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The General Definition of the Complex
Monge—Ampere Operator on Compact
Kahler Manifolds

Yang Xing

Abstract. 'We introduce a wide subclass F(X, w) of quasi-plurisubharmonic functions in a compact
Kihler manifold, on which the complex Monge-Ampére operator is well defined and the convergence
theorem is valid. We also prove that (X, w) is a convex cone and includes all quasi-plurisubharmonic
functions that are in the Cegrell class.

1 Introduction

Let X be a compact connected Kéihler manifold of dimension #, equipped with the
fundamental form w given in local coordinates by w = 3 >0 8apdz® A dz’ where
(84p) is a positive definite Hermitian matrix and dw = 0. The smooth volume
form associated with this Kdhler metric is the n-th wedge product w”. Denote by
PSH(X, w) the set of upper semi-continuous functions u: X — RU {—o0} such that
u is integrable in X with respect to the volume form w" and w, = w + dd‘u > 0
on X, where d = 0+ 0 and d° = i(0 — 0). These functions are called quasi-
plurisubharmonic functions (quasi-psh for short) and play an important role in the
study of positive closed currents in X (see [9].) A quasi-psh function is locally the
difference of a plurisubharmonic function and a smooth function. Therefore, many
properties of plurisubharmonic functions hold also for quasi-psh functions. Follow-
ing Bedford and Taylor [2], the complex Monge—Ampere operator (w+dd°)" islocally
and hence globally well defined for all bounded quasi-psh functions in X. Some im-
portant results of the complex Monge—Ampere operator for bounded quasi-psh func-
tions have been obtained by Kolodziej [13, 14] and Blocki [4]. It is also known that
the complex Monge—Ampeére operator does not work well for all unbounded quasi-
psh functions. Otherwise, we would lose some of the essential properties that the
complex Monge-Ampere operator should have (see [1,12]). In a bounded domain of
(C" one usually needs certain assumptions on values of functions near the boundary
of the domain to define complex Monge—Ampere measures of unbounded plurisub-
harmonic functions, see the Cegrell class [7, 8] where Cegrell introduced the largest
subclass €(2) of plurisubharmonic functions in a bounded hyperconvex domain 2
for which the complex Monge—Ampere operator is well defined and the monotone
convergence theorem is valid. However, such a technique does not seem to work for
quasi-psh functions in a compact Kihler manifold because we lose boundary. On the
other hand, Bedford and Taylor already observed [3] that for each quasi-psh function
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u the complex Monge—Ampere measure w) := (w+dd‘u)" is well defined on its non-
polar subset {u > —oo}. We obtained several convergence theorems for complex
Monge—Ampere measures without mass on pluripolar sets [17]. In this paper we in-
troduce a quite large subclass F(X, w) of quasi-psh functions on which images of the
complex Monge—Ampere operator are well-defined positive measures and may have
positive masses on pluripolar sets. We prove that the set (X, w) is a convex cone and
includes all quasi-psh functions which are in the Cegrell class. Our main result is the
following convergence theorem of the complex Monge—Ampere operator in F(X, w).

Theorem 3.6 (Convergence Theorem) Let0 < p < oo. Suppose that uy € F(X,w)
and that g € PSH(X,w) N L*(X) is nonpositive. If u;, u € F(X,w) are such that
uj — uin Cap,, on X and u; > uy, then (—g)? w;’j — (—g)? wli weakly in X.

As a direct consequence we have the following

Corollary3.7 Let0 < p < coand0 > g € PSH(X, w)NL>(X). Ifu;, u € F(X,w)
are such that u; ™\, uoru; / win X, then (—g)? ng — (—g)? Wi weakly in X.

For bounded quasi-psh functions, Corollary 3.7]is a slightly stronger version of
the well-known monotone convergence theorem due to Bedford and Taylor [2].

2 The Class F (X, w)

In this section we first introduce the subclass F(X,w) of quasi-psh functions, on
which images of the complex Monge—Ampere operator are finite positive measures
in X. We obtain some characterizations of functions in F(X,w). Finally, we prove
that (X, w) is a star-shaped and convex set.

Recall that the Monge—Ampere capacity Cap , associated with the Kahler form w
is defined by

Cap,(E) = sup{/wZ ;u € PSHX,w)and — 1 <u< O}
E

for any Borel set E in X. The capacity Cap , was introduced by Kolodziej [13] and
is comparable to the relative Monge—Ampere capacity of Bedford and Taylor [2],
and hence vanishes exactly on pluripolar sets of X. Recall also that a sequence y;
of positive Borel measures is said to be uniformly absolutely continuous with re-
spect to Cap,, on X, or we write that y1; < Cap,, on X uniformly for all j, if for
any € > 0 there exists § > 0 such that p;(E) < ¢ for all j and Borel sets E C X
with Cap(E) < 4. Denote by PSH™' (X, w) the subset of functions u in PSH(X, w)
with maxy u < —1. Given a function u € PSH '(X,w), we define the measure

(—u) w" ' A w in X which is zero in {u = —oo} and
/(—u)cuzf1 Aw = lim (—max(u,—j))wr’;xl(u;) Aw
E J=° JEn{u>—j} )

forallk > 1and E C {u > —k}. In a completely similar way, we define the measure
Wit AW = X{us—oo} Wit A w, where X fus oo} is the characteristic function of
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the set {u > —oo}. It is worth pointing out that in general neither the measure
(—u) wi ' A w nor w!~! A w is locally finite in X. However, we have the following
result.

