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EXISTENCE OF DIRICHLET INFINITE HARMONIC
MEASURES ON THE UNIT DISC

MITSURU NAKAI

The primary purpose of this paper is to give an affirmative answer to a prob-
lem posed by Ohtsuka [13] whether there exists a p-harmonic measure on the unit
disc in the 2-dimensional Euclidean space R’ with an infinite p-Dirichlet integral
for the exponent 1 < p < 2.

To clarify the meaning of the problem we start by explaining the background
of the problem. We say that & is a strictly monotone elliptic operator on the
Euclidean space R’ of dimension d = 2 with exponent p € (1, d] if o is a map-
ping of R’ x R’ to R’ satisfying the following assumption for some constants
0<a=pB<o0:;

the function & = o (x, h) is continuous for
(1) almost every fixed x € R’ and the function
x> d(x, h) is measurable for all fixed # € R*:

for almost every x € R’ and for all # € R’

(2) dx, h)-hzalhl,

(3) |, =Bl

(4) (A (x, hy) — d(x, hy)) + (b, — hy) >0

whenever k, # h,, and

(5) dx, An) = |12 (x, h)

for all 2 € R\ {0}. Here | x| indicates the length of a vector z = (z,..., 2% in

R’ The class of all operators 4 on R’ satisfying (1)-(5) with exponent p €
(1, dl will be denoted by &,(R").
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Using an o € ﬂp(Rd) we consider a quasilinear elliptic equation
(6) =V -dx,Vulx)) =0

on R%. A function # on an open subset U of R’ is a weak solution of (6) if u €

loc W, (U) and
Ld(z, Vu(x)  Volx)dx =0

for every @ € Cy (U) where W, () is the Sobolev space on U consisting of
functions f € L,(U) = L,(U ;R) with distributional gradients Vf € L,(U) =
L,(U,; R% and dxr = dx' - -dx” A weak solution % of (6) (possibly modified on a
set of zero measure dx) is actually continuous. We say that a function # is
A -harmowic on U if u is a continuous weak solution of (6) on U. We denote by
H_,(U) the class of all &/-harmonic functions on U. The simplest and the most
typical operotor & in dp(Rd) is the p-Laplacian 4(x, h) = | h [P?h so that the
corresponding elliptic equation is the p-Laplace equation

(7) —V-(Vu@ "V u(z)) = 0.

In this case we use the term p-harmonic instead of #/-harmonic and the notation
H,(U) in place of H,(U).

The greatest &/-harmonic minorant # A v on U, if it exists, of two
A -harmonic functions # and v on U is the &f/-harmonic function # A v on U char-
acterized by the following two conditions: (i) # Av < u and u Av <v on U;
(ii) if there is an &-harmonic function 2 on U such that 2 < # and 2 = v on U,
then # < u A v on U. A function w is said to be an -harmonic measure on U in
the sense of Heins [3] if w is &/-harmonic on U and satisfies

(8) wA (1 —w =0

on U. An 4-harmonic measure always satisfies 0 =S w =<1 on U;w=0 or
w =1 are d-harmonic measures on U ; when U is a region, an &/-harmonic mea-
sure w on U is nonconstant if and only if 0 < w < 1 on U.

Our main concern in this paper is the p-Dirichlet integral

D,w) = D,w; B = [ |V w(@ Pdz < oo
Bd
of each #-harmonic measure w on the unit ball B* = {x € R*;|z| < 1} with

A€ dﬁ(Rd). We say that w is p-Dirichlet finite (infinite, resp.) if D,(w) < oo
(D,(w) = oo, resp.). We have the following result:
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9. THEOREM. [If 2 S p = d, then every noncontsant A -harmonic measure on the
unit ball B is p-Dirichlet infinite for every d in o » RY.

