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The General Definition of the Complex
Monge–Ampère Operator on Compact
Kähler Manifolds

Yang Xing

Abstract. We introduce a wide subclass F(X, ω) of quasi-plurisubharmonic functions in a compact

Kähler manifold, on which the complex Monge-Ampère operator is well defined and the convergence

theorem is valid. We also prove that F(X, ω) is a convex cone and includes all quasi-plurisubharmonic

functions that are in the Cegrell class.

1 Introduction

Let X be a compact connected Kähler manifold of dimension n, equipped with the

fundamental form ω given in local coordinates by ω =
1
2

∑

α,β gαβ̄dzα ∧ dz̄β , where
(gαβ̄) is a positive definite Hermitian matrix and dω = 0. The smooth volume

form associated with this Kähler metric is the n-th wedge product ωn. Denote by

PSH(X, ω) the set of upper semi-continuous functions u : X → R ∪{−∞} such that
u is integrable in X with respect to the volume form ωn and ωu := ω + ddcu ≥ 0

on X, where d = ∂ + ∂̄ and dc
= i (∂̄ − ∂). These functions are called quasi-

plurisubharmonic functions (quasi-psh for short) and play an important role in the

study of positive closed currents in X (see [9].) A quasi-psh function is locally the

difference of a plurisubharmonic function and a smooth function. Therefore, many
properties of plurisubharmonic functions hold also for quasi-psh functions. Follow-

ing Bedford and Taylor [2], the complex Monge–Ampère operator (ω+ddc)n is locally

and hence globally well defined for all bounded quasi-psh functions in X. Some im-
portant results of the complex Monge–Ampère operator for bounded quasi-psh func-

tions have been obtained by Kolodziej [13, 14] and Blocki [4]. It is also known that
the complex Monge–Ampère operator does not work well for all unbounded quasi-

psh functions. Otherwise, we would lose some of the essential properties that the

complex Monge-Ampère operator should have (see [1,12]). In a bounded domain of
C

n one usually needs certain assumptions on values of functions near the boundary

of the domain to define complex Monge–Ampère measures of unbounded plurisub-

harmonic functions, see the Cegrell class [7, 8] where Cegrell introduced the largest
subclass E(Ω) of plurisubharmonic functions in a bounded hyperconvex domain Ω

for which the complex Monge–Ampère operator is well defined and the monotone
convergence theorem is valid. However, such a technique does not seem to work for

quasi-psh functions in a compact Kähler manifold because we lose boundary. On the

other hand, Bedford and Taylor already observed [3] that for each quasi-psh function
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u the complex Monge–Ampère measure ωn
u := (ω+ ddcu)n is well defined on its non-

polar subset {u > −∞}. We obtained several convergence theorems for complex

Monge–Ampère measures without mass on pluripolar sets [17]. In this paper we in-
troduce a quite large subclass F(X, ω) of quasi-psh functions on which images of the

complex Monge–Ampère operator are well-defined positive measures and may have

positive masses on pluripolar sets. We prove that the set F(X, ω) is a convex cone and
includes all quasi-psh functions which are in the Cegrell class. Our main result is the

following convergence theorem of the complex Monge–Ampère operator in F(X, ω).

Theorem 3.6 (Convergence Theorem) Let 0 ≤ p <∞. Suppose that u0 ∈ F(X, ω)

and that g ∈ PSH(X, ω) ∩ L∞(X) is nonpositive. If u j, u ∈ F(X, ω) are such that

u j → u in Capω on X and u j ≥ u0, then (−g)p ωn
u j
→ (−g)p ωn

u weakly in X.

As a direct consequence we have the following

Corollary 3.7 Let 0 ≤ p <∞ and 0 ≥ g ∈ PSH(X, ω)∩L∞(X). If u j, u ∈ F(X, ω)

are such that u j ց u or u j ր u in X, then (−g)p ωn
u j
→ (−g)p ωn

u weakly in X.

For bounded quasi-psh functions, Corollary 3.7 is a slightly stronger version of
the well-known monotone convergence theorem due to Bedford and Taylor [2].

2 The Class F(X, ω)

In this section we first introduce the subclass F(X, ω) of quasi-psh functions, on
which images of the complex Monge–Ampère operator are finite positive measures

in X. We obtain some characterizations of functions in F(X, ω). Finally, we prove

that F(X, ω) is a star-shaped and convex set.
Recall that the Monge–Ampère capacity Capω associated with the Kähler form ω

is defined by

Capω(E) = sup
{

∫

E

ωn
u ; u ∈ PSH(X, ω) and − 1 ≤ u ≤ 0

}

for any Borel set E in X. The capacity Capω was introduced by Kolodziej [13] and

is comparable to the relative Monge–Ampère capacity of Bedford and Taylor [2],

and hence vanishes exactly on pluripolar sets of X. Recall also that a sequence µ j

of positive Borel measures is said to be uniformly absolutely continuous with re-

spect to Capω on X, or we write that µ j ≪ Capω on X uniformly for all j, if for

any ε > 0 there exists δ > 0 such that µ j(E) < ε for all j and Borel sets E ⊂ X

with Capω(E) < δ. Denote by PSH−1(X, ω) the subset of functions u in PSH(X, ω)

with maxX u ≤ −1. Given a function u ∈ PSH−1(X, ω), we define the measure
(−u)ωn−1

u ∧ ω in X which is zero in {u = −∞} and

∫

E

(−u)ωn−1
u ∧ ω = lim

j→∞

∫

E∩{u>− j}

(−max(u,− j))ωn−1
max(u,− j) ∧ ω

for all k ≥ 1 and E ⊂ {u > −k}. In a completely similar way, we define the measure

ωn−1
u ∧ ω := χ{u>−∞} ω

n−1
u ∧ ω, where χ{u>−∞} is the characteristic function of
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the set {u > −∞}. It is worth pointing out that in general neither the measure
(−u)ωn−1

u ∧ ω nor ωn−1
u ∧ ω is locally finite in X. However, we have the following

result.

Proposition 2.1 Let u ∈ PSH−1(X, ω). Suppose that

−max(u,− j)ωn−1
max(u,− j) ∧ ω ≪ Capω

on X uniformly for all j = 1, 2, . . . . Then the following statements hold:

(i) (−u)ωn−1
u ∧ ω and ωn−1

u ∧ ω are finite positive measures in X;

(ii) max(u,− j)ωn−1
max(u,− j) → uωn−1

u and ωn−1
max(u,− j) → ωn−1

u as currents as j → ∞;

(iii) (−u)ωn−1
u ∧ ω ≪ Capω on X.

Proof Since

∫

X

(−u)ωn−1
u ∧ ω = lim

k→∞
lim

j→∞

∫

u>−k

(

−max(u,− j)
)

ωn−1
max(u,− j) ∧ ω

≤ sup
j

∫

X

(

−max(u,− j)
)

ωn−1
max(u,− j) ∧ ω <∞,

we obtain that (−u)ωn−1
u ∧ ω is a finite positive measure and so is ωn−1

u ∧ ω. Write

max(u,− j)ωn−1
max(u,− j) = χ{u≤− j} max(u,− j)ωn−1

max(u,− j)

+ χ{u>− j} max(u,− j)ωn−1
max(u,− j),

where the first term on the right-hand side tends to zero and the second one tends to

uωn−1
u as j → ∞. Similarly, we get that ωn−1

max(u,− j) → ωn−1
u as j → ∞. Moreover,

for any E ⊂ X with Capω(E) 6= 0 we can take an open set G in X such that E ⊂ G

and Capω(G) ≤ 2 Capω(E). Then

∫

E

(−u)ωn−1
u ∧ω ≤

∫

G

(−u)ωn−1
u ∧ω ≤ lim sup

j→∞

∫

G

(

−max(u,− j)
)

ωn−1
max(u,− j) ∧ ω,

which implies that (−u)ωn−1
u ∧ ω ≪ Capω on X.

