substituting $l-m \cos \mathrm{C}-n \cos \mathrm{~B}$, etc., for x, y, z in (T). The result is $(a, b, c, f, g, h)(l-m \cos \mathrm{C}-n \cos \mathrm{~B}, m-n \cos \mathrm{~A}-l \cos \mathrm{C}, n-l \cos \mathrm{~B}-m$ $\cos C)^{2} \times \Sigma=\Delta\left(l^{2}+m^{2}+n^{2}-2 m n \cos A-2 n l \cos B-2 l m \cos C\right)^{2}$, the condition sought for.

The triangle and its escribed parabolas.

By A. J. Pressland, M.A.
§1. The problem " to inflect a straight line between two sides of a triangle so that the intercepted portion is equal to the segments cut off" has been discussed in the third volume of the Proceedings.

If we discuss the same analytically; taking CB and CA as axes of x and y (Fig. 1) and calling each segment k, the equation of the line considered is

$$
\begin{array}{cccc}
& x /(a-k)+y /(b-k)=1, & \cdots & \cdots \\
\text { where } & k^{2}=(a-k)^{2}+(b-k)^{2}-2(a-k)(b-k) \operatorname{cosC} & \ldots
\end{array}
$$

The envelope of (α) considering k unrestricted by (β) is

$$
(x+y)^{2}-2(a-b)(x-y)+(a-b)^{2}=0 \quad \ldots
$$

a parabola touching the axis of x at $(a-b, 0)$
and the axis of y at $(0, b-a)$
and which can be shown to touch $A B$
at the point $\left(\frac{a^{2}}{a-b},-\frac{b^{2}}{a-b}\right)$.
Its axis is

$$
x+y=0
$$

and tangent at vertex $x-y=\frac{a-b}{2}$.
§ 2. If we consider $x /(a-k)+y /(b+k)=1$
which cuts off equal portions from BC and CA produced, the envelope is

$$
(x-y)^{2}-2(a+b)(x+y)-(a+b)^{2}=0
$$

which touches CB at $(a+b, 0) \quad$ the point l,
CA at $(0, a+b) \quad$ the point k,
AB at $\left(\frac{a^{2}}{a+b}, \frac{b^{2}}{a+b}\right)$ the point t,
the axis being

$$
\begin{aligned}
& x-y=0 \\
& x+y=\frac{a+b}{2}
\end{aligned}
$$

and tangent at vertex
§ 3. The foci of these parabolas are

$$
\begin{aligned}
& x=-y=(a-b) / 4 \sin ^{2} \frac{1}{2} \mathrm{C} \\
& x=\quad y=(a+b) / 4 \cos ^{2} \frac{1}{2} \mathrm{C}
\end{aligned}
$$

§ 4. Hence if ABC be the triangle and we bisect the angles we get the orthic system F, D, E, O.

Let a, β, γ be mid points of sides, a, b, c be mid points of OD, OE, OF ;
then $\mathrm{A}, \mathrm{B}, \mathrm{C}, a, \beta, \gamma, a, b, c$ are on the nine point circle of DEF.
We have shown that $a, \beta, \gamma, a, b, c$ are foci of parabolas touching all the sides of ABC , so that any tangent cuts off equal portions from two sides, viz. :-
γ and c parabolas from CB and CA, β and b parabolas from BC and BA, a and a parabolas from AB and AC ,
the Greek letter corresponding to direct section, the Italian letter corresponding to transverse section.
§ 5. The points of contact of the parabolas are :-
(i.) on lines through $\mathrm{C},(a \pm b)$ distant from C .
(ii.) on AB dividing AB internally and externally in ratio $a: b$, oppositely to the bisectors of the angle \mathbf{C}.
Whence the four lines CT, CA, C , CB form an harmonic pencil ;

> T is $\left(\frac{a^{2}}{a-b},-\frac{b^{2}}{a-b}\right)$ and therefore lies on $k l$,
> t is $\left(\frac{a^{2}}{a+b}, \frac{b^{2}}{a+b}\right)$ and therefore lies on $f g$.
§6. Taking any tangent so that the intercepted portion is equal to m times the segment cut off we have the equation

$$
k^{2}\left(m^{2}-2+2 \cos \mathrm{C}\right)+2 k(a+b)(1-\cos \mathrm{C})-c^{2}=0
$$