We say that a subdivision 8, U 8, of B” gives rise to an electric condenser
(Bd; d,, 0;) surrounded by two electrodes J, and J, if the unit potential differ-
ence can be produced between §, and §, by putting a charge of finite energy on §,
when §, is grounded. The intuitive meaning of the above result is that B? cannot
be made to an electric condenser no matter how we decompose the boundary 0B’
of B into two parts. The above result in its present final form was obtained and
proved in [11]. The result in the special case of p = 2 and the classical Laplace
operator & (x, h) = h was proved in [9] based on a different view point. If p = d
= 2 and & (x, h) = h, then the above result has been known in the frame of the
theory of functions and its proof is found in various sources (cf. e.g. [8], [13], etc.).
If p =2 and 4 (x, h) = h, then the above result is the one in the linear potential
theory. From this view point we remark that (6) can be nonlinear for
p = 2 and even for the borderline conformal case p = d = 2 (see Appendix at the
end of this paper).

In contrast with the case 2 = p = d, we have proved the following result in
the same paper [11] cited above:

10. TrHeoreM. If 1 < p < 2, then there exist nonconstant p-Divichlet finite
o - harmonic measures on the unit ball B® for every d in o 5 RY.

We turn to the final question in the case 1 < p < 2 whether there are
p-Dirichlet infinite #/-harmonic measures on the unit ball B for every & in
dp(Rd), which is the main theme of this paper. For a technical reason we restrict
ourselves to the case of the dimension d = 2 in the remainder of this paper. We
view R? also as the complex plane by identifying the point (xl, 2% in R® with the
complex number x = 2t +iz? (= y=1). For simplicity we denote by A the
unit disc in R>: A= B’ = {z € Rzzlxl < 1},

Take two sequences (@, = (a,:1<n<N-+1) and (,) = (0,:1=n
< N+ 1) of real numbers a, and b, such that

(11) 0<a,<b,<a,,<b,<r(1=n<N)

so that (a@,) and (b,) are finite sequences of N terms if 1 £ N < o and infinite

sequences if N = o0, With these two sequences (g,) and (b,) we associate the
sequence (A4) = (A,:1=n<N+1) of main arcs A, in 04={x€R’:|z| =1}
given by
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A, =1{":a,<0<b) A=n<N+1)

and the sequence (B,) = (B,:1 =n < N+ 1) of subsidiary arcs B, in 04 given
by

B,=1{":b,<0<a,,) A=n<N).

Finally we consider the open subset A in 04 associated with sequences (a,) and
(b,) given by

A= A((a,), (b)) = Llj A,.
n=1

The function w(4, 4; 4) on 4 given by
(12) w4, 4;4) (@) =suplh(x) :h € C(4) N Hy(A), h|A =1, h|(3A\A) <0}

for £ € A is referred to as the o -harmonic measure of A with respect to A for o €
4,(R") with 1 < p = 2. In this case of an open set A in 04 the definition of
w(A, 4;4) in (12) coincides with the one given by Martio ([4], [2, Chap. 11]). We
will see later in 44 that w(A, A; 4) is actually an &/-harmonic measure on A in
the sense of Heins characterized by (8).

H1<p<2 dx, h)=|h|"h and N < o, ie. A is the union of a finite
number of mutually disjoint open arcs in 04, then we know that the p-harmonic
measure w(A, 4; ) of A with respect to 4 is p-Dirichlet finite (Ohtsuka [13],
[10]; also see Theorem 14 below). In view of this fact one might feel that every
p-harmonic measure on 4 is p-Dirichlet finite for every 1 < p < 2. Thus we are
naturally led to ask the following question originally raised by Ohtsuka [13, Chap.
VIII] in terms of extremal distances in an equivalent to but superfacially different
from our present setting:

13. OHTSUKA'S PROBLEM. Does there exist a p-Dirichlet infinite p- harmonic mea-
sure on A for each 1 < p < 2? Or more generally, does there exist a p-Divichlet infi-
nite s - harmonic measure on A for every d € o, (R®) with each 1 < p < 2?