Proposition 2.1 Let u € PSH™'(X,w). Suppose that
— max(u, —j) wmax(u EPRAYE S Cap,,

on X uniformly forall j = 1,2, . ... Then the following statements hold:

i) (—wwtAw and Wt AW areﬁnite positive measures in X;

(ii) max(u, —j) wmax(u _j o uwy Vand w'~ — Wi as currents as j — oo;
(ii) (—w)w! ' Aw < Cap, onX.

max(u -7

Proof Since

/(—u)w,’:_l/\w = lim lim (— max(u, —j)) wh max(u _pAw
X

k—o00 j—o0 us—k

< sqp/(—max(u, —j)) wr"naxl(u _pNw < oo,
] X

we obtain that (—u) w?~! A w is a finite positive measure and so is w" ™! A w. Write

max(u _])wmax(u - = = X{u<—j} max(u _])wmax(u —J)
+X{u> it max(u _])wmaxu—])

where the first term on the right-hand side tends to zero and the second one tends to
uw' ' as j — oo. Similarly, we get that wmax(u _y w1 as j — oco. Moreover,
for any E C X with Cap_(E) # 0 we can take an open set G in X such that E C G
and Cap_,(G) < 2 Cap,,(E). Then

/( u)wi™ 1/\w</( u)wh™ 1/\w<hmsuP/(_maX(” —j)) w max(u—J)/\w’
G

]

which implies that (—u) w!~' Aw < Cap,, on X. [

Let F(X, w) be the subset of functions in PSH™' (X, w) which satisfy the hypothe-
ses of Proposition 2.1l The complex Monge—Ampére measure w!' of a function u in
F(X, w) is defined by the sum

Whi=wAW v dd (uwl Y,

where the currents u w" ! and w!~! are the limits of two sequences

-1

and wmax(u iy

max(u, —j) wmax(u P
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respectively. Locally using the inequality (w + dd(¢ + u)) "> nw' ' A w, where
w = dd“¢, we can easily see that (—u) w! ™! A w < Cap,, in X for any

u € PSH (X, w) N L®(X),

where L°°(X) denotes the set of bounded functions in X. Hence for bounded quasi-
psh functions, our definition of the complex Monge—Ampere operator coincides with
Bedford’s and Taylor’s definition [2]. Denote by L' (X, ;1) the set of integrable func-
tions in X with respect to the positive measure ;1. Now we give a characterization of
functions in F(X, w).

Theorem 2.2 Letu € PSH (X, w). Then u € F(X,w) if and only if
ue l'X, W' ' Aw),

n—1
max(u,

n—1
max(u,

where w ™! == limj_,o w

_j as currents and w
uniformly for j = 1,2, .. ..

7j)/\w < Cap, on X

Proof We prove first the “only if” part. Assume that u € F(X, w). By Proposition2.1]

we have that wr';;xl( _pAw < (— max(u, —j)) w™! PYACES Cap,, on X uniformly

u, max(u,—

n—1

max(u,—j) w1, Hence, by the lower semi-continuity of —u, we get

forall j, and w
that

/(— max(u, —t)) W' Aw < limsup/(— max(u, —j))w&;xl(uﬁj) Aw < 00
X X

j—oo

for all ¢ > 1. Thus, we have u € L'(X, w" ' A w). Now we prove the “if” part.
Observe that for any k > 1, by [3, Proposition 4.2] we get

n—1

—1 .
X{u>—ky Wy Aw = ]En;o X{u>—k}¥max(u,— j) /N @
= lim X{max(u 7l<)>7k}(uni1 H AW
o0 ) max(u,— j)
= lim X{max(u 7l<)>7k}(uni1 i ANw
fastl , max(u,— j,—k)
_ n—1 A
= X{u>—k} Ymax(u,—k) N W-

Hence, for any Borel set E C X and k > 1, we have that

/wsfl Nw < / Wit Aw +/ wr’;;xl(u.fk) Aw
E u<—k+1 EN{u>—k} i

. n—1 n—1
< lim sup/ wmax(u.,—j) Nw+ /wmax(u,—k) Aw,
u<—k+1 E

joo

where we have used that the set {u < —k + 1} is open. Since w" ! yAw <

max(u,— j
Cap,, on X uniformly for j, we have w~! A w < Cap,, on X. It then follows from
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ue LNX, w™! Aw) that (—u) w™ ! Aw < Cap,, on X. Forany j > k; > 1 we get

/ (— max(u, —]))wmaxuﬂ) A w
<—k

<]/ wmgx(ufj)/\w-i—/ (— u)wsfl/\w
j<u<—k
= /w —]/ I’;axl(u_] /\w+/' (—w)w' ' Aw
—j<u<—k
Sj/w"—j/ W AW
X u>—j

+/ (—ww' 'Aw < 2/ (—w)w!' ' Aw.
u<—k, u<—k,

Hence, for any Borel set E; C X and j > k; > 1, we have

(— max(u, ]))(.umaX —j) N W
E;

< 2/ (—u)wz—l Aw+k / qule(u,—j) Aw
u<—k Elﬁ{u>—k1}

= Akl + Bkl,j-

Given € > 0, take k. > 1 such that Ay, < e. Since wmax(u phw L Cap, on X

uniformly for all j, there exists § > 0 such thatk. [, w £ Wma l(u _jA\w < eforall jand

E, C X with Cap_,(E,) < 6. Therefore, we have proved that

(— max(u, ]))wmaxu_]) ANw<2¢
E;

holds for all j > k. (hence for all j) and E; C X with Cap,_(E;) < 6. So u €
F(X,w). [ |

Suppose that 2 is a hyperconvex subset in C". Cegrell [8] introduced the largest
subclass £(€2) of plurisubharmonic functions in €2, for which the complex Monge—
Ampere operator is well defined and the monotone convergence theorem is valid.
Our next theorem says that F(X, w) includes all quasi-psh functions that are in the
Cegrell class. Recall that a negative plurisubharmonic function u in €2 is said to be-
long to () if for each zy € €2 there exists a neighborhood U, of z; and a decreasing
sequence u; of bounded plurisubharmonic functions in €2, vanishing on the bound-
ary 0€, such that u; \, u on Uy and sup; fﬂ(ddﬂuj)” < 00. Blocki [5] proved that
it is a local property to belong to £(€2), that is, if Q) = Uj Q;, then u € €(Q) if and
only if M|Qj € &(Q;) for each j. We call u in PSH (X, w) for a Cegrell function in
X if there exists a finite covering {B;}}" of X with hyperconvex subsets B; such that
¢s+u € E(B;) for all s, where ¢; is a local Kéhler potential defined in a neighborhood
of the closure of By, i.e., w = dd°¢s on B; = {¢s < 0}. Now we prove the following.
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Theorem 2.3 If uis a Cegrell function in X, then u € F(X, w).