Let F(X, ω) be the subset of functions in PSH−1(X, ω) which satisfy the hypothe-

ses of Proposition 2.1. The complex Monge–Ampère measure ωn
u of a function u in

F(X, ω) is defined by the sum

ωn
u := ω ∧ ωn−1

u + ddc(uωn−1
u ),

where the currents uωn−1
u and ωn−1

u are the limits of two sequences

max(u,− j)ωn−1
max(u,− j) and ωn−1

max(u,− j),
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respectively. Locally using the inequality
(

ω + ddc(φ + u)
)n

≥ nωn−1
u ∧ ω, where

ω = ddcφ, we can easily see that (−u)ωn−1
u ∧ ω ≪ Capω in X for any

u ∈ PSH−1(X, ω) ∩ L∞(X),

where L∞(X) denotes the set of bounded functions in X. Hence for bounded quasi-

psh functions, our definition of the complex Monge–Ampère operator coincides with

Bedford’s and Taylor’s definition [2]. Denote by L1(X, µ) the set of integrable func-
tions in X with respect to the positive measure µ. Now we give a characterization of

functions in F(X, ω).

Theorem 2.2 Let u ∈ PSH−1(X, ω). Then u ∈ F(X, ω) if and only if

u ∈ L1(X, ωn−1
u ∧ ω),

where ωn−1
u := lim j→∞ ωn−1

max(u,− j) as currents and ωn−1
max(u,− j) ∧ ω ≪ Capω on X

uniformly for j = 1, 2, . . . .

Proof We prove first the “only if” part. Assume that u ∈ F(X, ω). By Proposition 2.1

we have thatωn−1
max(u,− j)∧ω ≤ (−max(u,− j))ωn−1

max(u,− j)∧ω ≪ Capω on X uniformly

for all j, and ωn−1
max(u,− j) → ωn−1

u . Hence, by the lower semi-continuity of −u, we get
that

∫

X

(−max(u,−t))ωn−1
u ∧ ω ≤ lim sup

j→∞

∫

X

(−max(u,− j))ωn−1
max(u,− j) ∧ ω <∞

for all t ≥ 1. Thus, we have u ∈ L1(X, ωn−1
u ∧ ω). Now we prove the “if” part.

Observe that for any k > 1, by [3, Proposition 4.2] we get

χ{u>−k} ω
n−1
u ∧ ω = lim

j→∞
χ{u>−k}ω

n−1
max(u,− j) ∧ ω

= lim
j→∞

χ{max(u,−k)>−k}ω
n−1
max(u,− j) ∧ ω

= lim
j→∞

χ{max(u,−k)>−k}ω
n−1
max(u,− j,−k) ∧ ω

= χ{u>−k} ω
n−1
max(u,−k) ∧ ω.

Hence, for any Borel set E ⊂ X and k > 1, we have that

∫

E

ωn−1
u ∧ ω ≤

∫

u<−k+1

ωn−1
u ∧ ω +

∫

E∩{u>−k}

ωn−1
max(u,−k) ∧ ω

≤ lim sup
j→∞

∫

u<−k+1

ωn−1
max(u,− j) ∧ ω +

∫

E

ωn−1
max(u,−k) ∧ ω,

where we have used that the set {u < −k + 1} is open. Since ωn−1
max(u,− j) ∧ ω ≪

Capω on X uniformly for j, we have ωn−1
u ∧ ω ≪ Capω on X. It then follows from
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u ∈ L1(X, ωn−1
u ∧ ω) that (−u)ωn−1

u ∧ ω ≪ Capω on X. For any j ≥ k1 > 1 we get

∫

u≤−k1

(−max(u,− j))ωn−1
max(u,− j) ∧ ω

≤ j

∫

u≤− j

ωn−1
max(u,− j) ∧ ω +

∫

− j<u≤−k1

(−u)ωn−1
u ∧ ω

= j

∫

X

ωn − j

∫

u>− j

ωn−1
max(u,− j) ∧ ω +

∫

− j<u≤−k1

(−u)ωn−1
u ∧ ω

≤ j

∫

X

ωn − j

∫

u>− j

ωn−1
u ∧ ω

+

∫

u≤−k1

(−u)ωn−1
u ∧ ω ≤ 2

∫

u≤−k1

(−u)ωn−1
u ∧ ω.

Hence, for any Borel set E1 ⊂ X and j ≥ k1 > 1, we have

∫

E1

(−max(u,− j))ωn−1
max(u,− j) ∧ ω

≤ 2

∫

u≤−k1

(−u)ωn−1
u ∧ ω + k1

∫

E1∩{u>−k1}

ωn−1
max(u,− j) ∧ ω

:= Ak1
+ Bk1, j .

Given ε > 0, take kε > 1 such that Akε ≤ ε. Since ωn−1
max(u,− j) ∧ ω ≪ Capω on X

uniformly for all j, there exists δ > 0 such that kε
∫

E1
ωn−1

max(u,− j) ∧ω ≤ ε for all j and

E1 ⊂ X with Capω(E1) ≤ δ. Therefore, we have proved that

∫

E1

(−max(u,− j))ωn−1
max(u,− j) ∧ ω ≤ 2 ε

holds for all j ≥ kε (hence for all j) and E1 ⊂ X with Capω(E1) ≤ δ. So u ∈
F(X, ω).

Suppose that Ω is a hyperconvex subset in C
n. Cegrell [8] introduced the largest

subclass E(Ω) of plurisubharmonic functions in Ω, for which the complex Monge–
Ampère operator is well defined and the monotone convergence theorem is valid.

Our next theorem says that F(X, ω) includes all quasi-psh functions that are in the
Cegrell class. Recall that a negative plurisubharmonic function u in Ω is said to be-

long to E(Ω) if for each z0 ∈ Ω there exists a neighborhood Uz0
of z0 and a decreasing

sequence u j of bounded plurisubharmonic functions in Ω, vanishing on the bound-
ary ∂Ω, such that u j ց u on Uz0

and sup j

∫

Ω
(ddcu j)

n < ∞. Blocki [5] proved that

it is a local property to belong to E(Ω), that is, if Ω =
⋃

j Ω j , then u ∈ E(Ω) if and

only if u|Ω j
∈ E(Ω j) for each j. We call u in PSH−1(X, ω) for a Cegrell function in

X if there exists a finite covering {Bs}
m
1 of X with hyperconvex subsets Bs such that

φs +u ∈ E(Bs) for all s, where φs is a local Kähler potential defined in a neighborhood

of the closure of Bs, i.e., ω = ddcφs on Bs = {φs < 0}. Now we prove the following.
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Theorem 2.3 If u is a Cegrell function in X, then u ∈ F(X, ω).

