0 the final claim will follow if we show that limt→∞ p∗(t) = 0. Since p∗
is decreasing in [t̂ , ∞) it has a limit c ≥ 0. If c were positive then q∗te−bp∗t would converge
to 0, in violation of (6). Thus, c = 0. The next result follows from a routine differentiation
argument. We record it here for use in Section 3.

Lemma 5. For 0 < c < d < ∞,

sup
t≥o

(e−ct − e−dt ) =
(

1 − c

d

)(
c

d

)c/(d−c)

and is achieved at t̂ = 1/(d − c) log(d/c).

3. Main results

Proposition 1. Let F have mean μ and sup h(t) ≤ b. Then

D(F, b−1E) = sup(F̄ (t) − e−bt ) ≤ 1 − e−(bμ−1).

The bound is sharp.

Proof. We have

F̄ (t) − e−bt ≤ 1 − e−bt ≤ 1 − e−bt0 = 1 − e−(bμ−1) for t ≤ t0 = μ − b−1.

By (5),
F̄ (t) − e−bt ≤ e−bp∗t (1 − e−bq∗t ) for t > t0, (12)

where for each t, p∗ is the solution to (6) for that t , and q∗ = 1 − p∗.
Since tq∗(t) is increasing in t (see Lemma 3), (1−e−x)/x is decreasing in x, and q∗(t0) = 1,

it follows from (6) and (12) that, for t ≥ t0 = μ − b−1,

F̄ (t) − e−bt ≤ bq∗te−bp∗t
(

1 − e−bq∗t

bq∗t

)
= (bμ − 1)

(
1 − e−bt0

bt0

)
= 1 − e−(bμ−1).

To show sharpness, take Z as in (7). Then Pr (Z > t0) − e−bt0 = 1 − e−(bμ−1).
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Proposition 2. Let F be as in Proposition 1. Denote by μE an exponential distribution with
mean μ. Define δ = 1 − (bμ)−1 and g(δ) = δ(1 − δ)(1−δ)/δ . Then

(i) D+(F, μE) = sup(F̄ (t) − e−t/μ) ≤ 1 − e−δ;

(ii) D−(F, μE) = sup(e−t/μ − F̄ (t)) ≤ g(δ) = δ(1 − δ)(1−δ)/δ;

(iii) D(F, μE) = sup |F̄ (t) − e−t/μ| ≤ max(δ, g(δ)) =
{

1 − e−δ, δ ≤ c,

g(δ), δ > c,

where c ∼ 0.8167. The bounds in (i), (ii), and (iii) are sharp.

Proof. Recall that, from (5),

F̄ (t) − e−t/μ ≤ γ (t)
�=

{
1 − e−t/μ, t ≤ t0 = μ − b−1,

e−bp∗t − e−t/μ, t > t0,

where p∗ satisfies (6).
We first show that γ (t) is decreasing in (t0, t̂), where t̂ = b−1 + e(μ − b−1). Now,

γ ′(t) = e−t/μ

μ
− b(p∗t)′e−bp∗t . (13)

From (10) and (13), γ ′(t) < 0 is equivalent to

et (μ−1−bp∗) >
1 + q∗tb

bμ
.

A sufficient condition for γ ′(t) < 0 is, thus,

1 + t

(
1

μ
− bp∗

)
− 1

bμ
− q∗t

μ
= (1 − p∗bt)δ > 0. (14)

For t0 < t < t̂, tp∗(t) < t̂p∗(t̂) = b−1 (see Lemmas 3 and 4). Thus, (14) is positive and,
consequently, γ (t) is decreasing on [t0, t̂). It follows that

F̄ (t) − e−t/μ = γ (t) ≤ γ (t0) = 1 − e−δ for t0 ≤ t ≤ t̂ . (15)

If t > t̂ then by Lemma 4 there exists t̃ in (t0, t̂) with p∗(t̃) = p∗(t). Call this common
value p and let q = 1 − p. From (6), we have

qt̃e−bpt̃ = qte−bpt .

Thus, from Lemma 5,

pb = 1

t − t̃
log

(
t

t̃

)
. (16)

From (16) and Lemma 5,

e−bpt̃ − e−bpt = sup
α≥0

(e−αt̃ − e−αt ),

thus,
ebpt̃ − ebpt ≥ e−t̃/μ − e−t/μ.