This shows that we can get two ($1: m: 1$) lines.
Let these be

$$
\begin{aligned}
& x /\left(a-k_{1}\right)+y /\left(b-k_{1}\right)=1 \\
& x /\left(a-k_{2}\right)+y /\left(b-k_{2}\right)=1 .
\end{aligned}
$$

Their point of intersection is

$$
\begin{aligned}
& (a-b) x=\left(a-k_{1}\right)\left(a-k_{2}\right)=\frac{a^{2}\left(m^{2}-4 \sin ^{2} \frac{1}{2} \mathrm{C}\right)+4 a(a+b) \sin ^{2} \frac{1}{2} \mathrm{C}-c}{m^{2}-4 \sin ^{2} \frac{1}{2} \mathrm{C}} \\
& (b-a) y=\left(b-k_{1}\right)\left(b-k_{2}\right)=\frac{b^{2}\left(m^{2}-4 \sin ^{2} \frac{1}{2} \mathrm{C}\right)+4 b(a+b) \sin ^{2} \frac{1}{2} \mathrm{C}-c^{2}}{m^{2}-4 \sin ^{2} \frac{1}{2} \mathrm{C}}
\end{aligned}
$$

Eliminating m we get as the locus of such points

$$
\begin{align*}
\frac{(a-b) x-a^{2}}{(b-a) y-b^{2}} & =\frac{4 a(a+b) \sin _{2}^{2} \mathrm{C}-c^{2}}{4 b(a+b) \sin ^{2} \frac{1}{2} \mathrm{C}-c^{2}}=\frac{a(a+b)(a-b)^{2} / c^{2}-a^{2}}{b(a+b)(a-b)^{2} / c^{2}-b^{2}} \\
& =\frac{4 a^{2} \sin ^{2} \frac{1}{2} \mathrm{C}-(a-b)^{2}}{4 b^{2} \sin ^{2} \frac{1}{2} \mathrm{C}-(a-b)^{2}} \quad \ldots \quad \ldots
\end{align*} \ldots
$$

which show that the line passes through T , through the focus γ, and through $\left(\frac{a\left(a^{2}-b^{2}\right)}{c^{2}},-\frac{b\left(a^{2}-b^{2}\right)}{c^{2}}\right)$.

The last is a special point K; which lies not only on $b x+a y=0$, the line through the origin parallel to $A B$; but also on the circumscribing circle.
§ 7. The point determined by the intersection of the $\left\{\begin{array}{l}1: 1: 1 \\ 1: 1: 1\}\end{array}\right\}$ lines is

$$
\begin{aligned}
& (a-b)\left(a^{2}+b^{2}-c^{2}-a b\right) x=(2 a-b) a b^{2} \\
& (b-a)\left(a^{2}+b^{2}-c^{2}-a b\right) y=(2 b-a) a^{2} b
\end{aligned}
$$

it lies on

$$
\frac{x}{(2 a-b) b}+\frac{y}{(2 b-a) a}=0
$$

the line joining the origin to the intersection of
and

$$
\begin{aligned}
& x / b-y / a=1 \\
& x /(2 a-b)-y /(2 b-a)=1
\end{aligned}
$$

The corresponding point for the c-parabola is

$$
\begin{aligned}
& x(a-b)\left(a^{2}+b^{2}-c^{2}+a b\right)=(2 a+b)\left(a b^{2}\right) \\
& y(b-a)\left(a^{2}+b^{2}-c^{2}+a b\right)=(2 b+a)\left(b a^{2}\right)
\end{aligned}
$$

§ 8. As (ϵ) passes through T it follows that the two ($1: m: 1$) lines being tangents are equally inclined to $A B$.

