SKEW-HADAMARD MATRICES OF THE GOETHALS-SEIDEL TYPE

EDWARD SPENCE

1. Introduction. We prove, using a theorem of M. Hall on cyclic projective planes, that if q is a prime power such that either $1+q+q^{2}$ is a prime congruent to 3,5 or $7(\bmod 8)$ or $3+2 q+2 q^{2}$ is a prime power, then there exists a skew-Hadamard matrix of the Goethals-Seidel type of order $4\left(1+q+q^{2}\right)$. (A Hadamard matrix H is said to be of skew type if one of $H+I, H-I$ is skew symmetric.) If $1+q+q^{2}$ is a prime congruent to $1(\bmod 8)$, then a Hadamard matrix, not necessarily of skew type, of order $4\left(1+q+q^{2}\right)$ is constructed. The smallest new Hadamard matrix obtained has order 292.
2. Cyclic projective planes. In this section we use cyclic projective planes to construct two ± 1 matrices R, S which will be utilized to obtain Hadamard matrices. The main result is

Theorem 1. If there exists a cyclic projective plane of order q^{2} then there exist two ± 1 matrices R, S, both circulant and of order $1+q+q^{2}$, such that

$$
R R^{T}+S S^{T}=2 q(q+1) I+2 J
$$

where I is the identity matrix of order $1+q+q^{2}$ and J is the square matrix of order $1+q+q^{2}$ all the entries of which are +1 .

The following theorem was proved by M. Hall [1, Theorem 4.6].
Theorem 2. Let t be a multiplier of a cyclic planar difference set D of order n and let π denote the finite projective plane generated by D. Then if $\left(t-1,1+n+n^{2}\right)=v$, there are v points of π and v translates of D fixed by t. If, further, $v>3$, then $v=1+n_{1}+n_{1}{ }^{2}$ and the fixed points together with the fixed translates determine a cyclic subplane of order n_{1}.

In the proof of this theorem it is shown that, if D is fixed by t and $1+n+$ $n^{2}=v w(v>3)$ then there are precisely $n_{1}+1$ elements of D divisible by w. The cyclic subplane is generated by the difference set

$$
D^{\prime}=\{d / w(\bmod v): d \in D \text { and } d \equiv 0 \quad(\bmod w)\}
$$

We apply Theorem 2 to a cyclic planar difference set D with parameters $\left(1+q^{2}+q^{4}, 1+q^{2}, 1\right)$. Since q is a multiplier of D we may assume D fixed

[^0]by q (see $[\mathbf{1}]$ for the relevant theorems). Take $n=q^{2}$ and $t=q^{3}$ in Theorem 2 so that $v=1+q+q^{2}, w=1-q+q^{2}$ and $n_{1}=q$. Also, there are precisely $q+1$ elements of D divisible by $1-q+q^{2}$, these elements yielding a cyclic projective plane of order q as described above.

Let

$$
D_{1}=\left\{d \in D: d \equiv 0 \quad\left(\bmod 1-q+q^{2}\right)\right\}
$$

so that $\left|D_{1}\right|=q+1$ and the elements of D_{1} are incongruent $\left(\bmod 1+q+q^{2}\right)$. Now suppose that $d, d^{\prime} \in D$ and that $d \equiv d^{\prime}\left(\bmod 1+q+q^{2}\right)$, i.e., $d-d^{\prime} \equiv$ $h\left(1+q+q^{2}\right)\left(\bmod 1+q^{2}+q^{4}\right)$ for some integer h. Then

$$
\begin{aligned}
q^{3} d-q^{3} d^{\prime} & \equiv h\left(q^{3}+q^{4}+q^{5}\right) \quad\left(\bmod 1+q^{2}+q^{4}\right) \\
& \equiv-h\left(1+q+q^{2}\right) \quad\left(\bmod 1+q^{2}+q^{4}\right)
\end{aligned}
$$