Proof Take a new finite open covering {B ′
s}

m
1 of X such that B ′

s ⋐ Bs for all s. By
[8] there exists a decreasing sequence us

j of bounded plurisubharmonic functions in

Bs, vanishing on ∂Bs, such that us
j ց φs + u on B ′

s and sup j

∫

Bs
(ddcus

j)
n < ∞. Since

Capω is comparable to the relative Monge–Ampère capacity of Bedford and Taylor,

(see [2, 14], by [16, Lemma 6] we get that

−max(u,− j)ωn−1
max(u,− j) ∧ ω ≤

(

−φs − max(u,− j)
)

ωn−1
max(u,− j) ∧ ω ≪ Capω

uniformly for all j on each B ′
s and hence on X. Therefore, u ∈ F(X, ω).

Recall that a sequence u j of functions in X is said to be convergent to a function u

in Capω on X if for any δ > 0 we have

lim
j→∞

Capω
(

{z ∈ X ; |u j(z) − u(z)| > δ}
)

= 0.

For a uniformly bounded sequence in PSH(X, ω), the convergence in capacity implies

weak convergence of the complex Monge–Ampère measures [15]. Now we prove that
the set F(X, ω) is a convex cone. First, we need a lemma.

Lemma 2.4 Let u, v ∈ F(X, ω). Then

∫

u<v

(v − u)ωn−1
v ∧ ω ≤

∫

u<v

(v − u)ωn−1
u ∧ ω.

If, furthermore, u and v are bounded, then for all integers 0 ≤ l ≤ n − 1 we have

∫

u<v

(v − u)ωl
v ∧ ω

n−1−l
u ∧ ω ≤

∫

u<v

(v − u)ωn−1
u ∧ ω.

Proof We only prove the first inequality since the proof of the second one is similar.
Assume first that u and v are bounded in X. By [6,9] there exist a constant A > 1 and

two sequences u j , vk ∈ PSH(X,Aω) ∩ C∞(X) such that u j ց u and vk ց v in X.

Given ε > 0, assume first that {u j < vk} 6= X. Then max(vk, u j + ε) = u j + ε near
the boundary of the set {u j < vk}. Take a smooth subset Eε such that

{u j + ε < vk} ⋐ Eε ⋐ {u j < vk},

and write T =
∑n−2

l=0 ω
l
u ∧ ω

n−2−l
v ∧ ω. Using Stokes theorem we get

∫

u j<vk

(

max(vk, u j +ε)−u j −ε
) (

(Aω+ ddcu j)− (Aω+ ddc max(vk, u j +ε))
)

∧T

=

∫

Eε

d
(

max(vk, u j + ε) − u j

)

∧ dc
(

max(vk, u j + ε) − u j

)

∧ T ≥ 0,
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which holds even when {u j < vk} = X. Hence we obtain

∫

u j<vk

(max(vk, u j + ε) − u j)(Aω + ddcu j) ∧ T

≥

∫

u j<vk

(max(vk, u j + ε) − u j − ε)(Aω + ddc max(vk, u j + ε)) ∧ T

≥

∫

u j<vk

(vk − u j) (Aω + ddc max(vk, u j + ε)) ∧ T − εA

∫

X

ωn.

It turns out from the monotone convergence theorem [2] that

(vk − u j) (Aω + ddc max(vk, u j + ε)) ∧ T −→ (vk − u j) (Aω + ddcvk)) ∧ T

weakly in the open set {u j < vk} as ε ց 0. Letting ε ց 0 and applying Lebesgue

monotone convergence theorem, we obtain the inequality

∫

u j<vk

(vk − u j) (Aω + ddcvk) ∧ T ≤

∫

u j<vk

(vk − u j) (Aω + ddcu j) ∧ T.

Therefore, we have
∫

u j<v
(v− u j) (Aω+ ddcvk)∧T ≤

∫

u<vk
(vk − u) (Aω+ ddcu j)∧T.

On the other hand, we have that u j, vk are uniformly bounded, u j → u in Capω and

vk → v in Capω on X. So for any δ > 0 the inequality

∫

u<v

(v − u j) (Aω + ddcvk) ∧ T ≤

∫

u≤v

(vk − u) (Aω + ddcu j) ∧ T + δ

holds for all j, k large enough. Then by the quasicontinuity of quasi-psh functions,

we can assume without loss of generality that {u < v} is open and {u ≤ v} is closed.
It turns out from the proof of [15, Theorem 1] that

(v − u j) (Aω + ddcvk) ∧ T −→ (v − u j) (Aω + ddcu) ∧ T

as k → ∞ and (v−u) (Aω+ddcu j)∧T −→ (v−u) (Aω+ddcv)∧T as j → ∞ weakly

in X. Letting k → ∞ and then j → ∞, we obtain
∫

u<v
(v − u) (Aω + ddcv) ∧ T ≤

∫

u≤v
(v − u) (Aω + ddcu) ∧ T + δ. Applying t v instead of v for A > t > 1 in the last

inequality and then letting t ց 1, δ ց 0, we get

∫

u<v

(v − u) (Aω + ddcv) ∧ T ≤

∫

u<v

(v − u) (Aω + ddcu) ∧ T,

which yields that
∫

u<v
(v − u)ωn−1

v ∧ ω ≤
∫

u<v
(v − u)ωn−1

u ∧ ω for all bounded

quasi-psh functions u and v.
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Now, for u, v ∈ F(X, ω), we have

∫

max(u,− j)<max(v,−k)

(max(v,−k) − max(u,− j))ωn−1
max(v,−k) ∧ ω

≤

∫

max(u,− j)<max(v,−k)

(max(v,−k) − max(u,− j))ωn−1
max(u,− j) ∧ ω.

Letting k → ∞, by the definition of ωn−1
v ∧ ω we get

∫

max(u,− j)<v

(v − max(u,− j))ωn−1
v ∧ ω

≤

∫

max(u,− j)<v

(v − max(u,− j))ωn−1
max(u,− j) ∧ ω,

which by Fatou lemma implies that

∫

u<v

(v − u)ωn−1
v ∧ ω

≤ lim inf
j→∞

∫

max(u,− j)<v

(v − max(u,− j))ωn−1
max(u,− j) ∧ ω

≤ lim inf
j→∞

∫

u<v

(max(v,− j) − max(u,− j))ωn−1
max(u,− j) ∧ ω

≤ lim sup
j→∞

∫

−s<u<v

(max(v,− j) − max(u,− j))ωn−1
max(u,− j) ∧ ω

+ lim sup
j→∞

∫

{u≤−s}∩{u<v}

(max(v,− j) − max(u,− j))ωn−1
max(u,− j) ∧ ω

=

∫

−s<u<v

(v − u)ωn−1
u ∧ ω

+ lim sup
j→∞

∫

{u≤−s}∩{u<v}

(max(v,− j) − max(u,− j))ωn−1
max(u,− j) ∧ ω

for all s > 1. Since (−max(v,− j))ωn−1
max(u,− j)∧ω ≤ (−max(u,− j))ωn−1

max(u,− j)∧ω ≪

Capω in the set {u < v} uniformly for all j, letting s → ∞ we get the required
inequality.