A similar set of theorems are true of the c-parabola, and as c and γ are mid points of the arcs $A c B$ and $A \gamma B$ it follows that th loci (ϵ) and (ϵ^{\prime}) are at right angles.
$\$ 9$. If we consider the $(l: m: n)$ line whose equation is

$$
x /(a-l k)+y /(b-n k)=1
$$

we get a similar set of theorems \boldsymbol{q} which can be verified by projection from those already found ; and the loci $\left(\epsilon_{1}\right)\left(\epsilon_{1}{ }^{\prime}\right)$ will pass through the point K as before.

$$
\left(\epsilon_{1}\right) \text { is } \quad \frac{(a n-b l) x-a^{2} n}{(b l-a n) y-b^{2} l}=\frac{a\left(b^{2}-a^{2}\right)(a n-b l)+c^{2} n a^{2}}{-\dot{b}\left(b^{2}--a^{2}\right)(b l-a n)+c^{2} b^{2} l}
$$

and on it will be situated two special points.
(i.) When $m=n$ the point is

$$
\begin{aligned}
& x=\frac{1}{a-b \lambda} \cdot \frac{2 a b-b^{2} \lambda}{2 \cos -\lambda} . \\
& y=\frac{1}{b \lambda-a} \cdot \frac{b^{2}-(b \lambda-a)^{2}}{2 \cos \overline{\mathrm{C}}-\lambda} \\
& \lambda=l / n .
\end{aligned}
$$

where
Eliminating λ we get
where

$$
\left(k x-b^{2}+b y\right)\left(k x-l^{2}+\frac{a k}{b} y\right)=(b x+a y-a b)^{2}
$$

an hyperbola having one asymptote parallel to AB and the other parallel to

$$
\left(k^{2}-b^{2}\right) x+b(k-a) y=0 .
$$

(ii.) When $l=m$ we get as locus an hyperbola having one asymptote parallel to AB and the other parallel to

$$
\frac{a x}{\left(a^{2}-c^{2}\right)^{2}-a^{2} b^{2}}+\frac{y}{b\left(a^{2}-b^{2}-c^{2}\right)}=0 .
$$

§ 10. It can be shown by transversals that $\mathrm{A} g, \mathrm{~B} f$ and CT meet in a point Q .

The locus of Q is the minimum ellipse* circumscribing the triangle ABC.

A geometrical proof of this without projections will be given in § 14.

The theorem may be stated thus:-If three parallel lines be drawn through the vertices of a triangle their isotoms intersect on the minimum ellipse.

[^0]§ 11. Different series of parabolas may be obtained by considering the envelopes of
\[

$$
\begin{aligned}
& x / k+y /(b+k)=1 \\
& x /(a+k)+y /(k)=1 \\
& x / k+y /(b-k)=1 \\
& x /(a-k)+y / k=1
\end{aligned}
$$
\]

§ 12. A principle of triality would seem to hold ; because any of these parabolas might be referred to A or B instead of C as origin. Such theorems can be transformed by means of the transversal property.

$$
\frac{\mathrm{AE} \cdot \mathrm{AF}}{\mathrm{CA} \cdot \mathrm{AB}}+\frac{\mathrm{AF} \cdot \mathrm{BD}}{\mathrm{AB} \cdot \mathrm{BC}}+\frac{\mathrm{CD} \cdot \mathrm{AE}}{\mathrm{BC} \cdot \mathrm{CA}}=0
$$

where DEF is a transversal cutting $B C$ in $D, C A$ in $E, A B$ in F.
§13. Corresponding to K we get two other points by drawing through B and A parallels to the opposite sides. Calling these points $\mathrm{K}_{c}, \mathrm{~K}_{b}, \mathrm{~K}_{a}$ we have

$$
\operatorname{arc} \mathrm{AB}=\operatorname{arc} \mathrm{K}_{a} \mathrm{C}=\operatorname{arc} \mathrm{K}_{b} \mathrm{C} .
$$

Then $\quad \angle \mathrm{K}_{a} \mathrm{~K}_{\mathbf{c}} \mathrm{K}_{b}=\pi-\mathrm{K}_{a} \mathrm{BK}_{b}=\pi-2 \mathrm{C}$.
Thus $K_{n} K_{b} K_{c}$ has angles $\pi-2 A, \pi-2 B, \pi-2 C$ and is similar to the pedal or orthic triangle.

