MASCHKE MODULES OVER DEDEKIND RINGS
IRVING REINER

1. Introduction. We use the following notation throughout:

= Dedekind ring (8; 12, p. 83).
= quotient field of o.
= finite-dimensional separable algebra over K, with identity element
e (6, p. 115).
= p-order in 4 (2, p. 69).
= prime ideal in o.
= p-adic completion of K.
0y = p-adic integers in K.
p* = o, = unique prime ideal in o,.
K = 0/p = 0,/p* = residue class field.
By a G-module we shall mean a left G-module R satisfying
1. R is a finitely generated torsion-free left o-module.
2. Forx,y € G,r,s € R:

Btr@ a X
|

x)r =x(yr), x+Nr=xr+yr, x(r+s) =xr+ x5, er = r.

Following Gaschiitz and Ikeda (3; 5; see also 7; 10) we call a G-module R
an M,-G-module (unterer Maschke Modul) if, whenever R is an o-direct
summand of a G-module S, R is a G-direct summand of S. Likewise, R is an
My-G-module (oberer Maschke Modul) if, whenever S/R; is G-isomorphic to
R where the G-module S contains the G-module R; as o-direct summand,
R, is a G-direct summand of S.

If all modules considered happen to have o-bases (for example, when o
is a principal ideal ring), then we may interpret these concepts in terms of
matrix representations over o. Thus, a representation I' of G in o is an M-
representation if for every reduced representation

6y
0 A
of G in o, the binding system A is strongly-equivalent (13) to zero, that is,
there exists a matrix T (over o) such that
Alx) = T(x)T — TA(x) for all x € G.
(Likewise we may define an M,-representation of G in 0.)
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Starting with a prime ideal p of o, we may form G = G/yG, an algebra
over K. If R is a G-module, then R = R/pR can be made into a G-module in
obvious fashion, and R is then a vector space over K. The main results of this
note are as follows:

THEOREM 1. If for each p, R is an M,-G-module (or My-G-module), then R
is an My-G-module (or M y-G-module).

THEOREM 2. If G is a Frobenius algebra over o, and R is an M,-G-module
(or My-G-module), then for each p, R is an M,-G-module (or My-G-module).

The significance of Theorem 1 is that it reduces the problem of deciding
whether an o-module R is an M,-G-module to that of determining for each ¥
whether the vector space R over K is an M,-G-module. Thus, we pass from a
ring problem to a field problem, which is in general much simpler.

In the important case where G = o(H) is the group ring of a finite group H,
then G is semi-simple whenever p does not divide the order of H, and for
such p the module R is automatically an M-G-module. More generally, we
may form the ideal I(G) of G defined by Higman (4); his results show that
I(G) # 0 in this case. From (9) we deduce at once that G is semi-simple
whenever p does not divide I(G). Therefore:

COROLLARY 1. R is an M,-G-module (or My-G-module) if for each p dividing
I(G), R is an M,-G-module (or My-G-module). (Note that only finitely many
p’s are involved.)

Now let G be a Frobenius algebra over o, for example, G = o(H). Then by
(5) there is no distinction between My- and M,-modules, and Theorems 1 and
2 tell us that R is an M-G-module if and only if for each p, R is an M-G-module.
Using the concept of genus introduced by Maranda in (9), we have:

COROLLARY 2. Let G be a Frobenius algebra over o, and let R, S be G-modules
in the same genus. Then R is an M-G-module if and only if S is an M-G-module.

2. p-adic completion. Theorem 1 will {ollow at once from two lemmas,
of which we prove the more difficult first. Let R be a G-module, and define
Gu=G®Dp, Rp=0p®Ry

both products being taken over o.

LeEmMA 1. If for each p, Ry is an M,-Gy-module (or My-Gy-module), then R
is an M,-G-module (or My-G-module).

Proof. (We give the proof only for M,-modules.) Let R be an o-direct
summand of a G-module S. We wish to show that R is a G-direct summand of
S, that is, that there exists f € Homg(S, R) such that f|R = identity. Using
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the Steinitz-Chevalley theory (1; 11) of the structure of finitely gener-
ated torsion-free modules over Dedekind rings, and taking into account
the hypothesis that R is an o-direct summand of .S, we may write

S=ﬂ151@...®%n3‘n, R=2[1s1®...®2[msm,

with m < =, where each 9, is an o-ideal in K, and where sy, . . ., s, are linearly
independent over K. For the remainder of this proof, let the index 7 range from
1 to n, and j from 1 to m.

To prove the lemma, it suffices to exhibit f € Hom, (KS, KR) such that
fIKR = identity, and f maps S into R. (We use K.S to denote the K-module
generated by S.) Let us set

)] f(s)) = 2 aiy s, aqy €K,

thereby defining f € Homg(KS, KR). Then f maps S into R if and only if
for each o € U; we have aay; € U, that is, if and only if

(2) ai; € (AU for all 4, j.

