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Abstract

The effect of an enclosed air cavity on the natural vibration frequencies of a rectangular
membrane is investigated. The modes specified by an even integer are not affected. For
the odd-odd modes, the frequency equation is found via a Green's function formulation
and is solved to first order in a parameter representing the effect of the cavity of the
rectangular drum. The frequencies are raised, with the fundamental being most affected.
In the case of degeneracies, each degenerate mode contributes to the frequency shift, but
the degeneracy itself is not broken to first order.

1. Introduction

The eigenfrequencies of a freely vibrating rectangular membrane with fixed edges
were found as long ago as 1829 by Poisson ([9], section 5). Unlike the vibrating
string, the overtones do not form a harmonic series, because the square root of a
sum of squares of integers is not in general an integer. In this paper we calculate
the effect on the eigenfrequencies of the compressibility of air entrapped in an
enclosure to which the membrane is affixed along its rim, thus forming a
rectangular drum.

The problem of the effect of the air enclosed within the shell of a circular
kettle-drum was investigated by Morse ([6], page 157). Only the circularly-sym-
metric modes are altered; thus that formulation is essentially one-dimensional
and leads to a fairly simple frequency equation in terms of ordinary Bessel
functions ([5], page 93). More recently, the author [2] has analysed the effect of an
air cavity on an annular drum: Bessel functions of the second kind are then also
involved.
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The case of the rectangular membrane with air cavity is inherently more
complicated because it is genuinely a two-dimensional problem. This is reflected
in the frequency equation (11), derived in Section 3 below, which involves an
infinite summation rather than a single functional equation. Nevertheless, in
Section 4 we calculate an analytic expression for the first-order correction to the
frequencies. The extra contributions in the case of degenerate modes are obtained
in Section 5. In particular, it is found that the degeneracies are not broken to first
order.

Considerations such as these may lead to more accurate criteria for the design
of membranous devices with entrapped gases such as transducers, pressure
instruments, and aerodynamic bulkheads: to avoid resonances, the frequencies of
applied vibrations should not coincide with natural vibration frequencies.

2. Basic equations

For adiabatic alternations of pressure, the space-dependent part of the ampli-
tude u of a vibrating membrane stretched with tension T may be shown, following
the method of Kinsler and Frey ([5], page 91), to satisfy the equation

(1)

with k = u/c, where w is the angular frequency of vibration and c is the constant
speed of free waves in the membrane. Further, y is the ratio of specific heat at
constant pressure to specific heat at constant volume of the entrapped air which
has equilibrium pressure Po and equilibrium volume Vo. The integration on the
right-hand side of (1) extends over the area of the membrane which has fixed
edges attached to the cavity walls, and represents the change in volume of the
drum cavity due to the membrane displacement [6].

In the absence of the cavity, the freely vibrating rectangular membrance
(0 =s x < a, 0 < y < b) has the well-known solutions ([5], page 84)

u0 = sin k^x sin k2y, (2a)

k2 = k2 + k\, (2b)

kx—nni/a, k2 — nir/b; m, n — 1, 2, 3 , . . . , (2c)

so

a = mc{m2/a2 + n2/b2)X/\ (3)

With cavity present, y ¥= 0, but for the cases of even integer values of m and/or
n in (2c) the solution M0 (equation (2)) for u still holds since the right-hand side of
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(1) still vanishes because the integral itself is zero (cf. Rayleigh [10], page 310). It
remains therefore to consider solutions to the equation

with the boundary condition of fixed edges of the drum:

w = 0 onx = 0,a; y - 0, b, (4b)

for the case for which, when y is small, (akx/m) and (bk2/"n) in (2b) are both
near odd integer values.

3. Green's function formulation and solution

The Green's function for the operator 32/3x2 + 92/9j>2 + k2 on the left-hand
side of equation (4a) has the usual double series expansion involving eigenfunc-
tions of the operator satisfying the boundary conditions (4b). (See Morse and
Feshbach [7], page 1365.) One of these series may be summed explicitly (cf.
Jackson [4], page 89) to yield a more manageable single-sum Green's function,
normalized so that

•y% (5)

(a/2)G(x,x';y,y')

v • lirx . IITX' s\nK,y<smKl(y>-b)
= 2J Sin Sin ——: rrr

fz, a a Kt sin Ktb

. l-nx . Imx' sinhl/q^sinh 1 ^ 1 ( ^ 6 )
sin sin , (6)

a a |tf|ih|A:|/
where y< and >»> are respectively the smaller and larger of y and_y',

K, = [*2- /V/a2]1 / 2 , (7)

and L is the greatest integer less than ka/ir (cf. Morse and Ingard [8], page 500).
Insofar as the right-hand side of equation (4a) is a constant, we use the Green's

function (6) to solve the equation

(V2 + A: 2 ) M =1. (8)

Thus

u(x,y) = fdx' jhdy'G{x,x';y,y'). (9)
A) •'o
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We find that only odd-integer values in the sum (6) contribute, consistent with the
comment after equations (4), and that the amplitude u is given by

sin(2/n + \)mx/a
(n/4)u=

to (2m + \)Klm+,sm(K2m+xb)

X [sin K2m+i(y - b) - sin K2m+Xy + sin K2m+ib]

_ £ sin(2w + \)-nx/a

(2m+ l)|AT2m+1|

[ m + 1 | ( ^ - b) - sinh|tf2m+1b + sinh|K2m+1|*>] (10)

where m = 0, 1, 2, . . . , and 2M + 1 is the greatest odd integer less than ka/m.
The solution u given by (10) is substituted into equation (4a), where the

left-hand side has the value 1, by (8). When the integration on the right-hand side
is performed, an equation for k is obtained. After some manipulation, this
frequency equation may be written in the form

y 1 ~ tanfl2ffl+,/fl2m+,

) 2 0 2
m=o (2m + l)202

2
m+, m=M+i (2w+l) 2 x 2 m +i a

where

62m+l = K2m+lb/2, X 2 m + , =\K2m+l\b/2 (12)

and

are all dimensionless quantities. The quantity a is the air cavity parameter which
is a measure of the effect of the entrapped air in the drum.