Again
therefore and

Now
therefore
therefore

$$
\operatorname{arc} \mathrm{AB}=\operatorname{arc} \mathrm{K}_{b} \mathrm{C}
$$

$$
\operatorname{arc} \mathrm{AK}_{b}=\operatorname{arc} \mathrm{CB}
$$

$$
\angle \mathrm{AK}_{a} \mathrm{~K}_{b}=\angle \mathrm{BAC}=\mathbf{A}
$$

$$
\angle \mathrm{K}_{b} \mathrm{~K}_{a} \mathrm{C}=\pi-2 \mathrm{~A}
$$

and $\mathrm{B}, \mathrm{A}, \beta, a$ are concyclic.
The sides of $K_{a} K_{b} K_{c}$ are therefore anti-parallel to those of $A B C$, and in pairs equally inclined to the sides of ABC.

The circumscribing circles of the triangles formed by $\mathrm{K}_{\mathrm{a}} \beta a$, $\beta \delta \mathrm{C}, \mathrm{K}_{a} \delta \gamma, a \gamma \mathrm{C}$ meet in a point Q , say.

Let the circumcircle of $\gamma \delta \mathrm{C}$ cut that of ABC in F ;
then
therefore

$$
\begin{aligned}
& \gamma \delta \mathrm{C}=\quad \alpha \gamma \delta-\alpha \mathrm{C} \delta \\
& =A-C \text {; } \\
& \gamma \mathrm{FC}=\mathrm{A}-\mathrm{C} .
\end{aligned}
$$

therefore
$\mathbf{K}_{c} \mathbf{F} \boldsymbol{\gamma}=\pi-\mathbf{A}$,
or
$\mathbf{K}_{a} \mathbf{F} \gamma+\mathbf{K}_{a} a \gamma=\pi$,
and therefore the circumcircle of $\mathrm{K}_{a} a \gamma$ passes through F , and hence Q and F coincide.

If the sides of the triangles $\mathrm{ABC}, \mathrm{K}_{a} \mathrm{~K}_{b} \mathrm{~K}_{\boldsymbol{c}}$ be taken three and three, 20 triangles may be obtained whose circumcircles all pass through F. Two of these circumcircles obviously coincide.
F is Steiner's point for the triangle $A B C$, as may be proved by analysis.

It may also be shown that C is on the radical axis of $\mathrm{AK}_{a} \beta$ and $\mathrm{BK}_{b} a$.

The triangle $\mathrm{K}_{a} \mathrm{~K}_{b} \mathrm{~K}_{\boldsymbol{c}}$ is twice the linear dimensions of the orthic triangle of $\mathbf{A B C}$, and in position it is this same triangle turned through two right angles.

If instead of turning the triangle $\mathrm{K}_{a} \mathrm{~K}_{b} \mathrm{~K}_{c}$ through two right angles, we turn ABC through two right angles we get another position of F diametrically opposite its former one. This new position is called Tarry's point.

It should be noticed that as $K_{a} K_{b} K_{c}$ is derived from $A B C$ so can ABC be derived from the median triangle of DEF.

§ 14. Minimum Ellipse.

ABC is the triangle, K the intersection of the lines AD, BE, CF, D, E, F, points of contact of parabola.

Join $A G$ and produce to H so that $G H=G A$; let $A H$ cut $B E$ in M , and join KH cutting AC in L .

We shall show the anharmonic ratio.
$K(A B H C)$ is constant ; whence K is on the minimum ellipse.
Let $\lambda=\frac{\mathrm{AF}}{\mathrm{BA}}=\frac{\mathrm{AE}}{\mathrm{CE}}=\frac{\mathrm{BC}}{\mathrm{CD}}$ [Apollonius Conics, III. 41.]
We have by transversals