Since D is fixed by q, both $q^{3} d$ and $q^{3} d^{\prime}$ belong to D, and since any integer modulo $1+q^{2}+q^{4}$ can be uniquely represented as a difference between elements of D, we have $q^{3} d \equiv d^{\prime}\left(\bmod 1+q^{2}+q^{4}\right)$. Conversely, it is obvious that if $q^{3} d \equiv d^{\prime}\left(\bmod 1+q^{2}+q^{4}\right)$, then $d \equiv d^{\prime}\left(\bmod 1+q+q^{2}\right)$. Now d, d^{\prime} are distinct elements of D unless $q^{3} d \equiv d\left(\bmod 1+q^{2}+q^{4}\right)$ and this condition implies that $d \in D_{1}$. It follows that the $\left(1+q^{2}\right)-(1+q)=q(q-1)$ elements of $D \backslash D_{1}$ can be partitioned into pairs $\left(d_{i}, d_{i}{ }^{\prime}\right) d_{i} \not \equiv d_{i}{ }^{\prime}$ $\left(\bmod 1+q^{2}+q^{4}\right), 1 \leqq i \leqq \frac{1}{2} q(q-1)$, such that $d_{i} \equiv d_{i}{ }^{\prime}\left(\bmod 1+q+q^{2}\right)$ and $d_{i} \not \equiv d_{j}\left(\bmod 1+q+q^{2}\right)$ if $i \neq j$. (Observe also that $d_{i} \not \equiv d$ $\left(\bmod 1+q+q^{2}\right)$ for any $d \in D_{1}$.) Thus, if $\theta(x)=\sum_{d \in D} x^{d}$ is the Hall polynomial of D, so that

$$
\begin{equation*}
\theta(x) \theta\left(x^{-1}\right) \equiv q^{2}+T_{m}(x)\left(\bmod x^{m}-1\right) \quad\left(m=1+q^{2}+q^{4}=v w\right) \tag{1}
\end{equation*}
$$

where $T_{r}(x)=1+x+x^{2}+\ldots+x^{r-1}$, we can write

$$
\begin{equation*}
\theta(x) \equiv \sum_{i=1}^{\frac{1}{2} q(Q-1)}\left(x^{d_{i}}+x^{d_{i}^{\prime}}\right)+\sum_{d \in D_{1}} x^{d}\left(\bmod x^{m}-1\right) \tag{2}
\end{equation*}
$$

Suppose

$$
\psi(x) \equiv \sum_{d \in D_{1}} x^{d} \quad\left(\bmod x^{m}-1\right)
$$

and

$$
\varphi(x) \equiv \sum_{i=1}^{\frac{1}{2} q(q-1)} x^{d_{i}} \quad\left(\bmod x^{m}-1\right)
$$

Then Theorem 2 tells us that

$$
\begin{equation*}
\psi(x) \psi\left(x^{-1}\right) \equiv q+T_{v}\left(x^{w}\right) \quad\left(\bmod x^{m}-1\right) . \tag{3}
\end{equation*}
$$

Since $(w, v)=\left(1-q+q^{2}, 1+q+q^{2}\right)=1$, reduction of (3) modulo $x^{v}-1$ yields

$$
\begin{equation*}
\psi(x) \psi\left(x^{-1}\right) \equiv q+T_{v}(x) \quad\left(\bmod x^{v}-1\right) \tag{4}
\end{equation*}
$$

Also, from (2), we have

$$
\begin{equation*}
\theta(x) \equiv 2 \varphi(x)+\psi(x) \quad\left(\bmod x^{0}-1\right) \tag{5}
\end{equation*}
$$

Reducing (1) mod $x^{5}-1$ and using (5) gives

$$
\begin{equation*}
(2 \varphi(x)+\psi(x))\left(2 \varphi\left(x^{-1}\right)+\psi\left(x^{-1}\right)\right) \equiv q^{2}+w T_{v}(x) \quad\left(\bmod x^{v}-1\right) \tag{6}
\end{equation*}
$$