Theorem 2.5 Let u0 ∈ F(X, ω). If u ∈ PSH−1(X, ω) satisfies u ≥ u0 in X, then

u ∈ F(X, ω). Moreover, we have that (−u)ωn−1
u ∧ ω ≪ Capω on X uniformly for all

u ∈ PSH−1(X, ω) with u ≥ u0 in X.
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Proof Given k ≥ 1 and j ≥ 1. Write u j = max(u,− j). Then u j/3 ∈ F(X, ω) and
by Lemma 2.4 we have

∫

u j<−k

(−u j)ω
n−1
u j

∧ ω ≤ 2

∫

u j<−k

(−k/2 − u j)ω
n−1
u j

∧ ω

≤ 3n−1 2

∫

u j<−k/2

(−k/2 − u j)ω
n−1
1
3

u j
∧ ω

≤ 3n

∫

u0<u j/3−k/3

(u j/3 − k/3 − u0)ωn−1
1
3

u j
∧ ω

≤ 3n

∫

u0<u j/3−k/3

(u j/3 − k/3 − u0)ωn−1
u0

∧ ω

≤ 3n

∫

u0<−k/3

(−u0)ωn−1
u0

∧ ω.

Thus, by (−u0)ωn−1
u0

∧ ω ≪ Capω in X we obtain that (−u j)ω
n−1
u j

∧ ω ≪ Capω in

X uniformly for all j, which yields that u ∈ F(X, ω). Moreover, for all k ≥ 1, t ≥ 1,

and u ∈ PSH−1(X, ω) with u ≥ u0, we have

∫

max(u,−t)<−k

(−u)ωn−1
u ∧ ω ≤ lim sup

j→∞

∫

max(u,−t)<−k

(−u j)ω
n−1
u j

∧ ω

≤ lim sup
j→∞

∫

u j<−k

(−u j)ω
n−1
u j

∧ ω

≤ 3n

∫

u0<−k/3

(−u0)ωn−1
u0

∧ ω.

Letting t → ∞, we get
∫

u<−k
(−u)ωn−1

u ∧ ω ≤ 3n
∫

u0<−k/3
(−u0)ωn−1

u0
∧ ω. Hence,

together with χ{u>−k−1} ω
n−1
u ∧ ω = χ{u>−k−1} ω

n−1
max(u,−k−1) ∧ ω, we obtain that

(−u)ωn−1
u ∧ ω ≪ Capω on X uniformly for all u ≥ u0.

As a direct consequence of Theorem 2.5 we have the following.

Corollary 2.6 Let u ∈ F(X, ω). Then max(u, v) ∈ F(X, ω) and t u ∈ F(X, ω) for

all v ∈ PSH−1(X, ω) and 0 ≤ t ≤ 1.

Now we prove the following.

Theorem 2.7 The set F(X, ω) is convex, that is, for any u, v ∈ F(X, ω) and

0 ≤ t ≤ 1 we have that t u + (1 − t) v ∈ F(X, ω).

Proof Given u, v ∈ F(X, ω). Then u/2 + v/2 ∈ PSH−1(X, ω). We only need to

prove that u/2 + v/2 ∈ F(X, ω). From Corollary 2.6 it turns out that u/2 ∈ F(X, ω)
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and v/2 ∈ F(X, ω). Then

ωn−1
max(u/2,− j)+max(v/2,− j)

∧ ω = 1/2n−1
(

ωmax(u,−2 j) + ωmax(v,−2 j)

) n−1
∧ ω

≤ n!/2n−1

n−1
∑

l=0

ωl
max(u,−2 j) ∧ ω

n−1−l
max(v,−2 j) ∧ ω.

Write u2 j = max(u,−2 j) and v2 j = max(v,−2 j). For all j ≥ k ≥ 1 and 0 ≤ l ≤
n − 1 we have

∫

u≤−k

ωl
u2 j

∧ ωn−1−l
v2 j

∧ ω = 1/k

∫

u≤−k

(

−max(u,−k)
)

ωl
u2 j

∧ ωn−1−l
v2 j

∧ ω

≤ 1/k

∫

X

(−u2 j)ω
l
u2 j

∧ ωn−1−l
v2 j

∧ ω

≤ 1/k

∫

u2 j≤v2 j

(−u2 j)ω
l
u2 j

∧ ωn−1−l
v2 j

∧ ω

+ 1/k

∫

u2 j>v2 j

(−v2 j)ω
l
u2 j

∧ ωn−1−l
v2 j

∧ ω.

From Lemma 2.4 it follows that

∫

u2 j≤v2 j

(−u2 j)ω
l
u2 j

∧ ωn−1−l
v2 j

∧ ω

≤ 2

∫

u2 j≤v2 j

(

v2 j/2 − u2 j

)

ωl
u2 j

∧ ωn−1−l
v2 j

∧ ω

≤ 2n−l

∫

u2 j<v2 j/2

(

v2 j/2 − u2 j

)

ωl
u2 j

∧ ωn−1−l
v2 j/2

∧ ω

≤ 2n−l

∫

u2 j<v2 j/2

(

v2 j/2 − u2 j

)

ωn−1
u2 j

∧ ω ≤ 2n−l sup
j

∫

X

(−u2 j)ω
n−1
u2 j

∧ ω

<∞.

Similarly, we have

∫

u2 j>v2 j

(−v2 j)ω
l
u2 j

∧ ωn−1−l
v2 j

∧ ω ≤ 2l+1 sup
j

∫

X

(−v2 j)ω
n−1
v2 j

∧ ω <∞.

Hence we have proved that there exists a constant A > 0 such that

∫

{u≤−k}∪{v≤−k}

ωn−1
max(u/2,− j)+max(v/2,− j)

∧ ω ≤ A/k
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for all j ≥ k ≥ 1. Thus, for j ≥ 2 k ≥ 1 we have

∫

u/2+v/2≤−k

ωn−1
max(u/2+v/2,− j)

∧ ω =

∫

X

ωn −

∫

u/2+v/2>−k

ωn−1
max(u/2+v/2,− j)

∧ ω

=

∫

X

ωn −

∫

u/2+v/2>−k

ωn−1
max(u/2,− j)+max(v/2,− j)

∧ ω

=

∫

u/2+v/2≤−k

ωn−1
max(u/2,− j)+max(v/2,− j)

∧ ω ≤ A/k,

which implies that ωn−1
max(u/2+v/2,− j)

∧ ω ≪ Capω on X uniformly for all j and hence

ωn−1
u/2+v/2

∧ ω = lim
j→∞

ωn−1
max(u/2+v/2,− j)

∧ ω = lim
j→∞

ωn−1
max(u/2,− j)+max(v/2,− j)

∧ ω.

It then follows from the lower semi-continuity of −u/2 − v/2 that

∫

X

(−u/2 − v/2)ωn−1
u/2+v/2

∧ ω

≤ lim sup
j→∞

∫

X

(

− max(u/4,− j/2) − max(v/4,− j/2)
)

ωn−1
max(u/2,− j)+max(v/2,− j)

∧ ω

<∞.

By Theorem 2.2 we have obtained that u/2 + v/2 ∈ F(X, ω).

As consequences we have the following.

Corollary 2.8 Let u0, u1, . . . , un−1 ∈ F(X, ω). Then

−u0 ωu1
∧ ωu2

∧ · · · ∧ ωun−1
∧ ω ≪ Capω on X.