The purpose of this paper is to give an affirmative answer to the above prob-
lem of Ohtsuka by proving the following result.

14. Mav THEOREM. If N < 00 or if N = o and either the sequence (A, |:1

= n < 00) or (l B | 01 = n < OO) converges to zero so mjndly as to satisfy the con-
n
dition
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(15) min( 32 14,1, £1B,1?) < e,
n=1 n=1

where |A,,| denotes the length of A,, then the d-harmonic measure w(A, A; d) is
p-Dirichlet finite for every 4 in 4, R with 1 < p < 2. If the sequences (| A, |:
1<n<)and (| B,|:1=n< ) converge to zero so slowly as to satisfy the con-
dition

8

(16) min(| A, ", | B, ["") = o,

n

then the A-harmonic measure w(A, 4; d) is p-Dirichlet infinite for every d in
A,(R®) with each 1 < p < 2.

The proof of this theorem will be given later in 51 after a series of prepara-
tions starting from 22. The latter half of the above result takes the following more
applicable form.

17. CoroLLARY. If the sequences (JA,|:1=n< ) and (| B,|:1=n
< o0) satisfy the condition

(18) liminf|B,|/|A,| >0 (iminf|A,|/|B,| > 0, resp)

n—oo n—oo

and also the condition
(19) 14, =0 (2B, =, resp),
n=1 n=1

then the -harmonic measure w(A, A; d) is p-Dirichlet infinite for every 4 in
A,(R?) with each 1 < p < 2.

Proof. Condition (18) assures the existence of a constant C > 0 such that
|B,| = Cl|A,| (A,|=C|B,| resp) (n=1,2,---).
Then we see that
min( 4, ", [ B,|”™") 2 min(| 4, ", C** A4, [")
=min(1, C*) |4, "7
(min( 4, ", | B, ™) = min(C*”| B, [**, | B,I"™)

= min(1, C*") | B,|*™*, resp.).

https://doi.org/10.1017/5S0027763000005213 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000005213

146 MITSURU NAKAI

Hence (19) implies (16) and thus Theorem 14 yields the above conclusion. ]

We are now able to give an affirmative answer to Problem 13 as an applica-
ton of Corollary 17 by giving the following example.

20. EXAMPLE.  Choose sequences (a,:1 = n < ) and (b,:1 < n < ) s0 as
to satisfy the condition
(21) dpyy — b, =b, —a,=n"""
for sufficiently large n. Then the s -harmowic measure w(A, A ; ) is p-Dirichlet in-
finite for every & in yﬁI,(Rz) with each 1 < p < 2.
Proof. Since 0 < 2 — p < 1, the series 5,2 "
can choose sequences (a,) and (b,) satisfying conditions (11) and (21). Then | 4, |
= |B,,| =n V" for sufficiently large # and hence (18) and (19) are trivially

< o0 and therefore we

satisfied. Thus Corollary 17 assures that the corresponding & -harmonic measure
w(A, A; d) is p-Dirichlet infinite for every & in &i,,(Rz) with each 1 < p < 2.[]

22, Trace
For simplicity we denote by I'= 04 the unit circle {z € R’: | 2| =1}. The
Sobolev space W;(G) (1 < p = 2) is a Banach space equipped with the norm

I w,@I=17;L@&I+1Vf;L©@],

where G is an open set in R” The Sobolev null space W,(G) is the closure of
C;(G) in W, (G) with respect to the above norm.

There exists a unique continuous linear operator 7 of W, (4) into L,(I) such
that yf= f| I for every f in C(4) N W, (4). The function 7f defined ae. on I"
and belonging to L,(I is referred to as the trace on I'of f in W, (G). It is seen
that the expression

(23) N =lim f(rO
11

holds for a.e. L in I (cf. e.g. [6, p.47)).