Thus, from (4),

$$
\begin{align*}
& (\varphi(x)+\psi(x))\left(\varphi\left(x^{-1}\right)+\psi\left(x^{-1}\right)\right)+\varphi(x) \varphi\left(x^{-1}\right) \tag{7}\\
& \quad \equiv \frac{1}{2} q(q+1)+\frac{1}{2}\left(q^{2}-q+2\right) T_{v}(x)\left(\bmod x^{0}-1\right)
\end{align*}
$$

Note that $\varphi(x)+\psi(x)$ and $\varphi(x)$, considered as polynomials mod $x^{0}-1$ have coefficients 0 or 1 and

$$
\left\{\begin{array}{l}
\varphi(x) T_{v}(x) \equiv \frac{1}{2} q(q-1) T_{v}(x) \quad\left(\bmod x^{v}-1\right), \tag{8}\\
\psi(x) T_{v}(x) \equiv(q+1) T_{v}(x) \quad\left(\bmod x^{v}-1\right)
\end{array}\right.
$$

Now consider D_{1} as a set of integers modulo v and let

$$
D_{2}=\left\{d_{i}(\bmod v): 1 \leqq i \leqq \frac{1}{2} q(q-1)\right\} .
$$

We define ± 1 circulant matrices $R=\left[r_{i j}\right], S=\left[s_{i j}\right]$ of order v as follows:

$$
\begin{aligned}
& r_{i j}=\left\{\begin{array}{l}
+1 \text { if } j-i \equiv d(\bmod v) \text { for some } d \in D_{1} \cup D_{2}, \\
-1, \text { otherwise },
\end{array}\right. \\
& s_{i j}=\left\{\begin{array}{l}
+1 \text { if } j-i \equiv d(\bmod v) \text { for some } d \in D_{2} \\
-1, \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Then, since (from (7) and (8))

$$
\begin{aligned}
& {\left[2(\phi(x)+\psi(x))-T_{v}(x)\right]\left[2\left(\phi\left(x^{-1}\right)+\psi\left(x^{-1}\right)\right)-T_{v}(x)\right]} \\
& \quad+\left[2 \phi(x)-T_{v}(x)\right]\left[2 \phi\left(x^{-1}\right)-T_{v}(x)\right] \\
& \quad \equiv 2 q(q+1)+2 T_{v}(x) \quad\left(\bmod x^{v}-1\right)
\end{aligned}
$$

it follows that

$$
R R^{T}+S S^{T}=2 q(q+1) I+2 J
$$

This proves Theorem 1.
3. Complementary difference sets. Given an additive abelian group K of order $2 k+1$, two subsets U and V of K, each of order k, are called complementary difference sets in K (see [5; 6]) if
(i) $u \in U \Rightarrow-u \notin U$,
(ii) for each $g \in K, g \neq 0$, the total number of solutions of the equation $a_{1}-a_{2}=g$, where either $\left(a_{1}, a_{2}\right) \in U \times U$ or $\left(a_{1}, a_{2}\right) \in V \times V$, is $k-1$.

These complementary difference sets are known to exist for various values of k.

For example, they exist in a cyclic group of order $2 k+1$ if $2 k+1$ is a prime $p \equiv 3,5$ or $7(\bmod 8)$ or $4 k+3$ is a prime power $[\mathbf{5} ; \mathbf{6}]$.

