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SKEW-HADAMARD MATRICES OF
THE GOETHALS-SEIDEL TYPE

EDWARD SPENCE

1. Introduction. We prove, using a theorem of M. Hall on cyclic projective
planes, that if ¢ is a prime power such that either 1 4 ¢ + ¢? is a prime
congruent to 3, 5 or 7 (mod 8) or 3 + 2¢g + 2¢? is a prime power, then there
exists a skew-Hadamard matrix of the Goethals-Seidel type of order
4(1 + g + ¢?). (A Hadamard matrix H is said to be of skew type if one of
H + I,H — Iisskewsymmetric.) If 1 4+ ¢ 4+ ¢?isa prime congruent to 1 (mod 8),
then a Hadamard matrix, not necessarily of skew type, of order 4(1 + ¢ + ¢?)
is constructed. The smallest new Hadamard matrix obtained has order 292.

2. Cyclic projective planes. In this section we use cyclic projective planes
to construct two &1 matrices R, .S which will be utilized to obtain Hadamard
matrices. The main result is

THEOREM 1. If there exists a cyclic projective plane of order q* then there exist
two 41 matrices R, S, both circulant and of order 1 + q + g2, such that

RRT 4+ SST = 2¢(q + 1)I + 2J

where I 1s the identity matrix of order 1 + q + q* and J is the square matrix of
order 1 + q + ¢* all the entries of which are +1.

The following theorem was proved by M. Hall (1, Theorem 4.6].

THEOREM 2. Let t be a multiplier of a cyclic planar difference set D of order n
and let w denote the finite projective plane gemerated by D. Then if
(t — 1,1 4+ n 4+ n®) = v, there are v points of m and v translates of D fixed by t.
If, further, v > 3, then v = 1 4+ n, 4+ n1® and the fixed points together with the
fixed tramslates determine a cyclic subplane of order n.

In the proof of this theorem it is shown that, if D is fixed by tand 1 + n +
n? = yw (v > 3) then there are precisely n; + 1 elements of D divisible by w.
The cyclic subplane is generated by the difference set

D' = {d/w (modv):d € Dandd =0 (mod w)}.
We apply Theorem 2 to a cyclic planar difference set D with parameters

(1 + ¢q*>+ ¢* 1 4+ ¢ 1). Since g is a multiplier of D we may assume D fixed
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by ¢ (see [1] for the relevant theorems). Take n = ¢ and ¢t = ¢* in Theorem 2
sothato = 1+ ¢+ ¢, w =1 — ¢ 4 g% and n, = ¢. Also, there are precisely
g + 1 elements of D divisible by 1 — ¢ 4 ¢?, these elements yielding a cyclic
projective plane of order ¢ as described above.

Let

Di={deD:d=0 (modl —q+ ¢*)},

so that |D,| = ¢ + 1and the elements of D, are incongruent (mod 1 + ¢ + ¢?).
Now suppose thatd,d’ € D and thatd = d’ (mod 1 + ¢ + ¢?),ie,d — d =
A 4+ g + ¢®) (mod 1 + ¢2 + ¢*) for some integer k. Then

¢*d = ¢’d" = h(¢* + ¢* +¢°) (mod 1+ ¢*+¢%)
= —-h(l+qg+¢) (modl+ ¢+ ¢*).

Since D is fixed by ¢, both ¢3¢ and ¢°d’ belong to D, and since any integer
modulo 1 4+ ¢ 4+ ¢* can be uniquely represented as a difference between ele-
ments of D, we have ¢°d = d’ (mod 1 + ¢*> 4+ ¢*). Conversely, it is obvious
that if ¢*d = d’ (mod 1 4 ¢* + ¢*), then d = d’ (mod 1 4+ ¢ + ¢?). Now d,
d’ are distinct elements of D unless ¢3d = d (mod 1 + ¢> + ¢*) and this condi-
tion implies that d € D;. It follows that the (1 +¢*) — (1 +¢) = g(g — 1)
elements of D\D, can be partitioned into pairs (d;,, d/) d;Z d/
(mod 1+ ¢*+¢*),1 <7 = 39(g — 1), such that d; = &/ (mod 1 + ¢ + ¢*)
and d; #d; (mod 14 g+ ¢*) if 7 j. (Observe also that d; # d
(mod 1 + ¢ + ¢?) for any d € D,.) Thus, if 0(x) = > scpx? is the Hall poly-
nomial of D, so that