Concerning the kernel Ker 1 = 77'(0) and the image Im 7 = T(W;(A)) of v
we have the following fundamental results. First, Ker 7 characterizes the Sobolev
null space (cf. e.g. |7, p.187]):

(24) W,o(d) = Ker r = {f € W, () : /= 0).
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Second, we denote Imy = y(W,(4)) by A,(I). It is seen that the space

A, (I forms a Banach space under the norm

e —om) I’
[C=nl

where ds is the line element on I'. The theorem of Gagliardo [1] assures the exist-

25 le; 4D =le; LM+ (f j;xr d3gd3n>w

ence of a constant C = 1 such that

(26) Clles a4, I =inflf; W, @1 =Cle; 4D

for every ¢ in A,(I). The quantity | ¢ ; A,(I) | will be referred to as the Gagliar-
do norm of ¢ in this paper.

Hereafter we sometimes use the same letter C to denote positive constants
which may differ from each other from line to line and even in the same line.

27. Dirichlet problem

Let G be a bounded region in R®. We will mainly consider the case G = 4
but G is supposed to be a general bounded region for a while. For any f in
W, (G) there exists a unique u in the space H,(G) N W, (G) such that u — f be-
longs to WDI_O(G) (cf. Maz'ya [5]). This fact can be reformulated as the Maz'ya de-
composition of W, (G):

(28) WG = (H,(G) N WHG) B W, (6,

ie. any f in W;(G) can be expressed as the sum of the &/-harmonic part # in
H,(G) N W, (G) and the “potential part” g in W,o(G) : f = u + g We denote by
¢ the projection operator of W, (G) to H,(G) N W, (G) determined by 75 f =
u. We say that G is & -vegular if
(29) lim (n;’;f) (©) = fy)
x€G,2-Y

for any f in C(G) N W, (G) and for every y in 0G. If G is bounded by a finite
number of mutually disjoint smooth Jordan curves, then G is d-regular (cf. [5]).
The disc 4 is the most typical example of & -regular regions.

We also use the following extremal property of n;: the quasi Dirichlet prin-
ciple is valid in the sense that Tcz,f quasiminimizes the p-Dirichlet integral:

(30) fclv(ngf)(x) [ dx < (ﬁ/a)"fGIVf(x) [dzx.
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In fact, since u = nzf is a weak solution of (6) and # — f belongs to W;,O(G) in
which C, (&) is ||; W;(G) [-dense, we have

Lyf(x, Vu(x) - V(u — f)(x)dx = 0.
By (2), (3) and the Holder inequality we have
» . — .
aLIVu(x) [Pdx < j;d(x, Vu(x))  Vulr)dx f;ﬂ(x, Vu(x)) Vf(x)dr
(p—-1)/p 1/p
< U;I A(x, Vulx)) ]p/(ﬁ_“dx> (j; |V f(2) |"dx>

<8([1vu) Paz) ([ 19r@ Paz)

by which we can conclude the inequality (30).
We now restrict ourselves to the case G = A. We use the abbreviation T =
T, = T We say that an f in W, (G) has an essential limit @ at & in I'= 34,

a = ess lim f(x)
red,x—E

in notation, if

lim|| f—a; L (AE, o NAI=0

elo

where A(&, ¢) is the disc of radius € > O centered at & As a localized version of
(29) we have

lim (zf)(x) = esslim f(x)

red,xz—E red,x—§

at a point & in I for every f in L_(4) N W;(A) for which the right hand side of
the above exists at a & in I" (cf. [12]). Although the operator m = m, = n; is
homogeneous but not linear, we see that 7 is monotone (cf. [11]), ie. f; £ f, ae. on
A for any f, and f, in W, (4), then wf, Z 7f, on A.

In view of the relation (24) and the uniqueness of the Maz'ya decomposition
(28) we can define the operator

t=rey i A = Hy ) N W, (4).

Clearly the operator 7= 7, = T; is bijective. Moreover we have the following re-
sult.
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31. PROPOSITION.  The operator T is monotone, i.e. if ¢, Z @, a.e. on I for any ¢,
and @, in A, (I), then TQ, Z T¢, everywhere on A.