In what follows we consider the group K to be the cyclic group of integers modulo $2 k+1=1+q+q^{2}=v$. Corresponding to the subsets U, V of K we define incidence matrices $P=\left[p_{i j}\right], Q=\left[q_{i j}\right]$ which are circulant of order v, by

$$
p_{i j}=\left\{\begin{array}{l}
+1 \text { if } j-i \in U, \\
-1 \text { if } j-i \notin U,
\end{array} \quad q_{i j}=\left\{\begin{array}{l}
+1 \text { if } j-i \in V, \\
-1 \text { if } j-i \notin V,
\end{array}\right.\right.
$$

so that $P+I$ is skew symmetric. Then (9) yields

$$
\begin{aligned}
P P^{T}+Q Q^{T} & =2(2 k+1) I-2(J-I) \\
& =2\left(q^{2}+q+2\right) I-2 J
\end{aligned}
$$

Thus, if R and S are as in § 1 , we have

$$
P P^{T}+Q Q^{T}+R R^{T}+S S^{T}=4\left(1+q+q^{2}\right) I
$$

The following matrix H, whose construction is due to Goethals and Seidel [3], is a skew-Hadamard matrix of order $4\left(1+q+q^{2}\right)$:

$$
H=\left[\begin{array}{cccc}
P & Q W & R W & S W \tag{10}\\
-Q W & P & -S^{T} W & R^{T} W \\
-R W & S^{T} W & P & -Q^{T} W \\
-S W & -R^{T} W & Q^{T} W & P
\end{array}\right]
$$

where $W=\left[w_{i j}\right]$ is the permutation matrix of order $1+q+q^{2}$ defined by $w_{i j}=1$ if $i+j \equiv 2\left(\bmod 1+q+q^{2}\right), 0$, otherwise. Hence we have

Theorem 3. If there exists a cyclic projective plane of order q^{2} and two complementary difference sets in a cyclic group of order $1+q+q^{2}$, then there exists a skew-Hadamard matrix of the Goethals-Seidel type of order $4\left(1+q+q^{2}\right)$.

From the results of Szekeres $[\mathbf{5} ; \mathbf{6}]$, the existence of these complementary difference sets is assured if either $1+q+q^{2}$ is a prime congruent to 3,5 or 7 $(\bmod 8)$ or $2 q^{2}+2 q+3$ is a prime power. Also, a cyclic projective plane of order q^{2} exists if q is a prime power [4]. Hence we have skew-Hadamard matrices of the Goethals-Seidel type for $q=2,3,4,5,13,16,17,25,27,31, \ldots$ with corresponding orders $28,52,84,124,732,1092,1228,2604,3028,3972, \ldots$

If condition (i) of (9) is removed, the resulting matrix H constructed in (10) is still a Hadamard matrix, but not necessarily of skew type. Now if $1+q+q^{2}$ is an odd prime p, then taking U to consist of the quadratic residues $(\bmod p)$ and V the quadratic non-residues $(\bmod p), U$ and V satisfy condition (ii) of (9) with K the cyclic group of order $2 k+1=p$. In particular, taking $q=8$, so that $p=73$, it is seen that there exists a Hadamard matrix of order 4.73 $=292$. This is the smallest order of a new Hadamard matrix constructed by the above method.
4. Relative difference sets. An alternative method of obtaining the matrices R and S of $\S 1$ is to use relative difference sets. We describe the method briefly.

A set $B=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ of k elements in an additive abelian group G of order $m n$ is said to be a difference set relative to the subgroup H of order n if the elements of B are distinct coset representatives of H in G and for each $g \in G \backslash H$ there exist exactly λ pairs $\left(b_{i}, b_{j}\right)$ with $b_{i}, b_{j} \in B$ such that $b_{i}-b_{j}=$ g. Such a relative difference set is denoted by $B(m, n, k, \lambda)$. For more details of relative difference sets see [2].