Proof Take a new finite open covering {B/}}" of X such that B, € B, for all s. By
[8] there exists a decreasing sequence v} of bounded plurisubharmonic functions in

B, vanishing on 0B;, such that uj \\ ¢s + uon B! and sup; fB (ddcuj»)” < 0. Since
Cap,, is comparable to the relative Monge—Ampere capacity of Bedford and Taylor,
(see [2,14], by [16, Lemma 6] we get that

— max(u, — ) Wl ANw < (—(bs — max(u, —j)) W'l )y ANw < Cap,,

max(u,— j) = max(u,—j

uniformly for all j on each B/ and hence on X. Therefore, u € F(X,w). ]

Recall that a sequence u; of functions in X is said to be convergent to a function u
in Cap,, on X if for any > 0 we have

lim Cap, ({z € X; |uj(z) — u(z)| > 6}) =0.
j—oo

For a uniformly bounded sequence in PSH(X, w), the convergence in capacity implies
weak convergence of the complex Monge—Ampere measures [15]. Now we prove that
the set F(X, w) is a convex cone. First, we need a lemma.

Lemma 2.4 Letu, v € FX,w). Then

/ v—wu" T Aw §/ v—wu" ! Aw.
uv u<v

If, furthermore, u and v are bounded, then for all integers 0 < I < n — 1 we have
/ (V—u)wi/\wz_l_l/\wg/ (v—u)wz_l/\w.
u<v u<y

Proof We only prove the first inequality since the proof of the second one is similar.
Assume first that 4 and v are bounded in X. By [6,9] there exist a constant A > 1 and
two sequences u;, vy € PSH(X, Aw) N C*°(X) such that u; \, uand v; \ vin X.
Given € > 0, assume first that {u; < v} # X. Then max(vy, u; + ) = u; + € near
the boundary of the set {u; < v(}. Take a smooth subset E. such that

{uj+e <w} €E € {uj <wnl,

and write T = Y72 wh A w27 A w. Using Stokes theorem we get

/ (max(vk, ujte)—uj— 5) ((Aw+ddcu]-) — (Aw +dd" max(vg, u; +5))) AT
uj<vg

:/ d(max(vi,uj +¢) — uj) Ad°(max(v,uj+e) —uj) AT >0,
E:
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which holds even when {u; < v} = X. Hence we obtain
/ (max(vg, uj +€) — uj)(Aw +dduj) N T
u;j<vg
> / (max(vi, uj +¢€) — uj — €)(Aw + dd* max(v, uj +€)) AT
uj<vg
2/ (vk — u;) (Aw + dd* max(vg, uj+a))/\T—5A/w”.
uj<vg X

It turns out from the monotone convergence theorem [2] that
(vk — uj) (Aw + dd max(vg, uj +€)) AT — (v — uj) (Aw +ddvi)) N T

weakly in the open set {u; < v} as e N\, 0. Letting ¢ \, 0 and applying Lebesgue
monotone convergence theorem, we obtain the inequality

/ (v — l/lj) (Aw+ddvi) NT < / (vk—uj) (Aw-i—ddcuj)/\ T.
uj<vg

uj<vg

Therefore, we have [ _ (v —u;) (Aw+dd'vi) AT < fu<vk(vk —u) (Aw+dduj) NT.
7

On the other hand, we have that u;, vy are uniformly bounded, u; — u in Cap,, and

vx — vin Cap,, on X. So for any 6 > 0 the inequality

/ (v—u) (Aw+ddv) NT < (vk —u) (Aw +dduj) NT+ 0
u<v

uv
holds for all j, k large enough. Then by the quasicontinuity of quasi-psh functions,

we can assume without loss of generality that {u < v} is open and {u < v} is closed.
It turns out from the proof of [15, Theorem 1] that

(v—uj) Aw+ddvi) NT — (v —u;) (Aw+ddu) N T

ask — ooand (v—u) (Aw+ddu;) ) ANT — (v—u) (Aw+ddv) AT as j — oo weakly
in X. Letting k — oo and then j — oo, we obtain fKV(V —u)(Aw+ddv) NT <
fu<v(v —u) (Aw + dd‘u) A T + 4. Applying t v instead of v for A > ¢ > 1 in the last
inequality and then letting ¢ \, 1, 4 \, 0, we get

/ (v —u) (Aw + ddv) A T§/ (v—u)(Aw +ddu) N T,
u<y u<y

which yields that [ _ (v —w)wj ' Aw < [ _ (v — w)w)™" A w for all bounded
quasi-psh functions u and v.
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Now, for u, v € F(X, w), we have

/ (max(v, —k) — maX(I/l _]))wmax(v —k) Aw
max(u,— j)<max(v,—k)

< / (max(v, —k) — max(u, —j)) wmax(u _pAw.
max(u,— j)<max(v,—k)