Proof Since

(u0 + u1 + · · · + ul−1)/l = (1/l) ul−1 + (1 − 1/l) (u0 + u1 + · · · + ul−2)/(l − 1)

for l = 2, 3 . . . , n, using the induction principle and Theorem 2.7 we get that
f := (u0 + u1 + · · · + un−1)/n ∈ F(X, ω). Hence we have that

−u0 ωu1
∧ ωu2

∧ · · · ∧ ωun−1
∧ ω ≤ −nn f ωu1/n ∧ ωu2/n ∧ · · · ∧ ωun−1/n ∧ ω

≤ nn (− f )ωn−1
f ∧ ω ≪ Capω

on X.

Using Corollary 2.8 and following the proof of Lemma 2.4, we now get a stronger

version of Lemma 2.4.
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Corollary 2.9 Let u, v ∈ F(X, ω) and 0 ≤ l ≤ n − 1. Then

∫

u<v

(v − u)ωl
v ∧ ω

n−1−l
u ∧ ω ≤

∫

u<v

(v − u)ωn−1
u ∧ ω.

Corollary 2.10 Let u0 ∈ F(X, ω). Then

−u1 ωu2
∧ ωu3

∧ · · · ∧ ωun
∧ ω ≪ Capω on X

uniformly for all ul ∈ PSH−1(X, ω) with ul ≥ u0 and l = 1, 2, . . . , n.

Proof Since f := (u1 + u2 + · · · + un)/n ≥ u0 and f ∈ F(X, ω), by Theorem 2.5 we
get that −u1 ωu2

∧ ωu3
∧ · · · ∧ωun

∧ω ≤ nn (− f )ωn−1
f ∧ω ≪ Capω on X uniformly

for all such functions ul.

Remark. Corollary 2.10 implies that a function u ∈ PSH−1(X, ω) belongs to F(X, ω)
if and only if

(

−max(u,− j)
)

ωl
max(u,− j)∧ω

n−l ≪ Capω on X uniformly for all j ≥ 1

and 0 ≤ l ≤ n − 1. The ωn
u concentrating on {u > −∞} were studied by Guedj and

Zeriahi [10].

3 A Convergence Theorem of the Complex Monge–Ampère
Operator

In this section we prove a convergence theorem of the complex Monge–Ampère op-

erator in F(X, ω). We divide its proof into several lemmas.

Given u1, u2, . . . , un−1 ∈ F(X, ω), by Corollary 2.8 the current ωu1
∧ ωu2

∧ · · · ∧
ωun−1

is well defined. Now for any g ∈ PSH(X, ω) ∩ L∞(X), we define the wedge
product ωu1

∧ ωu2
∧ · · · ∧ ωun−1

∧ ωg in a natural way:

ωu1
∧ωu2

∧· · ·∧ωun−1
∧ωg := ω∧ωu1

∧ωu2
∧· · ·∧ωun−1

+ddc(g ωu1
∧ωu2

∧· · ·∧ωun−1
).

Then we have the following.

Lemma 3.1 Let u0, u1, . . . , un−1 ∈ F(X, ω) and f , g ∈ PSH(X, ω)∩ L∞(X). Then

the following equalities hold.

(i)
∫

X
(−g) ddc f ∧ωu1

∧ωu2
∧ · · · ∧ωun−1

=
∫

X
(− f ) ddcg ∧ωu1

∧ωu2
∧ · · · ∧ωun−1

.

(ii)
∫

X
(−g) ddcu0∧ωu1

∧ωu2
∧· · ·∧ωun−1

=
∫

X
(−u0) ddcg∧ωu1

∧ωu2
∧· · ·∧ωun−1

.

Proof It is no restriction to assume that f , g ≤ −2 in X. Write T = ωu1
∧ ωu2

∧
· · · ∧ ωun−1

. Take two sequences f j, gk ∈ PSH−1(X,Aω) ∩ C∞(X) for some A ≥ 1
such that f j ց f and gk ց g in X, (see [6, 9]. It follows from Dini’s theorem

and quasicontinuity of quasi-psh functions that f j → f in Capω on X. So, using

T ∧ ω ≪ Capω, we get f j T → f T and hence ddc f j ∧ T → ddc f ∧ T weakly in X.
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Similarly, ddcgk ∧ T → ddcg ∧ T weakly in X. Thus we have

∫

X

(− f j) ddcg ∧ T = lim
k→∞

∫

X

(− f j) ddcgk ∧ T

= lim
k→∞

∫

X

(−gk) ddc f j ∧ T

= lim
k→∞

∫

X

(−gk) (Aω + ddc f j) ∧ T − lim
k→∞

∫

X

(−gk) (Aω) ∧ T

=

∫

X

(−g) ddc f j ∧ T,

where the last equality follows from the Lebesgue monotone convergence theorem.
Then, by lower semi-continuity of −g, we get

∫

X

(− f ) ddcg ∧ T = lim
j→∞

∫

X

(− f j) ddcg ∧ T

= lim
j→∞

∫

X

(−g)ddc f j ∧ T

= lim
j→∞

∫

X

(−g)(Aω + ddc f j) ∧ T −

∫

X

(−g)(Aω) ∧ T

≥

∫

X

(−g) ddc f ∧ T.

By symmetry we have abtained equality (i). Let ul = max(u0,−l). By (i) we have
∫

X
(−g) ddcul ∧ T =

∫

X
(−ul) ddcg ∧ T. It follows from Corollary 2.8 that u0 T is a

well-defined current and ul T → u0 T as currents in X. Hence we get

∫

X

(−g) ddcu0 ∧ T ≤ lim
l→∞

∫

X

(−g) ddcul ∧ T = lim
l→∞

∫

X

(−ul) ddcg ∧ T

=

∫

X

(−u0) ddcg ∧ T.

On the other hand,

∫

X

(−u0) ddcgk ∧ T = lim
l→∞

∫

X

(−ul) ddcgk ∧ T = lim
l→∞

∫

X

(−gk) ddcul ∧ T

=

∫

X

(−gk) ddcu0 ∧ T.

Letting k → ∞ we get
∫

X
(−u0) ddcg ∧T ≤

∫

X
(−g) ddcu0 ∧T. Hence we have proved

equality (ii).

Lemma 3.2 Let u ∈ F(X, ω) and g ∈ PSH(X, ω) ∩ L∞(X). Then the following

statements hold.
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(i) ωn−1
max(u,− j) ∧ ωg ≪ Capω on X uniformly for all j;

(ii) for each f ∈ PSH(X, ω)∩L∞(X), we have that f ωn−1
max(u,− j)∧ωg −→ f ωn−1

u ∧ωg

weakly in X as j → ∞;

(iii) (−u)ωn−1
u ∧ ωg ≪ Capω on X.