4. First-order effect

Equation (11) is rather difficult to grasp and analyze in general, but for small a
the first-order corrections to eigenfrequencies may be calculated explicitly.

If a is very small, evidently solutions of (11) exist for which cos 02m+1 is very
small. Thus we look for solutions to

atanfl2m+, _ ^ ^

(2m+l)26lm+l

where

02m+l = (2"+ l ) V 2 + e » " = 0 , 1 , 2 , . . . , (15)
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where e is a small correction of first order in a, and higher-order corrections to

(14) are neglected. Substitution of (15) into (14) yields, to first order,

*\2m + 1)2(2« + I ) 3 '

By (7) and (12), then

k2 - J(2m+l)2 (2*+ I)21 32« 1
72 1? 1W V 2

IT b (2m + 1) (2« + 1)

where

^z = P = ^-(ab). (18)
b2 -n2TV0

K '
As a -» 0, k2 in (17) tends, as desired, to the odd-odd mode value for the free
membrane without cavity, equation (2).

The ratio of cavity-loaded frequency to free frequency for any particular mode
is then given to first-order by

f(2m+\,2n+\) _ , , 16 /?
• = ! + —

(2m + \f(2n + lf[(2m + if/a2 + (2/i + \)2/b2] '
(19)

This increases with increasing /?, as expected, and the higher-order drum modes
are evidently less affected. The fundamental mode ratio is the most affected, just
as for the circular case [5].

We note that equation (19) is unchanged under simultaneous interchange of m,
a with n, b values. This symmetry must be explicit in any physical consequence
such as (19), even though for convenience of analysis the coordinates x and j> were
treated on a different footing in the "once-summed" Green's function (6).

It is always of interest in vibrating systems to investigate the ratios of higher
mode frequencies to fundamental mode frequency. In particular, we evaluate the
ratio of the odd-odd (2m + 1,2/J + 1) mode frequency to lowest (1,1) mode
frequency in the presence of the drum air cavity, compared with this ratio in the
free case (given by (2), (3)). Thus

r, _ f(2m+\,2n+\) / f(2m+ l,2n+ 1)

Al . l ) AM)

1

\/b2)

x{, 1 A 2 + Wb 1 (2Q)
I (2m + \)2(2n + \)2[(2m + \f/a2 + {In + \f/b2] J
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to first order in /?. This ratio R is a little less than 1, decreasing with increasing
(but still small) fi (equation (18)).

It only remains to check that the condition is satisfied that m must be less than
or equal to M where 2M 4- 1 is the greatest integer less than ka/m (see equation
(11)). By (17), in which the correction to the solution A;2 is positive, ka/v > (2m
+ 1). Thus m =£ M, so equation (14) does indeed always correspond to a term in
the first sum of equation (ii).

5. Degeneracies

Equation (17) holds if there are no degeneracies, i.e. different modes with the
same frequency. This will be so if b2 and a2 are incomensurable [11], i.e. b2/a2 is
irrational. In any case, the fundamental mode m = 0, n = 0 is always a non-
degenerate (singlet) mode.

In the case of degeneracies, the preceding analysis of equation (11) follows
through to yield the equation (17) where the correction term is replaced by

^ ' ( 2 1 )
(2m + 1)2(2H + I)2

where the sum 21 is over those distinct pairs (m, n) for which the sum of
sides-weighted odd squares

(2m + l)2/a2 + (2« + \f/b2 (22)
has the same value. Thus each mode in a degenerate set contributes its increase to
the total frequency shift due to the presence of the cavity, but the degeneracy is
not broken.

To be specific, we consider the case of a square, b = a. Then ii m ¥= n, the
corresponding frequency has (at least) a doublet degeneracy, corresponding to
interchange of m and n, and leading, via (21), to an extra factor of 2 in the second
term of equation (17). Higher order degeneracies exist. A well-known example is
the triplet case

P + 72 = 72 + \2 = 52 + 52_

It is interesting to note that the 3rd mode (m = n = 2) of this set gives a different
contribution from the first two modes (w, n — 0, 3) in the sum (21). In general,
all the possible degeneracies and their multiplicities for the square in the free case
are known (see [3], sections 16.9-16.10). For the square membrane with cavity,
the doublet degeneracy corresponding t o m ^ n mentioned above will not be split
even for larger parameter a, by symmetry: it merely corresponds to interchange of
axes.
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The rectangular case is more complicated, and only partial results for degener-
acies in the free case are known (see e.g. [1], sections 37-42). It is important to
note that, despite the frequency shifts, the degeneracy is not broken to first order.
It is likely that there would be splitting at higher orders of perturbation.
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