
FINITE p-GROUPS IN WHICH EVERY CYCLIC SUBGROUP
IS 2-SUBNORMAL

ELIZABETH A. ORMEROD
Mathematics Department, Mathematical Sciences Institute, Australian National University,

Canberra ACT 0200, Australia
e-mail: Elizabeth.Ormerod@anu.edu.au

(Received 8 January, 2001; accepted 18 June, 2001)

Abstract. This paper investigates finite p-groups, p � 5, in which every cyclic
subgroup has defect at most two. This class of groups is often denoted by U2;1. The
main result is a theorem which characterises these groups by identifying a family of
groups in U2;1, and showing that any finite p-group in U2;1, with p � 5, must be a
homomorphic image of one of these groups.
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Introduction. In this paper we characterise finite p-groups (p � 5) in which
every cyclic subgroup is subnormal of defect at most two. Let Ud denote the class of
all groups in which every subgroup is subnormal of defect at most d, and let Ud;n
denote the class of groups in which every n-generator subgroup has defect at most d.
In the case d ¼ 1, Ud is the class of Dedekind groups, and U1;1 ¼ U1. For d ¼ 2, U2;1

is different from U2 as shown by Ormerod [4] for 3-groups, and Parmeggiani [5] for
p-groups, p � 3.

In terms of this notation, we investigate the groups U2;1. Restricted to 2-
generator p-groups, p odd, Mahdavianary [3] has shown that U2;1 ¼ U2, and
that any group in U2;1 has nilpotency class at most three. Further he has
shown that any group G 2 U2;1 if and only if ½v; u; u� 2 hui for all u and v in
G. Using this, and the regularity of p-groups in U2;1, we prove the following
result.

Theorem A. Let G be a finite p-group, p � 5. Then G 2 U2;1 if, and only if, G is a
homomorphic image of a group Gpðr1; . . . ; rnÞ, where 1 � r1 � r2 � � � � � rn and

Gpðr1; . . . ; rnÞ ¼< a1; b1; . . . ; an; bn : ½bi; ai; ai� ¼ a
3pri

i ; ½bi; ai; bi� ¼ b
3pri

i ; ½x; ai; bi� ¼

½bi; x; ai� ¼ xp
ri
; ½x; ai; ai� ¼ ½x; ai; x� ¼ ½x; bi; bi� ¼ ½x; bi; x� ¼ 1;

½y; ai; aj� ¼ ½y; aj; ai� ¼ ½y; bi; bj� ¼ ½y; bj; bi� ¼ 1; ½y; ai; bj� ¼

½y; bj; ai� ¼ 1; �4ðGpðr1; . . . ; rnÞÞ ¼ 1 >

where 1 � i, j � n, i 6¼ j, x 2 fa1; b1; . . . ; an; bngnfai; big, y 2 fa1; b1; . . . ; an; bngn
fai; bi; aj; bjg.
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While writing this paper I was made aware of a similar unpublished result con-
tained in the dissertation of M. Stadelmann [6]. For a group G, P. Hall [2] defined an
ordered set of elements p1; . . . ; pr of order �1; . . . ; �r respectively, (�i � 1,
i ¼ 1; . . . ; r) as a uniqueness basis of G if every element p 2 G can be expressed
uniquely

p ¼ px11 . . . pxrr

with 0 � xi < �i ði ¼ 1; . . . ; rÞ.
Hall also showed that every regular p-group has a uniqueness basis. Stadelmann

in his dissertation showed that if G is a p-group in U2;1 on n generators (p > 3), then
there exists a uniqueness basis for G, and for each i; j 2 f1; . . . ; ng there exist integers
�ij and rij � 0 such that rij ¼ rji, �ij ¼ ��ji, rii ¼ �ii ¼ 0, ð�ij; pÞ ¼ 1, for i 6¼ j,

½xj; xi; xi� ¼ x
�i; jp

ri j

i ; for all i; j 2 f1; . . . ; ng

and

½xk; xixjxk; xixjxk� ¼ ðxixjxkÞ
�ikp

rikþ�jkp
rjk

for all i; j; k 2 f1; . . . ; ng:

Also, if G is a p-group with �4ðGÞ ¼ 1, and a basis x1; . . . ; xn satisfying these rela-
tions, then G 2 U2;1.