Proof It is no restriction to assume that g ≤ −2 in X. Given j ≥ k ≥ 1. By

Lemma 3.1 we have
∫

u≤−k

ωn−1
max(u,− j) ∧ ωg ≤ 1/k

∫

X

(

−max(u,−k)
)

ωn−1
max(u,− j) ∧ ωg

= 1/k

∫

X

(

−max(u,−k)
)

ωn−1
max(u,− j) ∧ ω

+ 1/k

∫

X

(−g)ωn−1
max(u,− j) ∧ ddc max(u,−k)

≤ 1/k

∫

X

(

−max(u,− j)
)

ωn−1
max(u,− j) ∧ ω

+ 1/k

∫

X

(−g)ωn−1
max(u,− j) ∧ ωmax(u,−k)

≤ 1/k sup
j

∫

X

(

−max(u,− j)
)

ωn−1
max(u,− j) ∧ ω

+ 1/k sup
X

|g|

∫

X

ωn.

Given a Borel set E ⊂ X. By [3, Proposition 4.2] for bounded quasi-psh functions, we

get that
∫

E
ωn−1

max(u,− j)∧ωg ≤
∫

u≤k
ωn−1

max(u,− j)∧ωg +
∫

E
ωn−1

max(u,−k)∧ωg for all j ≥ k ≥ 1,

which implies (i).
To prove (ii), we prove first that ωn−1

max(u,− j) ∧ ωg −→ ωn−1
u ∧ ωg weakly in X as

j → ∞. Given a smooth function ψ, multiplying a small positive constant if neces-
sary, we can assume ψ ∈ PSH(X, ω) ∩C∞(X). Then we have

∫

X

ψ ωn−1
max(u,− j) ∧ ωg −

∫

X

ψ ωn−1
u ∧ ωg

=

∫

X

ψ
(

ωn−1
max(u,− j) ∧ ω − ωn−1

u ∧ ω
)

+

∫

X

g
(

ωn−1
max(u,− j) − ωn−1

u

)

∧ ddcψ,

where by Proposition 2.1 the first term on the right-hand side tends to zero as j → ∞.
Take a sequence gk ∈ PSH−1(X,Aω) ∩ C∞(X) for some A ≥ 1 such that gk ց g in

X, (see [6, 9]). Write the second term as
∫

X

gk

(

ωn−1
max(u,− j)−ω

n−1
u

)

∧ ddcψ+

∫

X

(g−gk)
(

ωn−1
max(u,− j)−ω

n−1
u

)

∧ ddcψ := Bk, j+Ck, j .

By the smoothness ofψ we have that (ωn−1
max(u,− j)+ω

n−1
u )∧ωψ ≪ Capω on X uniformly

for all j. Since gk → g in Capω on X, we get that Ck, j → 0 as k → ∞ uniformly for
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all j. Then for each fixed k, Bk, j → 0 as j → ∞. Hence we have proved that

ωn−1
max(u,− j) ∧ ωg −→ ωn−1

u ∧ ωg

weakly in X as j → ∞. Together with (i), we get ωn−1
u ∧ ωg ≪ Capω on X, (see

the proof of Proposition 2.1). Now for f ∈ PSH(X, ω) ∩ L∞(X), we take a sequence
fk ∈ PSH(X,Aω) ∩C∞(X) for some A ≥ 1 such that fk ց f in X. Write

f ωn−1
max(u,− j) ∧ ωg − f ωn−1

u ∧ ωg = ( f − fk)
(

ωn−1
max(u,− j) ∧ ωg − ωn−1

u ∧ ωg

)

+ fk

(

ωn−1
max(u,− j) ∧ ωg − ωn−1

u ∧ ωg

)

,

where for each fixed k the second term on the right-hand side tends to zero weakly
as j → ∞. Using (i) and ωn−1

u ∧ ωg ≪ Capω , we get that the first term converges

weakly to zero uniformly for all j as k → ∞. Thus we have obtained (ii).

Finally, by the lower semi-continuity of −u, for any k ≥ 1 we obtain

∫

X

(−max(u,−k))ωn−1
u ∧ ωg

≤ lim sup
j→∞

∫

X

(−max(u,−k))ωn−1
max(u,− j) ∧ ωg

≤ sup
j

∫

X

(−max(u,− j))ωn−1
max(u,− j) ∧ ω + sup

X

|g|

∫

X

ωn <∞,

which yields u ∈ L1(X, ωn−1
u ∧ωg). Thus we have that (−u)ωn−1

u ∧ωg ≪ ωn−1
u ∧ωg ≪

Capω on X.

Lemma 3.3 Let u0, u1, . . . , un−1 ∈ F(X, ω) and g ∈ PSH(X, ω) ∩ L∞(X). Suppose

that a sequence u1 j ∈ PSH−1(X, ω) decreases to u1 in X. Then the following statements

hold:

(i) (−u0)ωu1
∧ ωu2

∧ · · · ∧ ωun−1
∧ ωg ≪ Capω on X;

(ii) for each f ∈ PSH(X, ω) ∩ L∞(X), we have that

f ωu1 j
∧ ωu2

∧ · · · ∧ ωun−1
∧ ωg −→ f ωu1

∧ ωu2
∧ · · · ∧ ωun−1

∧ ωg

weakly in X as j → ∞;

(iii) ωu1 j
∧ ωu2

∧ ωu3
∧ · · · ∧ ωun−1

∧ ωg ≪ Capω on X uniformly for all j.

Proof Since (u0 + u1 + · · · + un−1)/n ∈ F(X, ω), assertion (i) follows directly from

(iii) of Lemma 3.2. Now we prove (ii). Given a smooth function ψ in X, we as-

sume without loss of generality that 0 ≤ f , ψ ∈ PSH(X, ω) ∩ L∞(X). Observe that
εh2 ∈ PSH(X, ω) if h is a bounded positive quasi-psh function in X and the constant

ε satisfies maxX h ≤ 1/(2ε). Hence, applying the equality
ψ f
2

= (
ψ+ f

2
)2−(ψ

2
)2−(

f
2

)2,
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we can assume that h := ψ f or −h is a bounded quasi-psh function in X. By
Lemma3.1, for each k ≥ 1 we get

∣

∣

∣

∫

X

ψ f ωu1 j
∧ ωu2

∧ · · · ∧ ωun−1
∧ ωg −

∫

X

ψ f ωu1
∧ ωu2

∧ · · · ∧ ωun−1
∧ ωg

∣

∣

∣

=

∣

∣

∣

∫

X

(u1 j − u1) ddch ∧ ωu2
∧ · · · ∧ ωun−1

∧ ωg

∣

∣

∣

≤

∫

X

|u1 j − u1| (ωh + ω) ∧ ωu2
∧ · · · ∧ ωun−1

∧ ωg

≤

∫

u1<−k

|u1| (ωh + ω) ∧ ωu2
∧ · · · ∧ ωun−1

∧ ωg

+

∫

X

|max(u1 j,−k) − max(u1,−k)| (ωh + ω) ∧ ωu2
∧ · · · ∧ ωun−1

∧ ωg ,

where by (i) the first term on the right-hand side tends to zero as k → ∞. For each

fixed k, since max(u1 j,−k) → max(u1,−k) in Capω on X as j → ∞, we get that the
second term converges to zero as j → ∞. Hence we have obtained (ii).