$$
\begin{aligned}
\mathrm{EK} \cdot \mathrm{MH} \cdot \mathrm{AL} & =\mathrm{MK} \cdot \mathrm{AH} \cdot \mathrm{EL}, \\
\mathrm{BK} \cdot \mathrm{AF} \cdot \mathrm{CE} & =\mathrm{EK} \cdot \mathrm{BF} \cdot \mathrm{AC}, \\
\mathrm{AE} \cdot \mathrm{BC} \cdot \alpha \mathrm{M} & =\mathrm{CE} \cdot \alpha \mathrm{~B} \cdot \mathrm{AM} \\
2 \mathrm{AE} \cdot \alpha \mathrm{M} & =\mathrm{CE} \cdot \mathrm{AM} ; \\
\frac{\mathrm{BK}}{\mathrm{EK}} & =\frac{\mathrm{BF} \cdot \mathrm{AC}}{\mathrm{AF} \cdot \mathrm{CE}}=\frac{(\lambda+1)^{2}}{\lambda} ; \\
\overline{\mathrm{BE}} & =\frac{\lambda^{2}+\lambda+1}{\lambda} .
\end{aligned}
$$

and
or
therefore
therefore

Again	$\frac{\mathrm{C} a}{\mathrm{~B} a} \cdot \frac{\mathrm{BM} \mathrm{EA}}{\mathrm{EM}} \cdot \frac{\mathrm{CA}}{}=1$
or	$\frac{\mathrm{BM}}{\overline{\mathrm{EM}}}=\frac{\mathrm{CA}}{\mathrm{EA}}=\frac{\lambda+1}{\lambda} ;$
therefore	$\frac{\mathbf{B E}}{\mathbf{E M}}=\frac{2 \lambda+1}{\lambda} ;$
therefore	$\begin{aligned} \frac{\mathrm{EM}}{\mathrm{EK}} & =\frac{\lambda}{2 \lambda+1} \cdot \frac{\lambda^{2}+\lambda+1}{\lambda}, \\ & =\frac{\lambda^{2}+\lambda+1}{2 \lambda+1} ; \end{aligned}$
or	$\frac{\mathrm{MK}}{\mathrm{EK}}=\frac{\lambda^{2}+3 \lambda+2}{2 \lambda+1} .$
Now	$\frac{\mathrm{AM}}{a \mathrm{M}}=2 \frac{\mathrm{AE}}{\mathrm{CE}}=2 \lambda ;$
therefore	$\frac{\mathrm{A} \alpha}{\alpha \mathbf{M}}=\frac{2 \lambda+1}{1} ;$
therefore	$\alpha \mathbf{M}=\frac{\mathbf{A} \alpha}{2 \lambda+1},$
and	$\begin{aligned} \mathbf{H M} & =\frac{\mathbf{A} \alpha}{3}+\frac{\mathbf{A} \alpha}{2 \lambda+1}, \\ & =\frac{2(\lambda+2)}{3(2 \lambda+1)} \mathbf{A} \alpha, \end{aligned}$
	$=\frac{1}{2} \cdot \frac{\lambda+2}{2 \lambda+1} \cdot \mathrm{AH}$
Hence	$\begin{aligned} \frac{\text { HM EK }}{\overline{\mathrm{AH}} \cdot \frac{1}{\mathrm{MK}}}=\frac{\frac{1}{2} \frac{(\lambda+2)}{(2 \lambda+1)} \cdot \frac{2 \lambda+1}{\lambda^{2}+3 \lambda+2},}{} & =\frac{1}{2} \frac{1}{\lambda+1} ; \end{aligned}$
therefore	$\frac{\mathrm{AL}}{\mathrm{EL}}=2 \frac{\mathrm{AE}+\mathrm{CE}}{\mathrm{CE}} ;$
whence	$\frac{\mathrm{AE} \cdot \mathrm{CL}}{\mathrm{CE} \cdot \mathrm{AL}}=\frac{1}{2}$; the required result.
Since	$\frac{\mathrm{AL}}{\mathrm{CL}}=2 \frac{\mathrm{AE}}{\mathrm{CE}}=\frac{\mathrm{AM}}{a \mathrm{M}},$
	ML is parallel to $\mathbf{B C}$.

It may be noticed that GL passes through mid point of CD.

[^0]: * Steiner's Gesammelte Werke, Vol. I., p. 203.