On the other hand, the map f defined by (1) will be an A-homomorphism
with f|[KR = identity, if and only if for all x € G, s € S, 7 € R:
fxs) = xf(s), f(r) =r.
Let us set
G=o0x1+ ...+ ox,.

This is possible since (2, p. 70) G is a finitely generated o-module. Then f is
an A-homomorphism with f|KR = identity, if and only if

@) s = 2 f(s0), f(sy) =55 for all 4, j, &,

where the index % ranges from 1 to ¢. Equations (3) are a set of linear equations
with coefficients in K, to be solved for unknowns {a;;} satisfying (2).

From the hypotheses of the lemma we deduce that for each p, (3) has
a solution {a;;} satisfying a;; € (;: A;)oy, for all 4, j. Thus (3) is solvable over
the extension field K, of K, and hence is also solvable over K. The general
solution of (3) over K is given by

N
4) @iy = €y;/dis, €15 = eq;(t) = by + Zl cits,

where the b, c(fj), d; are fixed elements of o, d;; ¥ 0, and where t ranges over
all N-tuples in K¥. The general solution of (3) over K, is also given by (4)
by letting t range over K,". Then for each p, we can find {(p) for which

(5) ei;(t()) € B0 for all 4, 7,
where B,; = (U;: As)dy;.
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For each p, let b(p) be the maximal exponent to which p occurs in the prime
ideal factorizations of the ideals B;;. Then b(p) = 0 except for a finite set of
primes. Set P = {p: b(p) > 0}, and choose an N-tuple t with components in o
such that (componentwise)

t = t(p) (mod p™) for each p € P.

In that case, e;;(t) = ¢;;(t(p)) (mod p®®) for each p € P, and all 7, j, whence
by (5) we have

(6) ordpe”(t) > Ordp%ﬁ for all i,j,

for all p € P. But for p ¢ P, equation (6) is certainly valid because e;;(t) € o,
and ordyB;; < 0. Hence we deduce that e;;(t) € B4; = (U;: Ay)dyy for all 4, 7,
whence (4) gives a solution of (3) for which (2) holds.

We may remark that this lemma is almost trivial when o is a principal
ideal ring.

_ 3. Modular representations. Now let Ry be a Gy-module, and define
Ry, = Ry/wRy, Gy = Gp/wGy. To complete the proof of Theorem 1, we need
only show:

LEMMA 2. If Ry is an M,-Gy-module (or My-Gy-module), then Ry is an M,-Gy-
module (or My-Gp-module).

Proof. Since o, is a principal ideal ring, we may express the proof (given
here only for My-modules) in terms of matrix representations. We must show
that if T' is a representation of G, in op for which T' (the induced modular
representation of Gy in K) is an Myrepresentation, then in any reduced
representation

(54

of Gy in oy, the binding system A is strongly-equivalent to zero.
We may write Gy = 0py1 @ ... @ 0p¥y, Gy = Ky, ® ... @ Ky,. We shall
show the existence of a matrix T over o, such that

8 A(y:) = T(y)T — TA(y:) for each 4,

where in this proof the index ¢ ranges from 1 to #. By taking residue classes
mod p¥*, the representation (7) gives a representation

G2

of Gyin K. Since T is by hypothesis an My-representation, the binding system
A is strongly-equivalent to zero over K. Therefore there exists V; over o
such that

9) A(y;) = T(y) Vi — ViA(y:) + 7 AD(yy) for each ¢,
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where AWM is also over 0y. But then (7) with A replaced by A®™ gives another
op-representation of Gy, whence the same argument shows

AV (y) = T(y,) Va— VaA(yy) + 7 AP (y)) for all 4,

where ¥, and A® are over op. Continuing in this way, we obtain a solution of
®) givenby T'=Vi+aVe+m2Vs+....
This proof could also have been stated in terms of cohomology groups.

4. Frobenius algebra. Suppose in this section that G is a Frobenius
algebra over o, that is, there exist o-bases {u;}, {v;} of G (called dual bases)
such that the right regular representation of G with respect to {v;} coincides
with the left regular representation with respect to {u;}. Assume that G has
an o-basis containing e. Ikeda showed (5) that My- and M,-modules were the
same, and that a G-module R is an M-G-module if and only if there exists an
o-endomorphism ¢ of R such that

(10) > u;¢v; = identity endomorphism of R.

Gaschiitz (3) had shown this for the case where G = o(H), H = finite group,
with (10) replaced by:

(11) > k¢ k! = identity endomorphism of R.
hed

We may use Ikeda’s result to obtain an immediate proof of Theorem 2.
By hypothesis, R is an M-G-module, whence (10) holds for some o-endomor-
phism ¢. But then clearly ¢ induces a K-endomorphism & of R, and
S u;¢v; = identity endomorphism of R, so that R is an M-G-module.
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