Letting k — oo, by the definition of w! ™! A w we get

/ (v — max(u, —))w, ™ Aw
max(u,— j)
< / (v — max(u, — )y A @5
max(u,— j)<v

which by Fatou lemma implies that

/ v—ww! ' Aw
uv

< liminf (v — max(u, —j)) w”
] max(u,— j)<v

N w

max(u -7

< lim inf/ (max(v, —j) — max(u, —j)) wmax(u _pAw
uvy

J7oo

< lim sup/ (max(v, —j) — max(u, —j)) wmax(u _pAw
—s<u<v

j—oo

limsup [ (max(v, — ) — max(ut, — ) il ) A&
{u<—s}n{u<v}

j—00

:/ v—wu" AW
—s<u<vy

+ lim Sup/ (max(v, _]) - max(u ])) wmax (u,—j) Nw
{u<—sn{u<v}

j—oo

foralls > 1. Since (— max(v, —j)) wmax(u pAw < (— max(u, —j)) wmax — N\ K
Cap,, in the set {# < v} uniformly for all j, letting s — oo we get the required
inequality. ]

Theorem 2.5 Letuy € F(X,w). Ifu € PSH '(X,w) satisfies u > uy in X, then

u € F(X,w). Moreover, we have that (—u) w"' A w < Cap,, on X uniformly for all
ue PSH_I(X,w) with u > uy in X.
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Proof Given k > 1and j > 1. Write u; = max(u, —j). Then u;/3 € F(X,w) and
by Lemma 24l we have

/ (—ujwi " Aw < 2/ (—=k/2 —ujpwi ' Aw
Mj<7k ! !

Mj<7k

< 3! 2/ (=k/2 = upwi 't Aw
uj<—k/2 3

SS”/ (uj/3—k/3—u0)w';;l/\w
uo<uj/3—k/3 3

§3”/ (uj/3—k/3—up)wj ' ANw
ug<u;/3—k/3

< 3”/ (—uo)w;’;l Aw.
ug<—k/3

Thus, by (—uo) wj~' A w < Cap,, in X we obtain that (—uj)w,’jj’l A w < Cap, in
X uniformly for all j, which yields that u € F(X,w). Moreover, forallk > 1,t > 1,
and u € PSH™ (X, w) with u > u,, we have

/ (—u)cuZ_1 ANw < limsup/ (—u]')w,’j__1 Aw
max(u,—t)<—k j—oo max(u,—t)<—k !

< limsup/ (—uj)w;’,fl Aw
uj<7k !

j—oo

< 3"/ (—uo)w3;1 Aw.
u0<—k/3

Letting t — oo, we get [, (—u)w) ' Aw < 3" fu0<_k/3(—u0)wﬁo’l A w. Hence,

n—1

together with X > k13w ' AW = X{us—k—1} W (k1)
(—u) wi~' Aw < Cap,, on X uniformly for all u > u. ]

A w, we obtain that

As a direct consequence of Theorem 2.5l we have the following.

Corollary 2.6 Letu € F(X,w). Then max(u,v) € F(X,w) andtu € F(X,w) for
allv e PSH (X, w)and 0 < t < 1.

Now we prove the following.

Theorem 2.7 The set F(X,w) is convex, that is, for any u,v € F(X,w) and
0<t<lwehavethattu+ (1 —t)v e F(X,w).

Proof Given u, v € F(X,w). Then u/2 + v/2 € PSH '(X,w). We only need to
prove that /2 + v/2 € F(X,w). From Corollary[Z.]it turns out that u/2 € F(X, w)
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and v/2 € F(X,w). Then

n—1

o -1 n—1
max(u/2,— j)+max(v/2,— j) Nw = 1/2” (wmax(u,—Zj) + wmax(v,—Zj)) ANw

n—1

-1 I —1-1
< nl/2" Z Winax(u,—2j) N wI’:laX(v,—Zj) Aw.
=0

Write u; = max(u, —2j) and v,; = max(v,—2j). Forall j > k> 1and 0 <[ <
n — 1 we have

/ wiz}, /\wﬁz;l*l/\w =1/k / (— max(u, —k)) w,llzj /\wﬁz?l*l/\w
u<—k u<—k
<1/k /(—uzj)wﬁ,z}. /\wz’;lfl/\w
X
<1/k (—uzj)wizj/\w{,’;l_l/\w
Uy <y
+1/k / (=v2j) "‘)Lz,» A wz’;“l Aw.
u2j>1/2j
From Lemma[2.4lit follows that
1 n—1—1
/ (—wgj) wy,, Awy T Aw
Uy <1y
<2 / (vzj/Z—uzj)wLZj/\w’v:l_l/\w
Uy <V
<2 / (v2j/2 = wj) wyy A A
”2j<V2j/2

< on-t / (sz/Z - uzj) wZ;l Aw < 2m sup/(—uzj)w,’gl Aw
u2j<sz/2 j X
< 00.

Similarly, we have

I —1-1 I+1 -1
/ (—sz)wuzj /\wfzj ANw<2 sqp/(—vzj)wfzj A w < 00.
U2j>v2j ] X

Hence we have proved that there exists a constant A > 0 such that

wl _SAw<AJk
/{ug—k}u{vg—k} max(u/2,— j)+max(v/2,— j)
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forall j > k > 1. Thus, for j > 2k > 1 we have

Wi ,-/\w:/w"—/ W'l S Aw
/u/2+v/2<k max(/24v/2,= ) X wf2v) 25—k max(u/2+v/2,— j)

/W _//2+v/2> k m;xu/27])+max(v/27])/\w

JAw < Ak,

w
max(u 2,—j)+max(v/2,—
/u/2+v/2§—k /2=1) /2.=1)

-1

which implies that wmax(u 242,

j\w < Cap,onX uniformly for all j and hence

/\w—llmw Aw.

j—00

Aw = lim w"_
m:

n—1
wu/2+v/2 j—00 ax u/2+v/2 —7) max(u/2 —j)+max(v/2,—j)

It then follows from the lower semi-continuity of —u/2 — v/2 that
Jcurz= vt nw

Slimsup/ ( — max(u/4,—j/2) — max(v/4,—j/2))w" maxu/Z rmaxr/a—j) N @
X

j—oo
< 00.
By Theorem [2.2l we have obtained that 4/2 + v/2 € F(X,w). [ |

As consequences we have the following.