The work in this paper is quite consistent with Stadelmann’s work but gives a
much clearer picture of groups in U2;1. Having found such a characterisation of
groups in which every cyclic subgroup is 2-subnormal it remains to find more
information about U2, the class of groups in which every subgroup is 2-subnormal.
As mentioned earlier, U2 is a proper subset of U2;1, so the result in this paper should
be helpful. Other subclasses of U2;1 have also been defined, namely N , the class of
groups in which every normaliser is normal, and C, the class of groups in which the
commutator subgroup normalises every subgroup. The class N is a proper subset of
U2 (Parmeggiani [5]) and for p-groups, when p is odd, the class C coincides with W2,
the class of groups of Wielandt length two. However, it is not known whether or not
the class of p-groups (p odd) in N coincides with those in C.

Proof of Theorem A. Throughout the rest of the paper assume that p � 5. The
proof of Theorem A is quite long and has many tedious calculations. We aim to
keep these to a minimum, subject to providing sufficient evidence of their accuracy.
The first step is to prove the sufficiency of Theorem A.

Lemma 1. Let Gpðr1; . . . ; rnÞ be a group with the presentation given in the state-
ment of Theorem A. Then Gpðr1; . . . ; rnÞ 2 U2;1.

Proof. Put G ¼ Gpðr1; . . . ; rnÞ, r ¼ r1, and note that G is a regular p-group. Since
r � r2 � � � � � rn, the relations imply that �3ðGÞ ¼ ha

pr

1 ; b
pr

1 ; . . . ; a
pr

n ; b
pr

n i. It follows
that �2ðGÞ has exponent p

r and each generator has order p2r. Since G is regular this is
enough to show that G has exponent p2r.
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For any u 2 G we can write

u ¼ a�11 b
	1
1 . . . a�nn b

	n
n u

0

where u0 2 �2ðGÞ and 0 � �i; 	i < pr. Also up
r

¼ a
�1p

r

1 b
	1p

r

1 . . . a�np
r

n b	np
r

n . To show that
G 2 U2;1 it will be sufficient to show that ½x; u; u� 2 hui for all x 2 fa1; b1; . . . ; an; bng.
Let x ¼ ai, 1 � i � n. Then

½x; u; u� ¼ ½ai; a
�1
1 b

	1
1 . . . a�nn b

	n
n u

0; a�11 b
	1
1 . . . a�nn b

	n
n u

0�

¼ ½ai; a
�1
1 b

	1
1 . . . a�nn b

	n
n ; a�11 b

	1
1 . . . a�nn b

	n
n �

¼
Y
j;k

½ai; a
�j
j ; a

�k
k �½ai; a

�j
j ; b

	k
k �½ai; b

	j
j ; a

�k
k �½ai; b

	j
j ; b

	k
k �

¼

�Y
j6¼i

½ai; a
�j
j ; b

	j
j �½ai; b

	j
j ; a

�j
j �½ai; a

�j
j ; b

	i
i �½ai; b

	i
i ; a

�j
j �½ai; b

	j
j ; b

	i
i �½ai; b

	i
i ; b

	j
j �

�

� ½ai; b
	i
i ; a

�i
i �½ai; b

	i
i ; b

	i
i �

¼

�Y
j6¼i

a
�i	jp

rj

i a
��i	jp

rj

i a
��j	ip

ri

j a
�2�j	ip

ri

j b
�	j	ip

ri

j b
�2	j	ip

ri

j

�

� a
�3�i	ip

ri

i b
�3	2i p

ri

j

¼ u�3	ip
ri
:

A similar calculation shows that ½bi; u; u� ¼ u3�ip
ri . Hence G 2 U2;1. &

We now move to the rest of the proof of Theorem A. The proof relies very much
on the facts that Gpðr1; . . . ; rnÞ has nilpotency class three, and that p � 5, ensuring
that Gpðr1; . . . ; rnÞ is a regular group. The choice of generators is also crucial. Since
2-generator groups in U2;1 belong to W2, the class of groups of Wielandt length two,
some properties of these groups are used extensively. When p is an odd prime, if a
group G has Wielandt length two, the commutator subgroup G0 is in the Wielandt
subgroup. Elements of the Wielandt subgroup induce power automorphisms, and
for regular finite p-groups, power automorphisms are universal (see Cooper [1,
5.3.1]). Hence if w is an element of the Wielandt subgroup of a regular finite p-group
G, then there is an integer n such that ½w; g� ¼ gn for all g 2 G. It follows then that if
x is an element of maximal order in G and ½w; x� ¼ xm for some integer m, then
½w; g� ¼ gm for all g 2 G. In particular, if ½w; x� ¼ 1 then ½w; g� ¼ 1 for all g 2 G. Let
g; h be elements of a group G 2 U2;1. Since hg; hi has Wielandt length two, there are
integers � and r � 1 such that ½g; h; x� ¼ x�p