Proof. Choose an arbitrary g, in W;(A) with 7g; = ¢, (i = 1,2). We denote
by F U G the function given by (FU G) (r) = max(F(x), G(x)) for any two
functions F and G. Then (g, — g,) U 0 belongs to W; (4) by the lattice property
of W, (4). By (23) we see that

7((g,—8) U0 =(7(g, —g)) U0 =(p, = g) UO= 0, — ¢,
If we set f, = g,and f, = g, + (g, — &) U 0, then 7/, = 7g, = ¢, and
th=181t7(g—8) U0 =09, + (o, —g) = o,
Then 7@, = ©tf,, 79, = nf, and f, = f, on 4 imply that tp, = 7@, on A by the

monotoneity of 7. ]

Beside the defining boundary behavior 7(z¢) = ¢ of 7, we have the follow-
ing more precise boundary behavior of 7¢ if an additional condition is imposed
upon ¢ :

32. Lemma.  If @ € L (I N A, (D) is continuous at a point § € I in the sense
that ess im, ey, () = (&), then t¢ has a boundary value ¢ (€) at &.

Proof. We only have to show that lim,cs, ..(7¢) (x) = ¢(&). Since 7(p —
©(&) = ¢ — ¢(&), we may suppose ¢(§) = esslim,cr,_.¢(n) = 0 to show the
above identity. Let | ¢ | < K ae. on I for a positive constant K and p(x) = |z — &|
on R’. Clearly p belongs to the class C(4) N W;(G) and 7(o | I = mp, or rough-
ly 7o = mp. Hence by (29) we have

lim (zp)(x) = 0.

ZTEA,T—E

For any ¢ > 0 there is a § > 0 such that | ¢(n) | < ¢ for ae. n in A(§, &) N T
Since (K/8)p = K for every 1 in I'\ 4A(€, 0), we see that

K K
5o —e=o) =500 te
a.e. on I'. By Proposition 31, we have

~ L D@~ S @S 5 @ +e Ge .
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On letting x in 4 tend to & we see by (7o) (x) — 0 that

— ¢ < lim inf (r¢) () < lim sup (z¢) (x) =< ¢.

zreA T~ red,x—E&
Since ¢ >0 is arbitrary, we finally conclude the required identity

lim,, ,_¢ (zp) () = 0. ]

33. Estimate of Gagliardo norms
For two measurable subsets X and Y in I" and mostly for open or closed sub-
arcs X and Y in I" we consider the set function

(34) sx, = [ [ le~uldsds,

where ds is the arc element on I. The following elementary properties of S are
easily checked and will be used without making any further mention of them: S is
symmetric, ie. S(X, ¥) = S(Y, X);S is rotationally invariant, ie. S(e"X,
e’Y) = S(X, V) where ¢’X = {¢6:& € X}; S is additive, i.e. X = U'_ X, is

a finite disjoint union, then
n n
S(UX, »=2SX,Y;
71=1 7=1

S is increasing, ie. if X © X and YC Y/, then S(X, V) = S(X', Y.
We denote by I'* the upper half circle {¢: 0 £ § < ©}. For a measurable
subset X and mostly for open or closed subarc X in I” we set

X"={rxe0,2n):"€X}

which is a measurable subset of the real line and actually the interval [0,27). We
consider the auxiliary set function

(35) ree, = [ [ le—yl” dady

which is comparable to (34) for X and YVin I'™:
(36) (X, <SX, s @/2'TX, V) X, Ycr.

To see this relation we observe that

SX, V) foxxy|§—nl"’dseds,,=ffoXYA]e’I—e’”l—”dxdy.
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Replacing | et — e"| in the above by | — y| or (2/7) | £ — y| based on the fol-
lowing inequalities

C/mlz—yl S| —e"|s|lz—yl (x,y<l0, ),
we deduce the required inequalities (36).