(1) 0x)0") = ¢* + T(x) (moda™ — 1) (m =1+ ¢+ ¢* = ww)

where 7',(x) =1+ x + x> 4+ ... 4+ x™!, we can write
$e(g—D) . ,
2) 0x) = 2 @ +x")+ 2 &' (moda” — 1).
i=1 aeDy
Suppose
Yyx) = 2 x* (mod«™ — 1)
de€ED1
and

3a(¢=1)

ox) = D> x (modx™—1).
i=1
Then Theorem 2 tells us that

B) Y@ =g+ T,(x*) (moda™ — 1).

Since (w,v) = (1 — ¢+ ¢% 1 + ¢ + ¢*) = 1, reduction of (3) modulo x®* — 1
yields

(4) Y@@ =g+ Thx) (modx’—1).
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Also, from (2), we have

(5)  0(x) = 2p(x) + ¢(x) (modx®—1).

Reducing (1) mod x° — 1 and using (5) gives

6)  (20(x) + ¥ () 2o(x™) + ¥(x™) = ¢* + wly(x) (mod x” — 1).
Thus, from (4),

(1) (o(x) + ¢(x)) (e(x™!) + ¢ (™)) + o) e(x™")
= 3q(¢+ 1) + 3(¢* — ¢ + 2)T,(x) (mod x* — 1).

Note that ¢(x) + ¢(x) and ¢(x), considered as polynomials mod x” — 1 have
coefficients 0 or 1 and

) {¢(x)Tv(x) = 3q(¢ — 1)Ty(x) (modx® — 1),
Y&x)To(x) = (¢ + 1)To(x) (mod x” —1).

Now consider D, as a set of integers modulo v and let
D; = {d; (modv) : 1 £4 < 3¢(¢ — 1)}.
We define 1 circulant matrices R = [r;;], S = [s;;] of order v as follows:

S +1ifj — 2 = d (mod v) for some d € D;\U D,,
7 ] —1, otherwise,

o +1if j — 2 = d (mod v) for some d € D,,

Y —1, otherwise.

Then, since (from (7) and (8))

(2(8(x) + ¢¥(x)) — To@)][2(e(x7") + ¢ (x71)) — Ty(x)]
+ [2¢(x) — To(x)][20(x7") — To(x)]
=29(¢ + 1) + 2T,(x) (modx®— 1),
it follows that
RRT + SST = 2q(¢ + 1)1 + 2J.

This proves Theorem 1.

3. Complementary difference sets. Given an additive abelian group K of
order 2k 4+ 1, two subsets U and V of K, each of order k, are called com-
plementary difference sets in K (see [5; 6]) if

NHueU=—-udU,
) (ii) foreach g € K, g # 0, the total number of solutions of the equation
a, — ay = g, where either (a1, a2) € U X Uor (a,a:) € VXV,
isk — 1.

These complementary difference sets are known to exist for various values of k.
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For example, they exist in a cyclic group of order 2k + 1 if 2k + 1 is a prime
p =3,50r 7 (mod 8) or 4k + 3 is a prime power [5; 6].

In what follows we consider the group K to be the cyclic group of integers
modulo 2k + 1 = 1 + ¢ + ¢* = v. Corresponding to the subsets U, V of K
we define incidence matrices P = [p4,], Q = [¢:;] which are circulant of order
v, by

_f+lifj—ie U f+lifj—i€V,
Pu=\-1ifj—iquU, WT\~1ifj—iqV,

so that P + I is skew symmetric. Then (9) yields
PPT 4+ QQT =22k + 1)I —2(J = I)
=2(* + ¢+ 2)I —2J.
Thus, if R and S are as in § 1, we have
PPT 4+ QQT 4+ RR™ + S§" = 4(1 + ¢ + ¢} 1.

The following matrix H, whose construction is due to Goethals and Seidel [3],
is a skew-Hadamard matrix of order 4(1 4+ ¢ + ¢?):

P ow  RW  SW
|l-ow P —stw RW
10) H=|_rw sw P —QW

—SW —R'W Q"W P

where W = [w,;] is the permutation matrix of order 1 + ¢ + ¢* defined by
wy =174+ 7=2 (mod 1+ g+ ¢?%), 0, otherwise. Hence we have

THEOREM 3. If there exists a cyclic projective plane of order ¢* and two com-
plementary difference sets in a cyclic group of order 1 + q + ¢*, then there exists
a skew-Hadamard matrix of the Goethals-Seidel type of order 4(1 + q + ¢?).