r

for all x 2 hg; hi. The integer � is not
unique, since if jxj ¼ pm, x�p

r

¼ x�ðp
rþpmÞ ¼ x�ð1þp

m�rÞpr . However, the integer r
remains unchanged. If ½g; h; x� 6¼ 1 for all x 2 hg; hi, put

rgh :¼ fr : ½g; h; x� ¼ x�p
r

for all x 2 hg; hi; ð�; pÞ ¼ 1g:

If ½g; h; x� ¼ 1 for all x 2 hg; hi, put rgh :¼ 1. For every g 2 G, set

RðgÞ :¼ frgh : h 2 Gg:

Also we use �ðGÞ to denote the Frattini subgroup of G.
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Lemma 2. Let G be a group in U2;1 of class 3. Then
(i) there exists a 2 G of maximal order and x 2 G such that ½x; a; a� 6¼ 1,
(ii) there exists a of maximal order in G and b 2 Gnhai�ðGÞ such that

½b; a; a� 6¼ 1.

Proof. (i) If ½v; u; u� ¼ 1 for all v, u 2 G, then G has class 2, contrary to the
assumption. So there exist u and v in G such that ½v; u; u� 6¼ 1. If u is of maximal
order, the proof is complete. If v is of maximal order, ½v; u; u� 6¼ 1 implies ½v; u; v� 6¼ 1
and again the proof is complete. If neither u nor v is of maximal order, let a be an
element of maximal order. Then javj ¼ jaj and ½av; u; u� ¼ ½a; u; u�½v; u; u�, where
either ½av; u; u� or ½a; u; u� is non trivial. If ½a; u; u� 6¼ 1, then ½a; u; a� 6¼ 1, giving the
required result. A similar result follows if ½av; u; u� 6¼ 1.

(ii) From part (i) we can find x and a such that ½x; a; a� 6¼ 1. If x 62 hai�ðGÞ, there
is nothing to prove. If x 2 hai�ðGÞ, choose b 2 Gnhai�ðGÞ. Then bu 2 Gn�ðGÞ and
either ½b; a; a� or ½bu; a; a� is non trivial. &

Theorem 3. Let G be a finite 3-generator p-group in U2;1 of class 3. Then there
exist generators fa; b; cg for G such that a has maximal order in G, and G has relations:

½b; a; a� ¼ a3p
r

; ½b; a; b� ¼ b3p
r

;

½c; a; b� ¼ ½b; c; a� ¼ cp
r

;

½c; a; a� ¼ ½c; a; c� ¼ ½c; b; b� ¼ ½c; b; c� ¼ 1:

Proof. Choose a and b in G such that
(i) a is of maximal order in G,
(ii) fa; bg can be extended to a set of (non redundant) generators for G, and
(iii) rab is minimal in [aRðaÞ for a of maximal order in G, and b satisfying (ii).
Lemma 2 ensures that this choice is possible. Put r ¼ rab. Then ½b; a; a� ¼ a�p

r

and
½b; a; b� ¼ b�p

r

. Let fa; b; yg be a set of generators for G. Since G is in U2;1 and every
2-generator subgroup is in W2 we can assume that G has the following relations;

½b; a; a� ¼ a�p
r

; ½b; a; b� ¼ b�p
r

;

½y; a; a� ¼ a
p
s

; ½y; a; y� ¼ y
p
s

;

½y; b; b� ¼ b�p
t

; ½y; b; y� ¼ y�p
t

;

where �, 
 and � are integers and ð�
�; pÞ ¼ 1, and r; s and t are positive integers. By
the choice of a and b, s � r. By taking suitable powers of b and y we may assume
that 
 ¼ � ¼ 1. Since G has class three, ap

r

; bp
r

; ap
s

; yp
s

; bp
t

and yp
t

are central. Since
the group is regular and r � s, 1 ¼ ½y; ap

r

� ¼ ½y; a�p
r

¼ ½yp
r

; a�. Similarly ½yp
r

; b� ¼ 1,
½ap

t

; y� ¼ 1 and ½ap
t

; b� ¼ 1. So if m ¼ minfr; tg, then fap
m

; bp
m

; yp
m

g � �ðGÞ.
Assume that ½y; a; a� 6¼ 1. If ½y; a; a� ¼ 1, then ½y; a; y� ¼ 1, making the following

step unnecessary. Put x ¼ y�bp
s�r

. Then

½x; a; a� ¼ ½y�; a; a�½bp
s�r

; a; a� ¼ a�p
t

ða�p
r

Þ
�pt�r

¼ 1:

Since jxj � jaj, the regularity of the group gives ½x; a; x� ¼ 1. Also ½x; b; b� ¼ b�p
t

and
½x; b; x� ¼ x�p

t

. So G ¼ ha; b; xi and has relations
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½b; a; a� ¼ a�p
r

; ½b; a; b� ¼ b�p
r

;

½x; b; b� ¼ b�p
t

; ½x; b; x� ¼ x�p
t

;

½x; a; a� ¼ ½x; a; x� ¼ 1:

By taking a suitable power of b we can adjust �. For convenience in the next step,
choose � ¼ 3.

We get further information about G by considering 2-generator subgroups of G.
Each 2-generator subgroup of G has Wielandt length two with the property that its
commutator subgroup is in its Wielandt subgroup. In ha; bxi,

½a; bx; a� ¼ ½a; b; a�½a; x; a� ¼ a�3pr :

Hence ½a; bx; bx� ¼ ðbxÞ�3pr
¼ b�3prx�3pr . On expansion

½a; bx; bx� ¼ ½a; b; b�½a; b; x�½a; x; b�½a; x; x� ¼ b�3pr ½a; b; x�½a; x; b�:

Put w ¼ ½x; a; b�. Then ½a; b; x� ¼ wx�3pr , and from the Jacobi identity, ½x; b; a� ¼
w2x�3pr . If jbj � jxj, consider hb; axi. Here

½b; ax; b� ¼ ½b; a; b�½b; x; b� ¼ b3p
r

b�3pt ¼ b3ðp
r�ptÞ:

From this, ½b; ax; g� ¼ g3ðp
r�ptÞ�pl for g 2 hb; axi, where ð; pÞ ¼ 1 and bp

l

¼ 1 and by
the assumption on the orders of b and x, xp

l

¼ 1. Consequently,

½b; ax; ax� ¼ ðaxÞ3ðp
r�ptÞ�pl

¼ a3ðp
r�ptÞx3ðp

r�ptÞa�pl :

Also

½b; ax; ax� ¼½b; a; a�½b; a; x�½b; x; a�½b; x; x�

¼ a3p
r

w�1x3p
r

w�2x3p
r

x�3pt

¼ a3p
r

x3p
r�3ptw�3x3p

r

;

giving

w3 ¼ x3p
r

a3p
t

ap
l

:

If ap
l

¼ 1, then w ¼ xp
r

ap
t

. If ap
l

6¼ 1, put 3pt þ pl ¼ 3 ���p �tt. Then ½x; b; b� ¼ b3 ���p
�tt

,
½x; b; x� ¼ x3 ���p

�tt

, and w ¼ xp
r

y ���p
�tt

. By choosing a suitable power of x, we may assume
��� ¼ 1. We have shown that the following relations hold in G:

½b; a; a� ¼ a3p
r

; ½b; a; b� ¼ b3p
r

;

½x; b; b� ¼ b3p
t

; ½x; b; x� ¼ x3p
t

;

½x; a; b� ¼ ap
t

xp
r

; ½b; x; a� ¼ a�2ptxp
r

½x; a; a� ¼ ½x; a; x� ¼ 1

where t represents t or �tt, as necessary. The same result is achieved by a similar cal-
culation if jxj > jbj.
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If t < r, put a0 ¼ ayp
r�t�1. Then ja0j ¼ jaj, and ½b; a0; a0� ¼ ða0Þ3p

t

, ½b; a0; b� ¼ b3p
t

,
contradicting the choice of a and b. If t � r, put c ¼ xap

t�r

. Then G has the required
relations. &

Theorem 4. Let G be a finite p-group in U2;1. Then there exists a set of generators
fa; b; x3; . . . ; xng for G, where a is of maximal order in G, and the following relations
are satisfied:

½b; a; a� ¼ a3p
r

; ½b; a; b� ¼ b3p
r

;

½x; a; b� ¼ ½b; x; a� ¼ xp
r

;

½x; a; a� ¼ ½x; a; x� ¼ ½x; b; b� ¼ ½x; b; x� ¼ 1; �4ðGÞ ¼ 1;

where x 2 fx3; . . . ; xng.