We choose arbitrary open or closed arcs I and J in I'" such that (int ) N
(int /) = @ where int I is the interior of I considered in I We denote by | I the
length of the arc I. Let p = p(I, J) be the distance between I and J considered in
the Riemannian metric in I We then deduce the following fundamental relation:

37. IpENTITY.  The auxiliary set function T(I, ]) is given by

TU, D =CAl I+ + (JI+ " = (I +]]]+ 0" =0
1<p<2) where C,=1/(p — 1) (2 — p).

Proof. Let the closures of intervals I” and J" be [a, b] and [¢, d], respec-
tively. Since T(I, J) = T(J, D), we may assume that 0 = a<b=c¢<d=nm.

Then
T(I,])=f£Ax]A|x—y|_pdxdy=£b<£d(y—x)_pdy>dx

b 1
=@(— 1)_1_[ {c—2"™" —d—2""dz
={p-DC-—p - ==+ W@ —@—".
Since c—a=|Il+p,d—b=|]J|+p,d—a=|I|+|J|+p and ¢c—b=p,
we deduce the identity 37. O

For an arbitrary open or closed arc I in I" we denote by I° the complement of
I with respect to I"so that I° = I'\ I. Then we have the following relation:

38. Estmate. S, I€) < (7' + Sp'le)nﬁ [T177 QA <p<2).

Proof. Let I = Uf=11,» be the decomposition of I into 6 arcs I; such that
(intI) N Gntl) = @ and | ;| =| L | for j, k=1,2,---,6 with j # k. Take
the arc J in I'" such that the midpoint of Jis ¢ = (0, 1) and | J| =|L|=11|/6
for y= 1,2, -+, 6. We denote by J; and J, the two arcs which are components of
I'"\Jandset =TI = {e"”: 7 < 0 < 2n}. We estimate S, I°) as follows:
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6

6 6
SU,IY=SWU I, IY=2SU,I) < 2SU,I)
j=1 1=1 1=1

=65/, J) = 65(J, fo) = 65213(1, ).

By (36) and (37) we see that
SU,J) = @/2'TJ, J)
= @/2'CAJ + 1L = AT +1,0""
< @/ (=12

because p(J, J) = 0. Since J" € [x/3, 2n/3] and J, = I'", we see that | —
e’ | =1 for ¢” € J and e € J,. Therefore

SU,J) = ff,; | % — " [Pdzdy < ff]wsA dzdy
=|JIEl=xl]1 €a(/3) 7| T
in view of [ J| £ 7 /3. Hence we have
SU, I £62x/2)"C, | TP+ (/3™ | T
=6x"2'’C, + 3| JI? =6x"2""C, + 37N ( 1]|/6)*”
=6"7'@7C, + 3N IT = @+ 3T T O

For any set E in I" we denote by 1, the characteristic function of E on I" so
that 1,(6) =1 for € € E and 1,(6) = 0 for £ € I'\ E. We then have

39. ProproSITION.  For any exponent p € (1,2) there exists a positive constant C
depending only on p such that

(40) I1,; 4,0 I<11"+Cl1|*””

for every open or closed subarc I of I

Proof. Recall that

I1,;4,MO1=11,;L,WD I+ (ff” | 1,(}9S : ;Il(bn) |

=\|I" + (U, 19 + Su°, ).

1/p
dsédsn>
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By the estimate 38 we see that
11, 4,0 1 <1117 + 2@ + 27 c)ah) | 11497,

Hence it suffices to choose C = {2(2"™ + 3’7'C )}’ x. [

41. of-harmonic measures of boundary sets
In this section we assume that 1 < p < 2 and study the &/-harmonic measure
w(A, A; 4) of the boundary set

A= A(@a,), b)) = U A,

1

i Cx=

where A, = {¢”:a,<0<b) A =<n<N+1;N= ) is introduced in (12).
Since 0 is a competing function in the definition (12), we see that w(A4, 4;4) =2 0
on 4. Since any competing function % in (12) satisfies # = 1 on 4, we see that
w(A, A;4) =1 on A. Thus we have