Corollary 2.8 Letug, u1,...,u,—1 € F(X,w). Then
—Ug Wy, AWy, N+ Awy,_ Aw K< Cap,, onX.
Proof Since
(wo+wm+--+u_)/I=0/Duy_1 +(1=1/D) (uo+uy +---+u_y)/(I—1)

for | = 2,3...,n, using the induction principle and Theorem [2.7] we get that
fi=(uo+u +---+u,_1)/n € FX,w). Hence we have that

—Uo Wy, ANwyy Ao Awy, , Aw < —=n"fwy i Awyym N Awy,jn Aw

<n"(=fHlwj ' Aw < Cap,

on X. [ |

Using Corollary[2Z.8and following the proof of Lemma[2.4] we now get a stronger
version of Lemma[2.4]
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Corollary 2.9 Letu,ve F(X,w)and0 <1< n— 1. Then
/ (V—u)wf,/\wﬁ_l_l/\wg/ (v—u)w,’:_l/\w.
u<y u<v

Corollary 2.10 Letuy € F(X,w). Then
—Uiwy, Nwyy, A-o- Awy, A\w < Cap, onX

uniformly for all u; € PSH™ (X, w) withu; > ugandl = 1,2, ..., n.

Proof Since f := (uy+up+ -+ u,)/n > upand f € F(X,w), by Theorem 25l we
getthat —uy wy, Awy, A+ Awy, Aw < 1" (—f) w;_l Aw < Cap,, on X uniformly
for all such functions u;. [ |

Remark. Corollary2.I0limplies that a function u € PSH™ (X, w) belongs to F(X, w)
ifand only if ( — max(u, —j)) w! )/\w"*l < Cap,, on X uniformly forall j > 1

max(u,— j
and 0 <! < n — 1. The w” concentrating on {u > —oo} were studied by Guedj and
Zeriahi [10].

3 A Convergence Theorem of the Complex Monge-Ampere
Operator

In this section we prove a convergence theorem of the complex Monge—Ampeére op-
erator in F(X, w). We divide its proof into several lemmas.

Given uy, uz, . .., up—1 € F(X,w), by Corollary 2.8 the current w,, A w,, A--- A
wy,_, is well defined. Now for any ¢ € PSH(X,w) N L>(X), we define the wedge
product wy, A wy, A -+ Aw,,_, A w,g in a natural way:

Wiy AWy, N+ - - AWy, Awg 7= W AWy, AWy A- - Awy, +Ad(gwiy, Awy, A+ - Awy, ).

Then we have the following.

Lemma 3.1 Letug, uy,...,u,— € F(X,w)and f, g € PSH(X,w) N L>®(X). Then
the following equalities hold.

1) [y ddf Nwy Awiy A+ Awy,_, =
(i) [y (—g) ddug Awy, Awi, A+~ Awy,_, =

(=) ddgNhwy, Awy, A+ Awy, .
Jx (=) dd°g Awy, Awy, A+ Aw,, .
Proof It is no restriction to assume that f, ¢ < —2in X. Write T = wy, A wy, A
-+ Awy,_,. Take two sequences f;, gr € PSH™Y(X, Aw) N C*°(X) for some A > 1
such that f; \, f and g ™\, g in X, (see [6,9]. It follows from Dini’s theorem
and quasicontinuity of quasi-psh functions that f; — f in Cap, on X. So, using
TAw < Cap,,weget f;T — fTandhencedd'f; NT — dd°f A T weakly in X.
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Similarly, dd‘gx AN T — dd°g A T weakly in X. Thus we have
/(—]‘j)dd‘g/\ T = lim /(—fj) dd'gge N T
X k—oo Jx
= lim /(—gk)dd”fj AT
k—oo Jx
= klim /(—gk) (Aw+dd f) NT — klim /(—gk) (AW)ANT
— 00 X — 00 X

_ / (—g)ddfi A T,
X

where the last equality follows from the Lebesgue monotone convergence theorem.
Then, by lower semi-continuity of —g, we get

/(—f) dd‘g AT = lim /(—f,-) dd'g N T
X J7oe Jx
= lim | (-g)ddfi AT
J—00 X
= lim /(—g)(Aw+dd”fj) AT — /(—g)(Aw)/\ T

Q) ddfAT.
z/x( g)dd f A

By symmetry we have abtained equality (i). Let #; = max(uo, —I). By (i) we have
Jx(—=g)dduy AT = [ (—u;)dd'g A T. It follows from Corollary 2.8 that uo T is a
well-defined current and u; T — 1o T as currents in X. Hence we get

/(—g) ddug N T < llim /(—g) ddyuy NT = llim (—up)dd'gNT
X —0JX o JX
= /(—uo)dd”g/\ T.
X
On the other hand,
/(—uo) dd'ge NT = zhm /(—ul) dd‘ge N T = llim /(—gk) dd‘uyyN'T
X o JX —0JX
= /(—gk)dd”uo AT.
X
Letting k — oo we get [, (—uo) dd'g NT < [, (—g) dd°uo A T. Hence we have proved

equality (ii). [ ]

Lemma 3.2 Letu € F(X,w) and g € PSH(X,w) N L>(X). Then the following
statements hold.
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(1) wr';;(l(u _j Nwg < Cap,, on X uniformly for all j;

(ii) foreach f € PSH(X, w)NL>®(X), we have that f w"
weakly in X as j — oo;

(iii) (—u)w!~ ' Aw, < Cap,, on X.