Proof. Choose a and b in G such that
(i) a is of maximal order in G,
(ii) fa; bg can be extended to a set of (non redundant) generators for G, and
(iii) rab is minimal in [aRðaÞ for a of maximal order in G, and b satisfying (ii).
Put r ¼ rab. Let fa; b; y3; . . . yng be a set of generators for G. Put Hi ¼ ha; b; yii.

As in Theorem 3, each group Hi has generators fa; bi; xig satisfying

½bi; a; a� ¼ a3p
r

; ½bi; a; bi� ¼ b
3pr

i

½xi; a; bi� ¼ ½bi; xi; a� ¼ x
pr

i

½xi; a; a� ¼ ½xi; a; xi� ¼ ½xi; bi; bi� ¼ ½xi; bi; xi� ¼ 1; �4ðGÞ ¼ 1:

This almost completes the proof of the theorem, except that each bi is a (possibly
different) power of the original element b. However, since each bi satisfies
½bi; a; a� ¼ a3p

r

and ½bi; a; bi� ¼ b
3pr

i and bi only differs from bj by a power of b, bj will
also satisfy ½xi; a; bj� ¼ ½bj; xi; a� ¼ x

pr

i . So any bi will be suitable to satisfy the rela-
tions given in the statement of the theorem. For convenience, choose b ¼ b3. &

The statement of Theorem 4 does not yet give a presentation for a group in U2;1,
but perhaps it can be thought of as a ‘‘partial presentation’’. The designation ‘‘par-
tial presentation’’ is used for convenience and refers to the presentation of a group
of which the group having the ‘‘partial presentation’’ is a quotient. Call this partial
presentation P1. We define a series of partial presentations, Pk, on the generating set
Dk, where

Dk ¼ fa1; b1; . . . ; ak; bk; x2kþ1; . . . ; xng;

and ai is of maximal order in hai; bi; . . . ; ak; bk; x2kþ1; . . . ; xni, 1 � i � k. The partial
presentation P1 is given by:

½b1; a1; a1� ¼ a
3pr1

1 ; ½b1; a1; b1� ¼ b
3pr1

1 ;

½x; a1; b1� ¼ ½b1; x; a1� ¼ xp
r1 ;

½x; a1; a1� ¼ ½x; a1; x� ¼ ½x; b1; b1� ¼ ½x; b1; x� ¼ 1;

448 ELIZABETH A. ORMEROD

https://doi.org/10.1017/S0017089502030094 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089502030094


where x 2 Dknfa1; b1g. The partial presentation Pk is given by:

½bi; ai; ai� ¼ a
3pri

i ; ½bi; ai; bi� ¼ b
3pri

i ;

½x; ai; bi� ¼ ½bi; x; ai� ¼ xp
ri
;

½x; ai; ai� ¼ ½x; ai; x� ¼ ½x; bi; bi� ¼ ½x; bi; x� ¼ 1;

½y; ai; aj� ¼ ½y; aj; ai� ¼ ½y; bi; bj� ¼ ½y; bj; bi� ¼ 1;

½y; ai; bj� ¼ ½y; bj; ai� ¼ 1;

where i; j 2 f1; . . . ; kg, i 6¼ j, and x 2 Dk � fai; big, y 2 Dk � fai; bi; aj; bjg.

Theorem 5. Let G be a finite p-group of class three in U2;1 on n generators, and let
k be a positive integer such that 2k � n. Then there exists a set of generators Dk as
given above, such that G has a partial presentation Pk.

The next series of lemmas is used in the proof of this theorem. In these lemmas
the group G has class three and is defined as follows:

G ¼ ha1; b1; . . . ; ak�1; bk�1; x2k�1; . . . ; xni

where the generators satisfy the relations Pk�1, 2 � 2k � n, and

Hi ¼ hai; bi; . . . ; ak�1; bk�1; x2k�1; . . . ; xni;

and ai is of maximal order in Hi, 1 � i � k� 1. Also

Hk ¼ hx2k�1; . . . ; xni

Lemma 6. Let a be an element of maximal order in the subgroup Hk of G and let
b 2 Hk such that ½b; a; a� ¼ a3p

t

; ½b; a; b� ¼ b3p
t

for some integer t. Then there exists
an integer r such that

½b; a; a� ¼ a3�p
r

; ½b; a; b� ¼ b3�p
r

and ½a1; a; b� ¼ ½b; a1; a� ¼ a�p
r

:

Proof. Note that ½a1; ab; a1� ¼ 1 which implies that

1 ¼ ½a1; ab; ab� ¼ ½a1; a; b�½a1; b; a�:

Put w :¼ ½a1; a; b� ¼ ½b; a1; a�. By the Jacobi identity w2 ¼ ½b; a; a1�. Further
½a; a1b; a� ¼ a�3pt which implies

½a; a1b; a1b� ¼ ða1bÞ
�3pt�3pl

¼ a
�3pt

1 b�3pta
�3pl

1

where ð; pÞ ¼ 1 and ap
l

¼ 1. Also

½a; a1b; a1b� ¼½a; a1; b�½a; b; a1�½a; b; b�

¼w�3b�3pt :
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From this we get w3 ¼ a
3ptþ3pl

1 . If ap
l

¼ 1, put r :¼ t and we have the required result.
Otherwise, put 3�pr :¼ 3pt þ 3pl which gives w ¼ a

�pr

1 . Then ½b; a; a� ¼ a3�p
r

and
½b; a; b� ¼ b3�p

r

. &

Lemma 7. Let a be an element of maximal order in the subgroup Hk of G and let
b 2 Hk such that ½b; a; a� ¼ a3p

r

; ½b; a; b� ¼ b3p
r

. If also ½a1; a; b� ¼ ½b; a1; a� ¼ ap
r

,
then ½u; a; b� ¼ ½b; u; a� ¼ up

r

for u 2 fb1; a2; b2; . . . ; ak�1; bk�1g.

Proof. If juj ¼ ja1j, then ½u; ab; u� ¼ 1 giving 1 ¼ ½u; ab; ab� ¼ ½u; a; b�½u; b; a�. If
juj < ja1j, then jua1j ¼ ja1j and

½ua1; ab; ua1� ¼ ½u; a; u�½u; a; a1�½u; b; u�½u; b; a1�½a1; a; u�½a1; a; a1�½a1; b; u�½a1; b; a1�:

If u 6¼ b1 all these terms are trivial. If u ¼ b1, then

½u; a; a1� ¼ ap
r1 ; ½a1; a; u� ¼ a�p

r1 ; ½u; b; a1� ¼ bp
r1 ; ½a1; b; u� ¼ b�p

r1 ;

and all other terms are trivial. In all cases ½ua1; ab; ua1� ¼ 1. So

1 ¼ ½ua1; ab; ab� ¼½u; a; b�½u; b; a�ap
r

1 a
�pr

1

¼½u; a; b�½u; b; a�:

Put w :¼ ½u; a; b� ¼ ½b; u; a� and w2 ¼ ½b; a; u�. If jaj ¼ ja1j, then ½a; ub; a� ¼ a�3pr

implies

ðubÞ�3pr
¼ ½a; ub; ub� ¼ w�3b�3pr :

Thus w ¼ up
r

. If jaj < ja1j, then jaa1j ¼ ja1j and

½aa1; ub; aa1� ¼
ðaa1Þ

�3pr1�3pr if u ¼ b1,
ðaa1Þ

�3pr otherwise.

�

So, if u ¼ b1,

ðb1bÞ
�3pr1�3pr

¼ ½aa1; b1b; b1b� ¼ b
�3pr1

1 b�3pr1�3prw�3;

giving w ¼ b
pr

1 . If u 6¼ b1 a similar calculation gives w ¼ up
r

, as required. &

Lemma 8. Let a be an element of maximal order in the subgroup Hk of G and let
b; x 2 Hk such that j½a1; a; b�j � j½a1; a; x�j, ½a1; a; b� ¼ a

pr

1 , and ½a; x; x� ¼ ½a; x; a� ¼ 1.
Then there exists x0 ¼ xbm such that ½x0; a; a1� ¼ ½x0; a1; a� ¼ 1.

Proof. The proof is similar to the previous proofs, and ½a1; ax; a1� ¼ 1 implies
1 ¼ ½a1; ax; ax� ¼ ½a1; x; a�½a1; a; x�. Put w :¼ ½a1; a; x� ¼ ½x; a1; a� and w

2 ¼ ½x; a; a1�.
Also ½a; a1x; a� ¼ 1, but since a is not necessarily of maximal order in G we can only
deduce that there exist integers  and l � 1 such that ð; pÞ ¼ 1, ap

l

¼ 1 and
½a; a1x; a1x� ¼ ða1xÞ

�3pl
¼ a

�3pl

1 . Upon expansion ½a; a1x; a1x� ¼ ½a; a1; x�½a; x; a1� ¼
w�3, giving w ¼ a

pl

1 . If a
pl

1 ¼ 1, then w ¼ 1 and we put x0 ¼ x. Otherwise
put x0 ¼ xb�pl�r . The condition on the orders of ½a1; a; b� and ½a1; a; x� ensures that
l � r. Then ½a1; a; x