From the results of Szekeres [5; 6], the existence of these complementary
difference sets is assured if either 1 + ¢ + ¢? is a prime congruent to 3, 5 or 7
(mod 8) or 2¢* 4+ 2¢ + 3 is a prime power. Also, a cyclic projective plane of
order ¢? exists if ¢ is a prime power [4]. Hence we have skew-Hadamard ma-
trices of the Goethals-Seidel type for ¢ = 2, 3, 4, 5, 13, 16, 17, 25, 27, 31, . . .
with corresponding orders 28, 52, 84, 124, 732, 1092, 1228, 2604, 3028, 3972, . . .

If condition (i) of (9) is removed, the resulting matrix H constructed in (10)
is still a Hadamard matrix, but not necessarily of skew type. Now if 1 4 ¢ + ¢2
is an odd prime p, then taking U to consist of the quadratic residues (mod p)
and V the quadratic non-residues (mod p), U and V satisfy condition (ii) of
(9) with K the cyclic group of order 2k + 1 = p. In particular, taking ¢ = 8,
so that p = 73, it is seen that there exists a Hadamard matrix of order 4-73
= 292. This is the smallest order of a new Hadamard matrix constructed by
the above method.
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4. Relative difference sets. An alternative method of obtaining the matrices
R and S of § 1is to use relative difference sets. We describe the method briefly.

A set B = {by, by, ..., b} of k elements in an additive abelian group G of
order mn is said to be a difference set relative to the subgroup H of order # if
the elements of B are distinct coset representatives of H in G and for each
g € G\H there exist exactly A pairs (by, b;) with b4, b; € B such thatb, — b; =
g. Such a relative difference set is denoted by B(m, =, k, N\). For more details
of relative difference sets see [2].

We shall be interested in relative difference sets B with parameters
(14 g+ ¢%2,q?% 3g(¢g — 1)) in the cyclic group of integers modulo 2(1 + ¢ + ¢*)
relative to a subgroup of order 2. These relative difference sets exist for ¢ an
odd prime power by [2, Corollary 5.1.1]. If a(x) = > »epx?, it follows directly
from the above definition that

(11) a@)a@™) = ¢* + 3¢ — D{T2(x) — T2(x")} (mod x*° — 1),

withv = 1 + g + ¢? as before. Let a; be the number of odd integers in B and
a» the number of even integers in B. Then, putting x = —1 in (11), we im-
mediately deduce that either a1 = 3g(¢ + 1) and a2 = 39(¢ — 1), or a; =
1g(¢ — 1)and a; = 3g(¢ + 1). Since a translate of B is also a relative difference
set with the same parameters, we may assume that a; = 3g(¢ + 1) and a, =
3g(¢ — 1). Write B, = {b € B:bisodd} and B, = {b € B : biseven}. Itisa
simple matter to prove that, if

ar(®) = 2«7 and alx) = Y &

bEB1 bEB2
then
ar(®@)ai(x7!) + as(x)aa(x™?) = 39(¢ + 1) + 39(g — 1)T(x)
(mod x° — 1).

The matrices R and S can now be constructed in the same way as in § 1.

As mentioned earlier, the results of Elliott and Butson ensure the existence
of a cyclic relative difference set with parameters (1 4+ g + ¢2, 2, ¢%, 3¢(¢ — 1))
when ¢ is an odd prime power. Such a relative difference set also exists for ¢
a power of 2 as can be seen from the results of § 1. For if, in the notation of § 1,

B(x) = Thy(x?) — ¢(x?) — ¢¥(x?) + x’e(x?) (mod x?* — 1),
it is easily verified that 8 has coefficients 0 or 1 and
Bx)B(x?) = ¢* + 39(q — D{T2(x) — T2(x*)} (mod x?* — 1),

so that 8 is the incidence polynomial of a cyclic relative difference set with

parameters (1 4+ ¢ + ¢?% 2, ¢% 3q(¢ — 1)), where ¢ can be taken to be any
prime power.
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