Equivalently,
γ (t) = e−bpt − e−t/μ ≤ e−pbt̃ − e−t̃/μ = γ (t̃). (17)
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From (15) and (17),

F̄ (t) − e−t/μ = γ (t) ≤ γ (t̃) ≤ γ (t0) = 1 − e−δ for t > t̂

and Proposition 2(i) is proved. For sharpness, once again take Z as defined in (7). Observe that

P(Z > t0) − e−t0/μ = 1 − e−δ.

To derive Proposition 2(ii), note that

e−t/μ − F̄ (t) ≤ e−t/μ − e−bt ≤ δ(1 − δ)(1−δ)/δ = g(δ)

by Lemma 5. Sharpness follows by choosing t2 = μ/(bμ − 1) log(bμ), w = ebt2(μ − b−1),
and F by

F̄ (x) =

⎧⎪⎨
⎪⎩

e−bx, 0 ≤ x ≤ t2,

e−bt2 , t2 < x ≤ t2 + w,

e−bt2 e−b(x−(t2+w)), x > t2 + w.

Then F has mean μ, sup h(t) ≤ b, and that F̄ (t2) = e−bt2 . By Lemma 5,

e−t2/μ − e−bt2 = g(δ)

and the bound is, thus, sharp. Finally, the statement that g(δ) < 1 − e−δ for δ < c with
the inequality reversing for δ > c comes from the numerical study of the function f (x) =
1 − e−x − g(x) for 0 ≤ x ≤ 1.

4. Examples

Example 1. (Geometric convolutions.) Let {Xi} be an independent and identically distributed
(i.i.d.) sequence of nonnegative random variables with v = EX and v2 = EX2 < ∞, where
E denotes the expectation. Let N be independent of {Xi} with Pr (N = k) = qkp, k =
0, 1, . . . , 0 < p < 1, q = 1 − p, and define

Y0 =
N∑
1

Xi.

The random variable Y0 is known as a geometric convolution, or a compound geometric
distribution, and arises naturally in many applied probability models. For example, a classic
queueing theory result is that the stationary virtual waiting time distribution in a G|G|1 queue
can be represented as a geometric convolution. Köllerström [10] observed that the station-
ary waiting time distribution was new worse than used (NWU). Another relevant paper is
Daley et al. [6]. As Y0 is NWU,

P(Y0 > s + t) ≥ P(Y0 > s)P(Y0 > t) for all s, t ≥ 0.

Since Y0 is NWU with finite mean (q/p)v, Y0 is new worse than used in expectation
(NWUE). It follows that Y ∗, the equilibrium distribution corresponding to Y0, has a hazard
function h∗, which is bounded above by (EY0)

−1 = p/qv for all t . Applying Propositions 1
and 2 with b = p/(qv) and μ = EY ∗ = v2/2v + qv/p, it follows that

D

(
Y ∗, qv

p
E

)
≤ 1 − e−(bμ−1) = 1 − e−ρ,
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where

ρ =
(

EY 2
0

2(EY0)2

)
− 1 = pv2

2qv2 .

Furthermore,
D+(Y ∗, (EY ∗)E) ≤ 1 − e−(ρ/ρ+1), (18)

D−(Y ∗, (EY ∗)E) ≤
(

ρ

p + 1

)(
1

ρ + 1

)1/ρ

for ρ ≤ c/(1 − c) ≈ 4.4569, (19)

and D(Y ∗, (EY ∗)E) ≤ 1 − e−(ρ/ρ+1). Finally,

D+
(

Y0,
qv

p
E

)
≤ D

(
Y ∗, qv

p
E

)
≤ 1 − e−ρ. (20)

Results (18) and (19) improve upon D(Y ∗, (EY ∗)E) ≤ ρ; see [12, p. 1396] and
[11, p. 589]. Result (20) improves the bound in [4, p. 1396] from ρ to 1 − e−ρ . Other
approaches to geometric convolutions may be found in [4], [11], and [12].