0� ¼ ½x0; a1; a� ¼ 1, giving the required result. &
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Lemma 9. Let a be an element of maximal order in the subgroup Hk of G and
assume that ½z; a; b� ¼ ½b; z; a� ¼ zp

r

for z 2 fa1; b1; . . . ; ak�1; bk�1g. Let x 2 Hk such
that ½x; a1; a� ¼ ½x; a; a1� ¼ 1. Then ½u; a; x� ¼ ½u; x; a� ¼ 1 for u 2 fb1; a2; b2; . . . ;
ak�1; bk�1g.

Proof. Again, the proof is similar to previous proofs. If juj ¼ ja1j, then
½u; ax; u� ¼ 1 implies 1 ¼ ½u; ax; ax� ¼ ½u; a; x�½u; x; a�. If juj < ja1j, then ja1uj ¼ ja1j,
together with ½a1u; ax; a1u� ¼ 1, implies 1 ¼ ½a1u; ax; ax� ¼ ½u; a; x�½u; x; a�. Set
w :¼ ½u; a; x� ¼ ½x; u; a� and w2 ¼ ½x; a; u�. If jaj ¼ ja1j, then ½a; ux; a� ¼ 1 implies
1 ¼ ½a; ux; ux� ¼ ½a; u; x�½a; x; u� ¼ w�3, giving w ¼ 1, as required. If jaj < ja1j, then
jaa1j ¼ ja1j. In this case

½aa1; ux; aa1� ¼
ðaa1Þ

�3pr if u ¼ b1,
1 otherwise.

�

Hence

½aa1; ux; ux� ¼
ðuxÞ�3pr if u ¼ b1,
1 otherwise.

�

In either case, upon expansion of the commutators, we get w3 ¼ 1, which implies
w ¼ 1, completing the proof. &

Proof of Theorem 5. The partial presentation P1 is given by Theorem 4. Assume
that the group G has partial presentation Pk�1; 2 < k � 2n. We prove the theorem
by deriving the presentation Pk. Let Hk ¼ hx2k�1; . . . ; xni. Assume that Hk has class
three. By Theorem 4 there exist generators fa; b; z2kþ1; . . . ; zng for Hk with the fol-
lowing properties:

½b; a; a� ¼ a3p
t

; ½b; a; b� ¼ b3p
t

;

½z; a; b� ¼ ½b; z; a� ¼ zp
t

;

½z; a; a� ¼ ½z; a; z� ¼ ½z; b; b� ¼ ½z; b; z� ¼ 1; �4ðHkÞ ¼ 1;

where hai \ hbi ¼ 1, and z 2 fz2kþ1 . . . ; zng. Since

½x; ai; bi� ¼ ½bi; x; ai� ¼ xp
ri

and ½x; ai; ai� ¼ ½x; ai; x� ¼ ½x; bi; bi� ¼ ½x; bi; x� ¼ 1

for i 2 f1; . . . ; kg and x 2 Dk � fai; big, for each i these relations are also true for
x 2 hDk � fai; bigi. In particular,

½v; ai; bi� ¼ ½bi; v; ai� ¼ vp
ri

and ½v; ai; ai� ¼ ½v; ai; v� ¼ ½v; bi; bi� ¼ ½v; bi; v� ¼ 1

for v 2 fa; b; z2kþ1 . . . ; zng.
To prove the theorem we need to define rk and then show that

½u; a; b� ¼ ½b; u; a� ¼ up
rk ; ð10Þ

for u 2 fa1; b1; . . . ; ak�1; bk�1g. Then we need to show that

½z; a; u� ¼ ½z; u; a� ¼ ½z; b; u� ¼ ½z; u; b� ¼ 1 ð11Þ
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for z 2 fz2kþ1 . . . ; zng (or an appropriate set of generators) and u as above. Lemma 6
provides an integer, call it rk, such that

½b; a; a� ¼ a3�p
rk ; ½b; a; b� ¼ b3�p

rk
and ½a1; a; b� ¼ ½b; a1; a� ¼ a�p

rk ;

where �prk :¼ pt þ pl, ð; pÞ ¼ 1 and ap
l

¼ 1. Since a has maximal order in Hk, we
also have that ½z; a; b� ¼ ½b; z; a� ¼ z�p

rk for z 2 fz2kþ1 . . . ; zng. By choosing a suitable
power of b we can assume that � ¼ 1. Lemma 7 now completes the proof of (10).