(42) 0=, A; )@ =1 (@€ ).
As for the boundary behavior of w(A, 4 ; &) we have the following relation:

lim w, 4;4)(@ =1 (£€4),

el x—E

lim w(, 4;4)@) =0 (E€T'\A).

red,x—E§

(43)

In fact, suppose first that & € A. There is a function ¢ € Cy (R such that
0<¢=1onR’¢® =1and ¢ =0 on I'\A. Since ¢ belongs to C(4) N
W; 4), h= n;go is a competing function in (12) and we have

o) 2w, A:;d) @ =21 (x< ).

Thus A(x) = 1 (x € A, x— &) implies the first relation in (43). Next we assume
£ € I'\A There is a function ¢ in Cy (R such that 0 £ ¢ < 1on R? ¢(&) =1
and ¢ =0 on A. Then ¢ =1 — ¢ belongs to C(4) N W;(A) and g = n;(p is in
C() N Hy(4) such that 0 = g=1on 4, g(6) =0 and g=1 on A. Let h be
any competing function in (12). Since # = g on I, the comparison principle (cf. e.g.
(2, p. 183]) implies that # = g on 4. Thus

0=wd 4;4) @ =gl €4,

That gx) = 0 (x € 4, x— &) implies the second relation in (43).
We are now ready to prove the following result announced in the introduc-
tory part. Only here we assume that 1 < p = 2.
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44. ProposITION.  The function w(A, 4 ; d) is an d-harmonic measure in the
sense of Heins.

Proof. We denote by K the closure of the set consisting of points ¢'* and "'
(1=n<N+1;N= o), Wecan find a sequence (K,,), <. of unions K,, of a
finite number of mutually disjoint closed discs such that

K,oK,,2K m=12,...)

and

K,=K.
m=1
Choose an R € (1, ®©) such that K, € G := A(0, R). We can find an f,, in
C(G) N W;(G) such that f,,| K, =1 and f,|dG =0 for each m =1,2,---.
Moreover, by the lattice property of C(G) N W;(G), we can assume that O
<fu=f,=<1onGm=1.2,-). Since G\K,, is d-regular, the function w,,

defined by
\K s
w,,(z) := {(ﬂf;K f) (@ (x € G\K,),
fu(2) (x€ K, U036
for each m = 1,2, -+ + belongs to C(G) N Hm(G\Km) N W,,I(G), and satisfies

w, | K, =1 and w,, | 3G = 0. The sequence (), ,smcw is decreasing along with
(f,)1sm<eo- By the Harnack principle (cf. e.g. [2, p. 113]), w = lim,,_,w,, is
#A-harmonic on G\ K. Clearly w € C(G\ K) and w| 8G = 0.

Consider the p-capacity cap,(K,, G) of the condenser (K, G) given by

cap,(K,, G) = infL\K Vo) ["dx

where the infimum is taken with respect to ¢ in C, (G) with ¢ = 1 on K,,. The
p-capacity Capp(K, G) is similarly defined. It is a fundamental property of the
p-capacity (cf. e.g. [2, Chap. 2, in particular, p. 28]) that

lim cap,(K,,, G) = cap,(K, G)

m—oo
since K,, and K are compact and K,, | K. Note that

K= {e"} cpeynr U {elbn}1sn<1v+1 Uux
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where X consists of only one point lim,_.e"" = limn_me'b” if N=oo and X= ¢
if N < oo, By the subadditivity of the p-capacity and the vanishingness of the
p-capacity for one point we see that

cap,(K, G) = né {cap,({"}, G) + cap,({e""}, G)} + cap,(X, G) =0

and therefore we conclude that

lim cap,(K,,, G) = 0.

m—oco

For any competing function ¢ € C, (G) with ¢ = 1 on K, for the p-capacity
cap,(K,, G) we set ¢,, = max(min(p, 1), 0). Clearly

_ _G\Kp, _ _G\Kp
Wy, = Ty fm = Ty Do+

By (30) we see that

[17u,@ Paz= [ |Vw,@ Pdz
C\K,,

G

< <§>1J j;\Km Vo, (@ [dx < (§>p j;\Km Vo) "dx.