1
max(u —])/\wg - fwn /\wg

Proof It is no restriction to assume that ¢ < —2in X. Given j > k > 1. By
Lemma[3.I]we have

u<—k
= l/k/ — max(u, —k)) w!! maxuﬂ y Nw

+1/k/( g)wmaxu_] A dd° max(u, —k)

IN

1/k /(— max(u, —j)) wr’;;(uﬁj) Aw
b

+1/k/( g)wmaxu_] /\wmax(ufk)

IN

1/k suP/(_maX(”v_j)) et — ) @
joJX 7

+ 1/k sup |g| /w”
X X

Given a Borel set E C X. By [3, Proposition 4.2] for bounded quasi-psh functions, we
get that fE wglle(u,—j)/\wg < fugk wglaxl(u -7 /\wg+f]5 max u,— /\wg for all ] 2 k 21,
which implies (1).

To prove (ii), we prove first that wmax(u N ANwg — w1 A w, weakly in X as
j — o0. Given a smooth function 1), multlplying a small positive constant if neces-
sary, we can assume ¢ € PSH(X, w) N C*°(X). Then we have

/wwfr;xl(u’ij)/\wg—/wwzfl/\wg

1 —1 —1
/w maxu—] /\w wn /\(U) ‘/Xg(wglax(u,—j) _wz ) /\ddcw’
where by Proposition2.T]the first term on the right-hand side tends to zero as j — 0.

Take a sequence g € PSH™ (X, Aw) N C>(X) for some A > 1 such that g, \ g in
X, (see [6,9]). Write the second term as

/ng (w;;xl(uﬁj)—wzil) 74\ ddc1/)+/x(g—gk) (W;;Xl(u’,j)_wzil) A ddcl/) = Bk’]'-i-ck’j.

By the smoothness of i) we have that (wmax(u j)+w3’1)/\w¢ < Cap,, on X uniformly
for all j. Since gy — g in Cap,, on X, we get that C; ; — 0 as k — oo uniformly for
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all j. Then for each fixed k, By,; — 0 as j — oo. Hence we have proved that

n—1

wmax(u,—j)

ANwe — wi™' Awg

weakly in X as j — oco. Together with (i), we get w!™' A w, < Cap,, on X, (see
the proof of Proposition21). Now for f € PSH(X, w) N L>°(X), we take a sequence
fr € PSH(X, Aw) N C*°(X) for some A > 1 such that f; \, f in X. Write

f Whna )/\Wg_fwzil/\wg:(f—fk)(w"_l )/\wg—wzfl/\wg)

max(is,— j max(us,— j

-1 —
+ fk (wglax(u,—j) A wg - (AJZ ! A wg) ’

where for each fixed k the second term on the right-hand side tends to zero weakly
as j — o0. Using (i) and w! ™' A wy < Cap,,, we get that the first term converges
weakly to zero uniformly for all j as k — oco. Thus we have obtained (ii).

Finally, by the lower semi-continuity of —u, for any k > 1 we obtain

/ (= max(u, ~R))w!™ Awg
X

< lim sup /(— max(u, —k)) w" 7} A wg
X

: max(u,— )
j—o0

< sup/(— max(u,—j))wr"n;l(u_fj) Aw +sup|g| /w" < 00,
i JX ' X X

which yields u € L'(X, w! ™! Aw,). Thus we have that (—u) w]!™ 'Awy < w)i™ ' Awg K
Cap,, on X. ]

Lemma 3.3 Letug, uy,...,u,—1 € F(X,w)andg € PSH(X,w) N L*(X). Suppose
that a sequence u,; € PSH™ (X, w) decreases to u; in X. Then the following statements
hold:

D) (—up)wy, Awy, A= Awy, | ANwg K Cap,, on X;

(ii) foreach f € PSH(X,w) N L>®(X), we have that

fwum Nwig Ao Awy,_, Nwg — fwy, Awyy Ao Nwy,_, Awy

weakly in X as j — oo;
(i) wyy; AWy Awiy A=+ Awy, , A wg K Cap,, on X uniformly for all j.

Proof Since (g + uy + -+ + uy—1)/n € F(X,w), assertion (i) follows directly from
(iii) of Lemma Now we prove (ii). Given a smooth function ) in X, we as-
sume without loss of generality that 0 < f, ¢ € PSH(X,w) N L*(X). Observe that
eh* € PSH(X, w) if h is a bounded positive quasi-psh function in X and the constant
¢ satisfies maxx h < 1/(2¢). Hence, applying the equality wa = (7/’7”)2 — (5= (%)2,
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we can assume that i := 1 f or —h is a bounded quasi-psh function in X. By
Lemmad3.0] for each k > 1 we get

‘/z/wauU/\wm/\---/\wunfl/\wg—/z/}fwul/\wuz/\---/\wu"fl/\wg
X X
:’/}mj—ugdthwmA-quWﬂAug

X
g/|u1j—u1|(wh+w)/\wu2/\---/\wun71/\wg

X
S/ [ur] (Wi + W) Awyy A== Awy,_, Awg

wm<—k

+/ | max(uyj, —k) — max(uy, —k)| (wp +w) Awy, A= Awy,_, AWy,

X

where by (i) the first term on the right-hand side tends to zero as k — oc. For each
fixed k, since max(u; ;, —k) — max(u;, —k) in Cap,, on X as j — oo, we get that the
second term converges to zero as j — co. Hence we have obtained (ii).

