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SKEW-HADAMARD MATRICES OF 
THE GOETHALS-SEIDEL TYPE 

EDWARD SPENCE 

1. I n t r o d u c t i o n . We prove, using a theorem of M. Hall on cyclic projective 
planes, t ha t if g is a prime power such tha t either 1 + q + q2 is a prime 
congruent to 3, 5 or 7 (mod 8) or 3 + 2q + 2q2 is a prime power, then there 
exists a skew-Hadamard matr ix of the Goethals-Seidel type of order 
4(1 + q + q2). (A Hadamard matrix H is said to be of skew type if one of 
H + I, H — lis skew symmetric. ) If 1 + g + g2 is a prime congruent to 1 (mod 8), 
then a Hadamard matrix, not necessarily of skew type, of order 4(1 + q + q2) 
is constructed. The smallest new Hadamard matr ix obtained has order 292. 

2. Cycl ic project ive p l a n e s . In this section we use cyclic projective planes 
to construct two ± 1 matrices R, S which will be utilized to obtain Hadamard 
matrices. The main result is 

T H E O R E M 1. / / there exists a cyclic projective plane of order q2 then there exist 
two ± 1 matrices R, S, both circulant and of order 1 -{- q + q2, such that 

RRT + SST = 2q(q + 1)1 + 2J 

where I is the identity matrix of order 1 + q + q2 and J is the square matrix of 
order 1 + q + q2 all the entries of which are + 1 . 

The following theorem was proved by AI. Hall [1, Theorem 4.6]. 

T H E O R E M 2. Let t be a multiplier of a cyclic planar difference set D of order n 
and let w denote the finite projective plane generated by D. Then if 
(t — 1, 1 + n + n2) = v, there are v points of ir and v translates of D fixed by t. 
If, further, v > 3, then v — 1 + n\ + n\2 and the fixed points together with the 
fixed translates determine a cyclic subplane of order n\. 

In the proof of this theorem it is shown that , if D is fixed by t and 1 + n + 
n2 = vw (v > 3) then there are precisely n\ + 1 elements of D divisible by w. 
T h e cyclic subplane is generated by the difference set 

Df = {d/w (mod v) : d Ç D and d = 0 (mod w)}. 

We apply Theorem 2 to a cyclic planar difference set D with parameters 
(1 + q2 + q4, 1 + q2, 1). Since g is a multiplier of D we may assume D fixed 
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by g (see [1] for the relevant theorems). Take n = q2 and t = g3 in Theorem 2 
so that z; = 1 + g + g2, w = 1 — q + q2 and Wi = q. Also, there are precisely 
q + 1 elements of Z2 divisible by 1 — q + g2, these elements yielding a cyclic 
projective plane of order q as described above. 

Let 

Di = {d £ D : d = 0 (mod 1 - q + g2)}, 

so that \Di\ = q + 1 and the elements of Di are incongruent (mod 1 + q + g2). 
Now suppose that d, d' (i D and that d = d' (mod 1 + g + g2), i.e., d — d' = 
h{\ + g + g2) (mod 1 + q2 + g4) for some integer h. Then 

g3d - qW = h(q3 + g4 + g5) (mod 1 + g2 + g4) 

= -h(l + g + g2) (mod 1 + g2 + g4). 

Since £> is fixed by g, both qzd and g3d' belong to D, and since any integer 
modulo 1 + q2 + g4 can be uniquely represented as a difference between ele­
ments of D, we have q3d = d' (mod 1 + g2 + g4). Conversely, it is obvious 
that if qH = d' (mod 1 + g2 + g4), then d = d' (mod 1 + g + g2). Now J, 
d' are distinct elements of D unless q3d = d (mod 1 + g2 + g4) and this condi­
tion implies that d G £>i. It follows that the (1 + g2) - (1 + g) = g(g - 1) 
elements of D\Di can be partitioned into pairs (dt, d/) di ^ d/ 
(mod 1 + g2 + g4), 1 ^ i ^ ^g(g - 1), such that dt = d( (mod 1 + g + g2) 
and dx ^ dj (mod 1 + g + g2) if z 9^ j . (Observe also that dt f£ d 
(mod 1 + g + g2) for any d £ £>i.) Thus, if 6(x) = X ^ ^ is the Hall poly­
nomial of D, so that 

(1) flOxOflO*:-1) = g2 + Tw(x) (mod xw - 1) (m = 1 + g2 + g4 = w ) 

where Tr(x) = 1 + x + x2 + . . . + x r - 1 , we can write 

( m o d x m - l ) . (2) 0(a) = 

Supi Dose 

yP(x) = 
d£D\ 

(mod xm -- D 

and 

<p(x) = (mod x w - D . 

