Corrigendum to 'Mixing, Communication Complexity and Conjectures of Gowers and Viola'

ANER SHALEV[†]

Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel (e-mail: shalev@ma.huji.ac.il)

Received 14 July 2016; revised 29 June 2017; first published online 1 August 2017

2010 Mathematics subject classification: Primary 20D06 Secondary 03D15, 20P05

In my paper [1], a normalization factor of $|G|^{-1}$ was missing in the statements of Theorem 2.4, Theorem 2.6 and Corollary 2.7. The correct formulation of these results is as follows.

Theorem 2.4. Let G be a finite simple group of Lie type of rank r over a field with q elements.

(i) There is a constant c > 0 depending only on r, such that, if x, y are distributed uniformly over G (but may be dependent), then

$$||p_{x,y}||_2^2 \leq |G|^{-1}(1+|G|^{-c})$$

holds with probability at least $1 - |G|^{-c}$.

(ii) There is an absolute constant c > 0 and a constant c' depending only on r, such that, if $G \notin S$, where

$$S = \{L_2(q), L_3^{\pm}(q), L_4^{\pm}(q), D_4^{\pm}(q), D_5^{\pm}(q)\},\$$

and x, y are distributed uniformly over G (but may be dependent), then

$$||p_{x,y}||_2^2 \leq |G|^{-1}(1+c'q^{-(2r-1)})$$

holds with probability at least 1 - c/q.

[†] The author acknowledges the support of an Israel Science Foundation grant 1117/13 and of the Vinik Chair of Mathematics which he holds.

Theorem 2.6. Let G be a finite simple group. Let x, y be distributed uniformly over G (but they may be dependent). Fix s with s > 0.

(i) If $G = A_n$, then for some absolute constant c the probability that

$$||p_{x,y}||_2^2 \leq |G|^{-1}(1+cn^{-(2-2s)})$$

is at least $1 - cn^{-s}$.

(ii) If G is a finite simple group of Lie type of rank r over the field with q elements, then the probability that

$$||p_{x,y}||_2^2 \leq |G|^{-1}(1+q^{-(2-2s-\epsilon)r})$$

is at least $1 - q^{-(s-\epsilon)r}$, for any $\epsilon > 0$ and $r \ge r(s,\epsilon)$.

Corollary 2.7. Let G be a finite simple group. Let x, y be distributed uniformly over G (but they may be dependent).

(i) If $G = A_n$, then for any $\epsilon > 0$ there exists $n(\epsilon)$ such that, for any $n \ge n(\epsilon)$, the probability that

$$||p_{x,y}||_2^2 \leq |G|^{-1}(1+n^{-(2-\epsilon)})$$

is at least $1 - n^{-\epsilon/3}$.

(ii) If G is a finite simple group of Lie type of rank r over the field with q elements, then the probability that

$$||p_{x,y}||_2^2 \leq |G|^{-1}(1+q^{-(2-\epsilon)r})$$

is at least $1 - q^{-\epsilon r/3}$, for any $\epsilon > 0$ and $r \ge r(\epsilon)$.

Consequently, the quotation of part (ii) above in the Introduction should change accordingly. No changes whatsoever are required in the proofs.

Reference

 Shalev, A. (2017) Mixing, communication complexity and conjectures of Gowers and Viola. Combin. Probab. Comput. 26 628–640.