Example 2. (Birth and death chain.) Consider X1, . . . , Xn independent exponentially dis-
tributed random variables with failure rates 0 < λ1 ≤ λ2 . . . , ≤ λn < ∞. Define S = ∑n

1 Xi .
We have S is the increasing failure rate (IFR) with limiting failure rate λ1, thus, h(t) ≤ λ1
for all t . Now, ES = ∑n

1 λ−1
i . If λ−1

i is the dominant component of ES so that ES ≈ λ−1
1 ,

we would anticipate that S is approximately exponential. The application of interest in this
example is the first-passage time from 0 to n in a continuous-time birth and death chain. Here,
the λis are the eigenvalues of −Q̃, where Q̃ is the infinitesimal matrix restricted to {0, . . . n−1}.
For large n these eigenvalues are often unavailable. However, ES can be computed from the
birth and death rates (see [8, p. 148]) and λ1 can be lower bounded by employing the extremal
characterization of the smallest eigenvalue. In this case

b = λ1, μ =
n∑
1

λ−1
i , bμ − 1 =

n∑
2

λ−1
i

λ−1
1

,

while

δ = 1 −
(

1

bμ

)
=

∑n
2 λ−1

i∑n
1 λ−1

i

.

It follows from Propositions 1 and 2 that D(S, λ−1
1 E) ≤ 1 − e−(bμ−1),

−δ(1 − δ)(1−δ)/δ ≤ P(S > t) − e−t/ES ≤ 1 − e−δ for all t ≥ 0.

These bounds offer an alternative to an approach of Soloviev [13] for birth and death chains.
Soloviev’s bound is based on

ρS = 1 −
(

ES2

2(ES)2

)

and requires knowledge of
∑n

1 λ−2
i .

The birth and death process first-passage time is nicely discussed in Gertsbakh [7].
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5. First-passage times

For time-reversible finite state Markov chains, Keilson [9] showed that under general con-
ditions the first-passage time to a set of states A, starting in steady state restricted to Ac, has a
hazard function which is bounded above by its hazard at time 0,

b = h(0) = 	(Ac)∑
j 	jqjA

,

where 	 is the stationary distribution, Q the infinitesimal matrix, and qjA = ∑
kεA qjk . Call

this first-passage time T and denote its mean by μ. From Proposition 2, it follows that

sup
t

|P(T > t) − e−t/μ| ≤ 1 − e−[1−(h(0)μ)−1] for δ = 1 −
(

1

h(0)μ

)
≤ 0.8167.

This improves upon the bound of Brown [3, p. 422], lowering it from δ to 1 − e−δ .
Importantly, we only use the property that hT (t) ≤ hT (0) for all t , while Keilson’s approach

employs complete monotonicity, the derivation of which requires spectral analysis for time-
reversible chains. This raises the hope of being able to quantify approximate exponentiality
when time reversibility is not present. We plan to further explore this possibility in future work.

Example 3. Suppose that we know the first two moments of F and have the hazard bound,
h ≤ b. How can this information be used to improve our bound for D(F, μE)? We do not
have a general answer but we believe that the following example illustrates the potential of our
methodology.

Assume that, in addition to knowledge of the first two moments (and sup h(t) ≤ b), F is
DMRL. The class which contains IFR as a subclass is defined by

m(t) = E(X − t | X > t) = μḠ(t)

F̄ (t)
,

nonincreasing in t , where G is the equilibrium distribution corresponding to F . For new better
than used in expectation (NBUE) distributions (of which DMRL is a subclass), Brown [5, p.
206] derived the following result:

F̄ (t) ≤ e1−μ−1m(t)e−t/μ.

Thus,
F̄ (t) − e−t/μ ≤ [1 − e−[1−μ−1m(t)]]F̄ (t). (21)

Next, define L(t) = 1 − (μ−1m(t))2 and note that for F DMRL, L is a nondecreasing
function. Moreover,

EL(X) = 1 −
(

Em2(X)

μ2

)
= 1 −

(
σ 2

μ2

)
, (22)

where we have used the well known identity, Em2(X) = σ 2 of Bremaud [2].
Unless F is exponential there exists a number t1 ≥ 0 such that m(t) < μ for all t > t1, and

F̄ (t) = e−t/μ for all t ≤ t1. For t > t1, applying Markov’s inequality and (22), we obtain

F̄ (t) ≤ EL(X)

L(t)
= 1 − (σ 2/μ2)

1 − (m(t)/μ)2 . (23)

https://doi.org/10.1239/jap/1445543850 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1445543850


Sharp bounds for exponential approximations 849

From (21) and (23), we have

F̄ (t) − e−t/μ ≤ (1 − (σ 2/μ2))(1 − e−(1−μ−1m(t)))

1 − (m(t)/μ)2 . (24)

Let x = 1 − (m(t)/μ) and note that x ranges from 0 to 1 − (μb)−1 = δ, as follows from
m(0) = μ and sup h(t) ≤ b. The function

r(x) = 1 − e−x

x(2 − x)

increases from 1
2 to (1 − e−δ)/δ(2 − δ) as x increases from 0 to its maximum value of δ.