Let z 2 fz2kþ1 . . . ; zng. If ½a1; a; z� ¼ ½a1; z; a� ¼ 1, put z0 :¼ z. Otherwise, from
the proof of Lemma 8, ½a1; a; z� ¼ a

pl

1 , where ap
l

¼ 1. Since ½b; a; a� ¼ ap
rk
6¼ 1, this

ensures that l � rk and j½a1; a; b�j � j½a1; a; z�j. In this case, replace z by z0 ¼ zbp
l

.
Then fa; b; z02kþ1; . . . ; z

0
ng generates Hk, and ½z; a; a1� ¼ ½z; a1; a� ¼ 1 for

z 2 fz02kþ1; . . . ; z
0
ng. It is also true that ½z; ai; bi� ¼ ½bi; z; ai� ¼ zp

ri , and
½z; ai; ai� ¼ ½z; ai; z� ¼ ½z; bi; bi� ¼ ½z; bi; z� ¼ 1, 1 � i � k� 1. Lemma 9 now com-
pletes the first part of (11), namely, that ½z; a; u� ¼ ½z; u; a� ¼ for z 2 fz02kþ1; . . . ; z

0
ng

and u 2 fa1; b1; . . . ; ak�1; bk�1g.
To complete the proof of (11) we first consider ½z; a1; b�. If jbj ¼ jaj we can again

use Lemma 8, with a small modification, to show that ½z0; a1; b� ¼ ½z0; b; a1� ¼ 1,
where z0 ¼ zam, for some integer m and z 2 fz02kþ1; . . . ; z

0
ng. If jbj < jaj, we use

Lemma 8 also, for a0 ¼ ab noting that ½a1; a
0; a� ¼ a

�prk

1 . With a slight modification
to the proof of Lemma 8, we again find z0 ¼ zam for some integer m such that for
each z0, ½z0; a1; a

0� ¼ ½z0; a0; a1� ¼ 1. Since ½z0; a1; a� ¼ ½z; a1; a�½a
m; a1; a� ¼ 1 and

½z0; a; a1� ¼ 1, this is enough to show that ½z0; a1; b� ¼ ½z0; b; a1� ¼ 1. Again the rela-
tions already established for z 2 fz02kþ1; . . . ; z

0
ng also hold for z 2 fz002kþ1; . . . ; z

00
ng, and

Hk ¼ ha; b; z002kþ1; . . . ; z
00
ni. Lemma 9 now completes the proof of (11).

We consider the situation when Hk has class two. In this case choose a so that a
has maximal order in Hk, and choose b so that b 2 Hkn�ðHkÞ and
j½a1; a; b�j � j½a1; a; x�j for any x 2 Hkn�ðHkÞ. If ½a1; a; x� ¼ 1 for all x 2 Hk, the
choice of b is arbitrary. Choose fz2kþ1 . . . ; zng so that fa; b; z2kþ1 . . . ; zng is a gen-
erating set for Hk. With the convention that ½b; a; a� ¼ a3p

t

for some integer t � jaj,
the proof follows as for the case when Hk has class three.

If we now put ak :¼ a, bk :¼ b and ui :¼ z00i , 2kþ 1 � i � n, then the generators
fa1; b1; . . . ; ak; bk; u2kþ1; . . . ; ung for G satisfy the relations Pk. &

Proof of Theorem A. If G has class less than three, the theorem is true. So
assume that G has class three and is a group on m generators. If m is even put
n ¼ m=2. Then by Theorem 4 G has the partial presentation Pn. This is the required
presentation, except that the integers ri might not be ordered as stated in the Theo-
rem. By changing the labelling of the generators we can ensure that
r1 � r2 � � � � � rn.

If m is odd, put n ¼ ðmþ 1Þ=2. Then from Theorem 4 G has the partial pre-
sentation Pn�1, on generators Dn�1 ¼ fa1; b1; . . . ; an�1; bn�1; xmg. Again, by changing
the labelling of the generators, we can ensure that r1 � � � � � rn�1.Put an ¼ xm and
rn ¼ expðGÞ þ 1. Then G is a homomorphic image of Gðr1; . . . ; rnÞ. &
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