By (i) and [3, Theorem 3.2], assertion (iii) follows from the property that for any
hyperconvex subset 2 € X with dd‘¢ = w and ¢ = 0 on 992 and any h € PSH({2) N
L>°(2), we have that hw,, Awy, A+ - Awy, _, Awg — hwy, Awy, A+ - Awy,  Awg weakly
in Q as j — oo. To prove this property, for each ) € C5°(£2), we take a constant
€ > O such thate (h — supy h — 1) > ¢ onsupp ), and € (h — supy h — 1) < ¢ near
OS2 Set

= max(s(h—supﬂh—l),qﬁ)—d) in 2,
o inX\ Q

Then f € PSH(X,w) NL>®(X) and ¢ h = e "¢+ e~ ") f + 9 supg, h + 9. Hence,
by the smoothness of ¢ and (ii), we get that

hwu; Nwiy, N+ ANwy,_, ANwg — hwy, Awyy A+ Awy,, Awg

weakly in {2 as j — oo. Therefore, we have proved (iii). ]

Lemma 3.4 Letug, uy, uz,...,u,—1 € F(X,w)andg € PSH(X,w)NL>®(X). Then
for almost all constants 1 < k < o0,

/ (—k—ul)ddcuo/\wuz/\-u/\wunﬂ/\wg
m<—k
< / (—up) dduy Nwy, N+ ANwy,_, A wg.
u<—k

Proof Write T = w,, A- - -Awy,_, Awg. Assume first that 0 > ug, u; € PSH(X, Aw)N
C>®(X)with A > 1. Given e > 0 and k > 1. Since max(u; + &, —k) = u; + € near
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0{u; < —k} if it is not empty, we have that

/ (=k—w)ddupNT
uy<—k

= lim (max(u; +¢e,—k) —u; —e)ddug N T
N0 m<—k

= lim uydd (max(u; +e,—k) —u; —e) AT
T 0 ( (1 ) 1 )

= / (—up) ddu; A T + lim up dd° max(u; + &, —k) A T.
u <—k

N0 m<—k
Since max(u; + €, —k) T — max(u;, —k) T weakly in X as € \, 0, we have
(Aw + dd° max(u; +e,—k)) AT — (Aw + dd° max(uy, —k)) AT

weakly as ¢ \, 0. From the upper semi-continuity of #y < 0 in the open set
{uy < —k}, it turns out that

lim ug dd° max(u; +e,—k) AT
N0 wm<—k
= lim Uo [(Aw + dd° max(u; +¢, —k)) — Aw] AT
N0 u <—k

< / uy dd° max(u;, —k) AT = 0.
u<—k

Hence we get [, __ (=k —w)dduy NT < [ __ (—uo)dduy AT forallk > 1in
the case of 0 > ug, u; € PSH(X, Aw) N C*°(X).

Secondly, assume that ug, u; € F(X,w) N L>(X). By [6,9] there exist negative
functions uy,, u;; € PSH(X, Aw) N C*°(X) with some A > 1 such that ugy, ™\, ©y and
uis \, 1 in X. Since fu1<—k(w”l +w) A T is a decreasing function of k and hence
continuous almost everywhere with respect to the Lebesgue measure, we have that
ful:_k(wul + w) A T = 0 holds for almost all k in [1, 00). Given such a constant k,
by the Fatou lemma and the lower semi-continuity of —u;, we get that

/ (—k—ul)dd”uo/\T
u<—k

:/ (—k—ul)(Aw-i—ddcuo)/\T—A/ (=k—u)wAT
u<—k

wm<—k

< liminf (—k — uy,) (Aw+dd“uo)/\T—A/ (=k—u)wAT

s—00 u<—k u <—k
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< liminflim sup/ (—k — uys) (Aw + ddug) N T
u<—k

500 4o

— liminfA / (k—us)wAT
m<—k

5— 00

= liminflim sup/ (=k — uy,) ddug; N'T
us<—k

SO0 oo

— Aliminf (=k—w)wAT.

o0 s> —k>u;

Given § > 0, we have that

/ (—k—u@w/\T’Sé/w/\T%—/ (—ul)w/\T—uS/w/\T
uys > —k>uy X Ups—u; >0 X

ass — 00, since u1; — u; in Cap,, and (—u;) w A T < Cap,, on X. Hence we have

/ (—k—wup)ddug N'T
u<—k

< liminflim sup/ (—k — uys) ddugs N'T
u s <—k

§— 00 t—00

< liminflim sup/ (—ugy) dduis AT
u15<—k

§— 00 t—00

= lim inf (—ug) dduis AT
$700 Ju<—k

< liminf (—up) (Aw + ddu;s) N T — A liminf (—ug)) wAT
SO0 Ju<—k S0 Juy<—k

= lim inf/ (—up) Aw+dd ) NT — A / (—ug) w A T.
T Ju<—k w<—k

By Lemma 33l and quasicontinuity of quasi-psh functions, it is no restriction to as-
sume that {u; < —k} is a closed set and hence the last limit inferior does not exceed
fu1<_k(—u0) (Aw + ddu;) A T. So we have obtained

/ (—k — 1/[1) ddCI/lo AT S / (—1/[0) ddclzll AT
u <—k

u<—k

for all ugy, u; € F(X,w) N L>®°(X) and almost all kin [1, c0).
Finally, let ug, 41 € F(X,w). For almost all constants k in [1, c0) we have that
ful:_k(w”1 +w) AT =0and

/ (—=k — max(u;, —s)) dd° max(ug, —t) A T
max(u;,—s)<—k

< / (— max(ug, —t)) dd° max(u;, —s) AT
max(u;,—s)<—k
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for all integers s, t > 1. Letting s — oo and applying the same proof as above, we
have fu1<7k(_k_ u1) dd° max(ug, —t) AT < fu1<—k(_ max(uo, —t)) dd“uy AT, and
then letting t — oo we get the required inequality. ]