Then Theorem 2 tells 1 LIS t ha t 

(3) 4/(x)^{x~l) = q + Tv(x
w) (moâxm - 1). 

Since (w,v) = (1 — g + g2, 1 + g + g2) = 1, reduction of (3) modulo x r 

yields 

(4) $(x)xp(x-1) = g + 7\,(*) (modx* - 1). 
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Also, from (2), we have 

(5) 0(x) = 2<p(x) + f(x) (mod xv - 1). 

Reducing (1) mod xv — 1 and using (5) gives 

(6) (?<p(x) + \l/(x))(2<p(x-1) + ^(x"1)) = q2 + wTv(x) (mod x* - 1). 

Thus, from (4), 

(7) (*,(*) + *(*))(*,(*-!) + ^(x-1)) + ^ M * " 1 ) 
s i 2 ( 2 + 1) + è(g2 - g + 2)T,(x) ^modx» - 1). 

Note that <p(x) +\f/(x) and <p(x), considered as polynomials mod xv — 1 have 
coefficients 0 or 1 and 

/ON (<p(x)Tv(x) = \q{q - l ) r„(x) (mod xc - 1), 
w V(x ) r D (x ) s (g + l)Tv{x) (mod xc - 1). 

Now consider D\ as a set of integers modulo «> and let 

£>2 = {di (mod v) : 1 ^ i ^ Jg(g - 1)}. 

We define ± 1 circulant matrices R = [r^], 5 = [s*J of order u as follows: 

"~ t-l.otl 

* - i + l i f-7' 

— i == d (mod ») for some dG D i U Z}2, 
otherwise, 

— i == d (mod v) for some d 6 Z>2, 
otherwise. 

Then, since (from (7) and (8)) 

[2(0(x) + *(*)) - r,(x)][2(0(x-1) + ^(x-1)) - 7\(*)] 

+ [2*(*) - r„(x)][20(x-1) - rc(x)] 
s 2g(g + 1) + 2r , (x) (mod x° - 1), 

it follows that 

RRT + SST = 2q(q + 1)1 + 27. 

This proves Theorem 1. 

3. Complementary difference sets. Given an additive abelian group K of 
order 2fe + 1, two subsets U and V of X, each of order k, are called com­
plementary difference sets in K (see [5 ; 6] ) if 

( (i) u G U=* - u $ U, 
. v y v i ) for each g d , g ^ 0 , the total number of solutions of the equation 

\ ai — a2 = g, where either (ai, a2) G U X Z7 or (ai, a2) G F X F, 
( is k - 1. 

These complementary difference sets are known to exist for various values of k. 
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For example, they exist in a cyclic group of order 2k + 1 if 2k + 1 is a prime 
p = 3, 5 or 7 (mod 8) or 4& + 3 is a prime power [5; 6]. 

In what follows we consider the group K to be the cyclic group of integers 
modulo 2k + 1 = 1 + q + q2 = v. Corresponding to the subsets U, V of K 
we define incidence matrices P = [ptj\, Q = [qtj] which are circulant of order 
v, by 

_ ( + 1 if j - * G 17, = ( + 1 if J ~i £ V, 
Pij - \-liij -i(£ U, qij \-liîj - i d V, 

so that P + I is skew symmetric. Then (9) yields 

PPT + QQT = 2(2& + 1)7 - 2(J - 7) 

= 2(<z2 + q + 2)7 - 2 / . 

Thus, if J\ and 5 are as in § 1, we have 

PPT + QQT + RRT + SST = 4(! + g + g2)L 

The following matrix 77, whose construction is due to Goethals and Seidel [3], 
is a skew-Hadamard matrix of order 4(1 + q + q2): 

r P QW RW SW 1 

nm ^ = ~QW p ~STW RTW 
(lu; ti _RW ST]V p _QTW 

\_-SW -RTW QTW P J 

where W = [Wij] is the permutation matrix of order 1 + q + q2 defined by 
Wij = 1 if i + j = 2 (mod 1 + q + #2), 0, otherwise. Hence we have 

THEOREM 3. If there exists a cyclic projective plane of order q2 and two com­
plementary difference sets in a cyclic group of order 1 + q + q2, then there exists 
a skew-Hadamard matrix of the Goethals-Seidel type of order 4(1 + q + q2). 