We shall be interested in relative difference sets B with parameters $\left(1+q+q^{2}, 2, q^{2}, \frac{1}{2} q(q-1)\right)$ in the cyclic group of integers modulo $2\left(1+q+q^{2}\right)$ relative to a subgroup of order 2. These relative difference sets exist for q an odd prime power by [2, Corollary 5.1.1]. If $\alpha(x)=\sum_{b \in B} x^{b}$, it follows directly from the above definition that

$$
\begin{equation*}
\alpha(x) \alpha\left(x^{-1}\right) \equiv q^{2}+\frac{1}{2} q(q-1)\left\{T_{2 v}(x)-T_{2}\left(x^{v}\right)\right\} \quad\left(\bmod x^{20}-1\right) \tag{11}
\end{equation*}
$$

with $v=1+q+q^{2}$ as before. Let a_{1} be the number of odd integers in B and a_{2} the number of even integers in B. Then, putting $x=-1$ in (11), we immediately deduce that either $a_{1}=\frac{1}{2} q(q+1)$ and $a_{2}=\frac{1}{2} q(q-1)$, or $a_{1}=$ $\frac{1}{2} q(q-1)$ and $a_{2}=\frac{1}{2} q(q+1)$. Since a translate of B is also a relative difference set with the same parameters, we may assume that $a_{1}=\frac{1}{2} q(q+1)$ and $a_{2}=$ $\frac{1}{2} q(q-1)$. Write $B_{1}=\{b \in B: b$ is odd $\}$ and $B_{2}=\{b \in B: b$ is even $\}$. It is a simple matter to prove that, if

$$
\alpha_{1}(x)=\sum_{b \in B_{1}} x^{(b+v) / 2} \quad \text { and } \quad \alpha_{2}(x)=\sum_{b \in B_{2}} x^{b / 2},
$$

then

$$
\begin{aligned}
& \alpha_{1}(x) \alpha_{1}\left(x^{-1}\right)+\alpha_{2}(x) \alpha_{2}\left(x^{-1}\right) \equiv \frac{1}{2} q(q+1)+\frac{1}{2} q(q-1) T_{v}(x) \\
&\left(\bmod x^{0}-1\right)
\end{aligned}
$$

The matrices R and S can now be constructed in the same way as in $\S 1$.
As mentioned earlier, the results of Elliott and Butson ensure the existence of a cyclic relative difference set with parameters $\left(1+q+q^{2}, 2, q^{2}, \frac{1}{2} q(q-1)\right)$ when q is an odd prime power. Such a relative difference set also exists for q a power of 2 as can be seen from the results of $\S 1$. For if, in the notation of $\S 1$,

$$
\beta(x) \equiv T_{v}\left(x^{2}\right)-\varphi\left(x^{2}\right)-\psi\left(x^{2}\right)+x^{v} \varphi\left(x^{2}\right) \quad\left(\bmod x^{20}-1\right),
$$

it is easily verified that β has coefficients 0 or 1 and

$$
\beta(x) \beta\left(x^{-1}\right) \equiv q^{2}+\frac{1}{2} q(q-1)\left\{T_{2 v}(x)-T_{2}\left(x^{v}\right)\right\} \quad\left(\bmod x^{2 v}-1\right),
$$

so that β is the incidence polynomial of a cyclic relative difference set with parameters $\left(1+q+q^{2}, 2, q^{2}, \frac{1}{2} q(q-1)\right)$, where q can be taken to be any prime power.

References

1. L. D. Baumert, Cyclid difference sets, Springer-Verlag Lecture Notes in Mathematics, No. 182, 1971.
2. J. E. H. Elliott and A. T. Butson, Relative difference sets, Illinois J. Math. 10 (1966), 517-531.
3. J. M. Goethals and J. J. Seidel, A skew-Hadamard matrix of order 36, J. Austral. Math. Soc. 11 (1970), 343-344.
4. J. Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc. 43 (1938), 377-385.
5. G. Szekeres, Cyclotomy and complementary difference sets, Acta Arith. 18 (1971), 349-353.
6. - Tournaments and Hadamard matrices, Enseignment Math. 15 (1969), 269-278.

The University of Glasgow,
Glasgow G12 8QW, Scotland:

[^0]: Received November 20, 1973 and in revised form, April 30, 1974.