Thus, from (24), we have

sup
t

(F̄ (t) − e−t/μ) ≤
(

1 −
(

σ 2

μ2

))(
1 − e−δ

δ(2 − δ)

)
. (25)

Note that e−t/μ − F̄ (t) ≤ e−t/μ − Ḡ(t) and (see [4, p. 1390]) for F NBUE, we have

sup
t

(e−t/μ − Ḡ(t)) ≤ 1

2

(
1 − σ 2

μ2

)
≤ 1 − e−δ

δ(2 − δ)

(
1 − σ 2

μ2

)
. (26)

Thus, from (25) and (26),

D(F, μE) ≤
(

1 −
(

σ 2

μ2

))
1 − e−δ

δ(2 − δ)
. (27)

We now argue that (27) is sharp. Note that, since σ 2 = Em2(X) ≥ 1/b2,

1 −
(

σ 2

μ2

)
≤ 1 −

(
1

bμ2

)
= δ(2 − δ), (28)

where δ = 1 − (bμ)−1. Also note that if F is NBUE and not exponential then σ < μ.
Given (μ, b, σ 2) with μ > b−1, σ < μ, and (30) holding, we will construct a DMRL

distribution F having the desired (μ, b, σ 2) and achieving the bound in (27). For a fixed value
s ≥ 0, define

F̄s(x) =

⎧⎪⎨
⎪⎩

e−x/μ, 0 ≤ x ≤ s,

e−s/μ, s < x ≤ s + μ − b−1,

e−s/μe−b(x−(s+μ−b−1)), x > s + μ − b−1.

First we check that the following two properties hold and then use them in (iii) (below) to show
that the bound in (27) is attained.

(i) Fs is DMRL and has mean μ. This follows since m(x) = μ for 0 ≤ x ≤ s, m(x) =
s + μ − x < μ for s < x ≤ s + μ − b−1, and m(x) = b−1 < μ for x > s + μ − b−1.

(ii) μ2 = EX2 = ∫ ∞
0 2tF̄ (t) dt = 2μ2 − [μ2 − b−2]e−s/μ and, thus, 1 − (σ 2

s /μ2) =
(1 − (bμ)−2)e−s/μ = δ(2 − δ)e−s/μ, where σ 2

s is the variance corresponding to Fs .
Given (μ, b, σ 2) with 1 − (σ 2/μ2) ≤ δ(2 − δ), we choose s ≥ 0 so that

e−s/μ = 1 − (σ 2/μ2)

δ(2 − δ)
. (29)

For this choice of s, the distribution Fs is DMRL with the specified values of (μ, b, σ 2)

(since σ 2
s = σ 2).
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(iii) To show that D(Fs, μE) attains the upper bound in (27) for this choice of s, note that

F̄s

(
s + μ − 1

b

)
− e−(s+μ−b−1)/μ = e−s/μ(1 − e−δ) =

(
1 − σ 2

μ2

)(
1 − e−δ

δ(2 − δ)

)

follows from (29).

Thus, the upper bound in (27) is achieved.

Example 4. Suppose that X ∼ F = �(1.1, 1), so that

f (x) = (�(1.1))−0.1x−0.1e−x, x > 0,

F is IFR and, thus, DRML. In this example μ = σ 2 = 1.1 and b = 1. Consequently,

δ = 1

11
, 1 − σ 2

μ2 = 1

11
.

From Proposition 2, the bound for D(F, μE), which uses μ and b but not σ 2 provides the
following bound:

D(F, μE) ≤ 1 − e−δ ≈ 0.08690.

A bound which utilizes μ and σ 2 but ignores b would be (27) with b = ∞ and δ = 1,
namely,

D(F, μE) ≤
(

1 − σ 2

μ2

)(
1 − 1

e

)
≈ 0.05747.

Finally, the bound in (27) (which makes use of all three parameters (i)–(iii)) yields

D(F, E) ≤
(

1 − σ 2

μ2

)(
1 − e−δ

δ(2 − δ)

)
≈ 0.04552.
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