Lemma 3.5 Letuy € F(X,w) and g € PSH(X,w) N L*(X). Then
/ (—u)wz_l/\wg—>0, as k — oo,
u<—k
uniformly for all u € PSH™ (X, w) with u > ug in X.
Proof Given u € PSH™ (X, w) with u > u,. Take a sequence 1 < k; < k < --- <

k; — oo such that Lemma [3.4] holds for the functions u and uy when k = kj/ZT,
wherei=1,...,n—1and j =1,2,.... Hence we have

/ (—u)wﬂ‘1 Nwg < / (—uo)wf,_l A wg
u<—k; ug<—k;

]

<2 / (—kj/2 —up) wi ™" Aw,
ng<7kj
SZ/ (—kj/Z—uo)w/\wZ_z/\wg
ug<—k]‘/2
+2/ (—kj/2 — up) ddu A w7 A wy
u0<7kj/2
SZ/ (—kj/Z—uo)w/\wZ_z/\wg
ug<—k]‘/2
+2 / (—u) dduy /\(.«1372 A wg
u0<7kj/2

<2 / (—uo)w/\wz_z/\wg+2 / (—uo)wuo/\wz_z/\wg
ug<—k]‘/2 ug<—k}’/2

2 / (—uo)(w+qu)/\w,’4’72/\wg
ug<7kj/2
<22 / (—uo)(w+wu0)2/\w3_3/\wg <...
ug<—k]‘/22
S (—t0) (@ + )" A
u0<7kj/2"*1
which, by Lemma[B3land the equality (w+w,,)" ! = 27:—01 ("7 w Awi=1, tends

to zero as j — oo. [ ]

We are now in a position to prove the convergence theorem.
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Theorem 3.6 (Convergence Theorem) Let0 < p < oo. Suppose that 0 > g €
PSH(X,w) NL>®(X) and uy € F(X,w). Ifu;, u € PSH™Y(X, w) are such that uj —u
in Cap,, on X and u; > uy, then (—g)? Wy — (—g)? Wi weakly in X.

Proof Given k > 1, write

(_g)P WZ,» - (_g)p WZ = (_g)p(wz,» _w;ax(uj,—k)) +(_g)P (wl:gax(u]‘,—k) _w;ax(u,—k))

+ (_g)p(wglax(u,—k) - w;l) = Ak,j + Bkvj + Ck'

For each fixed k, by [17, Theorem 1] we have that By ; — 0 weakly in X as j — oo.
Given a smooth function ¢ in X, and following the proof of [17, Theorem 1], we can
assume that ¢ (—g)? is the sum of finite terms of form =+ f, where f are bounded
quasi-psh functions in X. For such a function f, by Lemma[B.Ilwe get

‘/Xf(w et i) ‘—‘/(u] max(u;, k))ddEfAZw Awi-] k)’

n—1

/ (u]+k)dd‘f/\2w Aot
uj<— k 7

g/ (—uj) (wp+w) Aw!!
uj< k !

which by Lemma [3.3] tends to zero uniformly for all j as k — oc. Hence, Ay ; — 0
uniformly for all j as k — oo. Similarly, we have that C; — 0 weakly as k — oo.
Therefore, we have obtained that (—g)? wj — (—g)f wj weakly. ]

Applying Dini’s theorem and quasicontinuity of quasi-psh functions, we get the
following consequence.

Corollary 3.7 Let0 < p < ocand0 > g € PSH(X,w)NL>®(X). Ifuj, u € F(X,w)
are such that u; ™\, uoru; / win X, then (—g)? w;’, — (—g)? wl! weakly in X.

Corollary 3.8 Letu, v € F(X,w). Then X (=1} Whay(uy) = X{usv} Wii-

Proof This proof is similar to the proof of [11, Theorem 4.1]. Given a constant
k > 0, Write u; = max(u, —j). By [3, Proposition 4.2] we have that

max(uj + k, 0) Wiayy;,—p = max(uj +k, 0) wy.

for all j. Using max(u; + k,0) > max(u + k,0) > 0, we get

max(u + k,0) w” = max(u + k, 0) wZ},.

max(uj,—k) —

Letting j — oo and applying Theorem[3.6 we get

max(u + k, 0) Wiy — k) = max(u +k, 0) wy,.
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Hence we have obtained that X{u> K} Wi
F(X,w) and k > 0. Therefore, w Winax(uy) = wmax(u -
set {u > —k > v} with a rational number k > 0. But wmax(u vk) = Wrnax(u,—k O the
open set {—k > v} and hence X{u> t>v} Whag(uy) = X{u>—k>v} Wii> Which implies
the required equality. ]

= X{u>,k} w! holds for any u €
p and wy = wi }) on each

maxuf

max(u
="

Corollary 3.9 Letu, v € F(X,w). Then

wr’;ax(u,v) > X{u>v and u#—o0} wz + X{u<v} Wf'

Proof Given e > 0, by Corollary[B.8 we have

W;ax(u,v_g) > X{u>v—e} WZ + X{u<v—e} Wy > X{u>v and u#—o0} WZ + X{u<v—c} Wf'

Letting € \, 0 and using Theorem[3.6] we obtain the required inequality. ]

Corollary 3.10 Letu, v € F(X,w). Then

n n n
/ w, < / wy, +/ Wy,
uv u<v U=y=—00

Proof By Corollary[3.8we have

n __ n —
/ Wy _/ wmax(u V) _/ / wmaxuv
u< u>v
W = n
/ / max(uv /w / Wy _/ Wy
X u>v u<v

Using § v instead of v and letting 6 " 1, we get the required inequality. ]
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