From the results of Szekeres [5; 6], the existence of these complementary 
difference sets is assured if either 1 + q + q2 is a prime congruent to 3, 5 or 7 
(mod 8) or 2q2 + 2q + 3 is a prime power. Also, a cyclic projective plane of 
order q2 exists if g is a prime power [4]. Hence we have skew-Hadamard ma­
trices of the Goethals-Seidel type for q = 2, 3, 4, 5, 13, 16, 17, 25, 27, 31, . . . 
with corresponding orders 28, 52, 84, 124, 732, 1092, 1228, 2604, 3028, 3972, . . . 

If condition (i) of (9) is removed, the resulting matrix H constructed in (10) 
is still a Hadamard matrix, but not necessarily of skew type. Now if 1 + q + q2 

is an odd prime p, then taking U to consist of the quadratic residues (mod p) 
and V the quadratic non-residues (mod p), U and V satisfy condition (ii) of 
(9) with K the cyclic group of order 2k + 1 = p. In particular, taking q = 8, 
so that p = 73, it is seen that there exists a Hadamard matrix of order 4-73 
= 292. This is the smallest order of a new Hadamard matrix constructed by 
the above method. 
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4. Relative difference sets. An alternative method of obtaining the matrices 
R and 5 of § 1 is to use relative difference sets. We describe the method briefly. 

A set B = {6i, 62, • • • , bk\ of k elements in an additive abelian group G of 
order mn is said to be a difference set relative to the subgroup H of order n if 
the elements of B are distinct coset representatives of H in G and for each 
g £ G\H there exist exactly X pairs (bu bj) with bu bj € B such that bt — bj = 
g. Such a relative difference set is denoted by B(my n, k, X). For more details 
of relative difference sets see [2]. 

We shall be interested in relative difference sets B with parameters 
(1 + q + ç2, 2, q2, %q(q — 1)) in the cyclic group of integers modulo 2(1 + q + q2) 
relative to a subgroup of order 2. These relative difference sets exist for q an 
odd prime power by [2, Corollary 5.1.1]. If a(x) = 2&<=ZÎX&, it follows directly 
from the above definition that 

(11) a(x)a(x-i) = g2 + è<z(<z - l ){r2 . (*) - T2(x')\ (mod x2» - 1), 

with v = 1 + g + g2 as before. Let a\ be the number of odd integers in B and 
a2 the number of even integers in B. Then, putting x = —1 in (11), we im­
mediately deduce that either a,\ — \q{q + 1) and a2 = \q{q — 1), or ai = 
\q{q — l ) a n d a 2 = \q{q + 1). Since a translate of B is also a relative difference 
set with the same parameters, we may assume that d\ = \q(q + 1) and a2 = 
%q(q - 1). Write 5 i = { K ^ : ô is odd} and £ 2 = {b G 5 : b is even}. It is a 
simple matter to prove that, if 

ai(x) = £ xib+v)/2 and a2(x) = £ x6/2, 

then 

ai(x)ai(x-1) + a2(x)a2(x-1) = \q(q + 1) + |g(g - l ) r v (x ) 

(mod xp — 1). 

The matrices R and S can now be constructed in the same way as in § 1. 
As mentioned earlier, the results of Elliott and Butson ensure the existence 

of a cyclic relative difference set with parameters (1 + q + q2
} 2, q2, \q(q — 1)) 

when q is an odd prime power. Such a relative difference set also exists for q 
a power of 2 as can be seen from the results of § 1. For if, in the notation of § 1, 

P(x) = Tv(x
2) - <p(x2) - \P(x2) + xv<p(x2) (mod x2P - 1), 

it is easily verified that fi has coefficients 0 or 1 and 

/3(x)^(x"1) = q2 + \q(q - l){Tu{x) - T2(x
v)} (mod x2» - 1), 

so that fi is the incidence polynomial of a cyclic relative difference set with 
parameters (1 + q + q2, 2, q2, \q(q — 1)), where q can be taken to be any 
prime power. 
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