By (i) and [3, Theorem 3.2], assertion (iii) follows from the property that for any

hyperconvex subset Ω ⋐ X with ddcφ = ω and φ = 0 on ∂Ω and any h ∈ PSH(Ω) ∩
L∞(Ω), we have that hωu1 j

∧ωu2
∧· · ·∧ωun−1

∧ωg → hωu1
∧ωu2

∧· · ·∧ωun−1
∧ωg weakly

in Ω as j → ∞. To prove this property, for each ψ ∈ C∞
0 (Ω), we take a constant

ε > 0 such that ε (h − sup
Ω

h − 1) > φ on suppψ, and ε (h − sup
Ω

h − 1) < φ near
∂Ω. Set

f =

{

max
(

ε (h − sup
Ω

h − 1), φ
)

− φ in Ω,

0 in X \ Ω.

Then f ∈ PSH(X, ω) ∩ L∞(X) and ψ h = ε−1ψφ + ε−1ψ f + ψ sup
Ω

h + ψ. Hence,

by the smoothness of φ and (ii), we get that

hωu1 j
∧ ωu2

∧ · · · ∧ ωun−1
∧ ωg −→ hωu1

∧ ωu2
∧ · · · ∧ ωun−1

∧ ωg

weakly in Ω as j → ∞. Therefore, we have proved (iii).

Lemma 3.4 Let u0, u1, u2, . . . , un−1 ∈ F(X, ω) and g ∈ PSH(X, ω)∩L∞(X). Then

for almost all constants 1 ≤ k <∞,

∫

u1<−k

(−k − u1) ddcu0 ∧ ωu2
∧ · · · ∧ ωun−1

∧ ωg

≤

∫

u1<−k

(−u0) ddcu1 ∧ ωu2
∧ · · · ∧ ωun−1

∧ ωg .

Proof Write T = ωu2
∧· · ·∧ωun−1

∧ωg .Assume first that 0 ≥ u0, u1 ∈ PSH(X,Aω)∩
C∞(X) with A ≥ 1. Given ε > 0 and k ≥ 1. Since max(u1 + ε,−k) = u1 + ε near
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∂{u1 < −k} if it is not empty, we have that

∫

u1<−k

(−k − u1) ddcu0 ∧ T

= lim
εց0

∫

u1<−k

(max(u1 + ε,−k) − u1 − ε) ddcu0 ∧ T

= lim
εց0

∫

u1<−k

u0 ddc
(

max(u1 + ε,−k) − u1 − ε
)

∧ T

=

∫

u1<−k

(−u0) ddcu1 ∧ T + lim
εց0

∫

u1<−k

u0 ddc max(u1 + ε,−k) ∧ T.

Since max(u1 + ε,−k) T → max(u1,−k) T weakly in X as εց 0, we have

(Aω + ddc max(u1 + ε,−k)) ∧ T −→ (Aω + ddc max(u1,−k)) ∧ T

weakly as ε ց 0. From the upper semi-continuity of u0 ≤ 0 in the open set
{u1 < −k}, it turns out that

lim
εց0

∫

u1<−k

u0 ddc max(u1 + ε,−k) ∧ T

= lim
εց0

∫

u1<−k

u0

[(

Aω + ddc max(u1 + ε,−k)
)

− Aω
]

∧ T

≤

∫

u1<−k

u0 ddc max(u1,−k) ∧ T = 0.

Hence we get
∫

u1<−k
(−k − u1) ddcu0 ∧ T ≤

∫

u1<−k
(−u0) ddcu1 ∧ T for all k ≥ 1 in

the case of 0 ≥ u0, u1 ∈ PSH(X,Aω) ∩C∞(X).

Secondly, assume that u0, u1 ∈ F(X, ω) ∩ L∞(X). By [6, 9] there exist negative
functions u0t , u1s ∈ PSH(X,Aω) ∩C∞(X) with some A ≥ 1 such that u0t ց u0 and

u1s ց u1 in X. Since
∫

u1≤−k

(

ωu1
+ ω

)

∧ T is a decreasing function of k and hence

continuous almost everywhere with respect to the Lebesgue measure, we have that
∫

u1=−k

(

ωu1
+ ω

)

∧ T = 0 holds for almost all k in [1,∞). Given such a constant k,

by the Fatou lemma and the lower semi-continuity of −u1s, we get that

∫

u1<−k

(−k − u1) ddcu0 ∧ T

=

∫

u1<−k

(−k − u1) (Aω + ddcu0) ∧ T − A

∫

u1<−k

(−k − u1)ω ∧ T

≤ lim inf
s→∞

∫

u1s<−k

(−k − u1s) (Aω + ddcu0) ∧ T − A

∫

u1<−k

(−k − u1)ω ∧ T
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≤ lim inf
s→∞

lim sup
t→∞

∫

u1s<−k

(−k − u1s) (Aω + ddcu0t) ∧ T

− lim inf
s→∞

A

∫

u1<−k

(−k − u1s)ω ∧ T

= lim inf
s→∞

lim sup
t→∞

∫

u1s<−k

(−k − u1s) ddcu0t ∧ T

− A lim inf
s→∞

∫

u1s≥−k>u1

(−k − u1s)ω ∧ T.

Given δ > 0, we have that
∣

∣

∣

∫

u1s≥−k>u1

(−k− u1s)ω ∧T
∣

∣

∣
≤ δ

∫

X

ω ∧T +

∫

u1s−u1≥δ

(−u1)ω ∧T −→ δ

∫

X

ω ∧T

as s → ∞, since u1s → u1 in Capω and (−u1)ω ∧ T ≪ Capω on X. Hence we have
∫

u1<−k

(−k − u1) ddcu0 ∧ T

≤ lim inf
s→∞

lim sup
t→∞

∫

u1s<−k

(−k − u1s) ddcu0t ∧ T

≤ lim inf
s→∞

lim sup
t→∞

∫

u1s<−k

(−u0t) ddcu1s ∧ T

= lim inf
s→∞

∫

u1s<−k

(−u0) ddcu1s ∧ T

≤ lim inf
s→∞

∫

u1≤−k

(−u0) (Aω + ddcu1s) ∧ T − A lim inf
s→∞

∫

u1s<−k

(−u0)ω ∧ T

= lim inf
s→∞

∫

u1≤−k

(−u0) (Aω + ddcu1s) ∧ T − A

∫

u1≤−k

(−u0)ω ∧ T.

By Lemma 3.3 and quasicontinuity of quasi-psh functions, it is no restriction to as-

sume that {u1 ≤ −k} is a closed set and hence the last limit inferior does not exceed
∫

u1≤−k
(−u0) (Aω + ddcu1) ∧ T. So we have obtained

∫

u1<−k

(−k − u1) ddcu0 ∧ T ≤

∫

u1<−k

(−u0) ddcu1 ∧ T

for all u0, u1 ∈ F(X, ω) ∩ L∞(X) and almost all k in [1,∞).
Finally, let u0, u1 ∈ F(X, ω). For almost all constants k in [1,∞) we have that

∫

u1=−k
(ωu1

+ ω) ∧ T = 0 and

∫

max(u1,−s)<−k

(−k − max(u1,−s)) ddc max(u0,−t) ∧ T

≤

∫

max(u1,−s)<−k

(−max(u0,−t)) ddc max(u1,−s) ∧ T
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for all integers s, t ≥ 1. Letting s → ∞ and applying the same proof as above, we
have

∫

u1<−k
(−k−u1) ddc max(u0,−t)∧T ≤

∫

u1<−k

(

−max(u0,−t)
)

ddcu1∧T, and

then letting t → ∞ we get the required inequality.

Lemma 3.5 Let u0 ∈ F(X, ω) and g ∈ PSH(X, ω) ∩ L∞(X). Then

∫

u<−k

(−u)ωn−1
u ∧ ωg −→ 0, as k → ∞,

uniformly for all u ∈ PSH−1(X, ω) with u ≥ u0 in X.

Proof Given u ∈ PSH−1(X, ω) with u ≥ u0. Take a sequence 1 ≤ k1 ≤ k2 ≤ · · · ≤
k j → ∞ such that Lemma 3.4 holds for the functions u and u0 when k = k j/2i ,

where i = 1, . . . , n − 1 and j = 1, 2, . . . . Hence we have

∫

u<−k j

(−u)ωn−1
u ∧ ωg ≤

∫

u0<−k j

(−u0)ωn−1
u ∧ ωg

≤ 2

∫

u0<−k j

(−k j/2 − u0)ωn−1
u ∧ ωg

≤ 2

∫

u0<−k j/2

(−k j/2 − u0)ω ∧ ωn−2
u ∧ ωg

+ 2

∫

u0<−k j/2

(−k j/2 − u0) ddcu ∧ ωn−2
u ∧ ωg

≤ 2

∫

u0<−k j/2

(−k j/2 − u0)ω ∧ ωn−2
u ∧ ωg

+ 2

∫

u0<−k j/2

(−u) ddcu0 ∧ ω
n−2
u ∧ ωg

≤ 2

∫

u0<−k j/2

(−u0)ω ∧ ωn−2
u ∧ ωg + 2

∫

u0<−k j/2

(−u0)ωu0
∧ ωn−2

u ∧ ωg

= 2

∫

u0<−k j/2

(−u0) (ω + ωu0
) ∧ ωn−2

u ∧ ωg

≤ 22

∫

u0<−k j/22

(−u0) (ω + ωu0
)2 ∧ ωn−3

u ∧ ωg ≤ . . .

≤ 2n−1

∫

u0<−k j/2n−1

(−u0) (ω + ωu0
)n−1 ∧ ωg ,

which, by Lemma 3.3 and the equality (ω+ωu0
)n−1

=
∑n−1

l=0

(

n−1
l

)

ωl∧ωn−1−l
u0

, tends
to zero as j → ∞.

We are now in a position to prove the convergence theorem.
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Theorem 3.6 (Convergence Theorem) Let 0 ≤ p < ∞. Suppose that 0 ≥ g ∈
PSH(X, ω)∩ L∞(X) and u0 ∈ F(X, ω). If u j, u ∈ PSH−1(X, ω) are such that u j → u

in Capω on X and u j ≥ u0, then (−g)p ωn
u j
→ (−g)p ωn

u weakly in X.

Proof Given k ≥ 1, write

(−g)p ωn
u j
−(−g)p ωn

u = (−g)p(ωn
u j
−ωn

max(u j ,−k))+(−g)p (ωn
max(u j ,−k)−ω

n
max(u,−k))

+ (−g)p(ωn
max(u,−k) − ωn

u) := Ak, j + Bk, j + Ck.

For each fixed k, by [17, Theorem 1] we have that Bk, j → 0 weakly in X as j → ∞.

Given a smooth function ψ in X, and following the proof of [17, Theorem 1], we can

assume that ψ (−g)p is the sum of finite terms of form ± f , where f are bounded
quasi-psh functions in X. For such a function f , by Lemma 3.1 we get

∣

∣

∣

∫

X

f
(

ωn
u j
− ωn

max(u j ,−k)

)

∣

∣

∣
=

∣

∣

∣

∫

X

(u j − max(u j ,−k)) ddc f ∧

n−1
∑

l=0

ωl
u j
∧ ωn−1−l

max(u j ,−k)

∣

∣

∣

=

∣

∣

∣

∫

u j<−k

(u j + k) ddc f ∧

n−1
∑

l=0

ωl
u j
∧ ωn−1−l

max(u j ,−k)

∣

∣

∣

≤

∫

u j<−k

(−u j) (ω f + ω) ∧ ωn−1
u j

,

which by Lemma 3.5 tends to zero uniformly for all j as k → ∞. Hence, Ak, j → 0

uniformly for all j as k → ∞. Similarly, we have that Ck → 0 weakly as k → ∞.
Therefore, we have obtained that (−g)p ωn

u j
→ (−g)p ωn

u weakly.

Applying Dini’s theorem and quasicontinuity of quasi-psh functions, we get the

following consequence.

Corollary 3.7 Let 0 ≤ p <∞ and 0 ≥ g ∈ PSH(X, ω)∩L∞(X). If u j, u ∈ F(X, ω)
are such that u j ց u or u j ր u in X, then (−g)p ωn

u j
→ (−g)p ωn

u weakly in X.

Corollary 3.8 Let u, v ∈ F(X, ω). Then χ{u>v} ω
n
max(u,v) = χ{u>v} ω

n
u .

Proof This proof is similar to the proof of [11, Theorem 4.1]. Given a constant

k ≥ 0, Write u j = max(u,− j). By [3, Proposition 4.2] we have that

max(u j + k, 0)ωn
max(u j ,−k) = max(u j + k, 0)ωn

u j

for all j. Using max(u j + k, 0) ≥ max(u + k, 0) ≥ 0, we get

max(u + k, 0)ωn
max(u j ,−k) = max(u + k, 0)ωn

u j
.

Letting j → ∞ and applying Theorem 3.6, we get

max(u + k, 0)ωn
max(u,−k) = max(u + k, 0)ωn

u.
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Hence we have obtained that χ{u>−k} ω
n
max(u,−k) = χ{u>−k} ω

n
u holds for any u ∈

F(X, ω) and k ≥ 0. Therefore, ωn
max(u,v) = ωn

max(u,v,−k) and ωn
u = ωn

max(u,−k) on each

set {u > −k > v} with a rational number k ≥ 0. But ωn
max(u,v,−k) = ωn

max(u,−k) on the
open set {−k > v} and hence χ{u>−k>v} ω

n
max(u,v) = χ{u>−k>v} ω

n
u , which implies

the required equality.

Corollary 3.9 Let u, v ∈ F(X, ω). Then

ωn
max(u,v) ≥ χ{u≥v and u 6=−∞} ω

n
u + χ{u<v} ω

n
v .

Proof Given ε > 0, by Corollary 3.8 we have

ωn
max(u,v−ε) ≥ χ{u>v−ε} ω

n
u + χ{u<v−ε} ω

n
v ≥ χ{u≥v and u 6=−∞} ω

n
u + χ{u<v−ε} ω

n
v .

Letting εց 0 and using Theorem 3.6, we obtain the required inequality.

Corollary 3.10 Let u, v ∈ F(X, ω). Then

∫

u<v

ωn
v ≤

∫

u<v

ωn
u +

∫

u=v=−∞

ωn
u.

Proof By Corollary 3.8 we have

∫

u<v

ωn
v =

∫

u<v

ωn
max(u,v) =

∫

X

ωn −

∫

u≥v

ωn
max(u,v)

≤

∫

X

ωn −

∫

u>v

ωn
max(u,v) =

∫

X

ωn −

∫

u>v

ωn
u =

∫

u≤v

ωn
u .

Using δ v instead of v and letting δ ր 1, we get the required inequality.
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