Hence we have
)
f |Vw,, () |"dx < <E> cap,(K,,, G) — 0 (m— )
¢ a

and therefore we can conclude that {Vw,} .. converges to zero strongly in
L,(G, R% and hence converges to zero weakly in L,(G, R%). As the locally uni-
form limit of the decreasing sequence {w,,} with 0 = w,, = 1, the function w is
bounded and continuous on G\ K. Hence we may view that w € L,(G, R). Thus,
by w,, | w ae. on G, we have

wa(x)'q)(x)dx = — fw(x) V- 0)dx
G G

= — lim j;wm(x)V + @(x)dx = lim _/; Vw, (x) ®@)dxr =0

Mmoo m—oo

for every C” vector field @ on G with compact support. This means that
Vw(x) = 0 on G and thus w is a constant on G. Hence w| 0G = 0 implies that

(45) lim w,(x) =0 (x € G\ K).

m—oo
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It is clear that w(A, 4;4) =20 and 1 — w(A4, 4;4) = 0 on 4. Take any
A-harmonic function # on 4 such that w(4, A; ) = hand 1 — w(A, 4;4) = h
on 4. By (43) we see that

limsup 2(x) £0 (p € I'\K).

r€d,z—n
It is clear that # = 1 and w,, = 0 on 4. Hence we see that

limsup A(z) £ limsup w,(x) = lm w,(x)
2€A\K .27 2E€A\K . x~7 LEAK .27

for every 1 in d(4\ K,). By the comparison principle (cf. e.g. [2, p.183]) we have
h < w, on A\ K, On letting m T oo, (45) yields # = 0 on A. This proves the ex-
istence of the greatest &f-harmonic minorant w(, 4; HANQA — w4, 4; A)) of
w(A, A;4) and 1 — w(A4, A; &) on A and therefore we have

w, 4; HNA —wld, 4;4) =0
which is the defining property of &/-harmonic measure on 4 in the sense of Heins.

O

We next study the &/-harmonic measure w(A, 4; &) when N < o so that A
is the union of a finite number N of open arcs 4,: A = UZV:IA,, (N < o). Let
X= ULIX,, and Y= ULIYn where X, and Y, are open arcs in [ such that
X, cA,cA,cY,cV,cI" n=12,---,N)and ¥, N Y, =0 (n+ m).
Such an X will be referred to as being admissible for A. In view of Proposition 39
we see that

[1,;4,(D | = :é” 1y, A, | < szjl (X, "+ C| X, |e-proy

so that we have
46) | 1x; A, || £Cy and similarly [|1,; 4, |, 11,5 4,(D | £ Cy

where Cy = N(x"? + Cz®*”’?) is a constant depending only on N (and p).
Therefore we can define wy = 71, and wy, = 71y, By Lemma 32, (43) and the

comparison principle, we deduce
A7 wy (@) = wl, 4;4) (@ =w,(») (&€ 4).
By the comparison principle and the Harnack principle

w, = lim wy and @, = lim w,
XTA rla
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are well defined and &/-harmonic on 4. Similarly, (46) assures the possibility of
defining w, = 71,. We will show that

(48) w, (1) = w,(x) = w,(x) (x € 4).

This with (47) implies that w(A, 4; &) = w, on A. Thus we can conclude the fol-
lowing result.

49. ProposiTioN.  If N < 00 and 1 < p < 2, then 1, € A, (), the d-harmonic
measure w(A, 4 ; d) is p-Dirichlet finite on A, and the trace y(w(A, 4; 4)) = 1,
onT.

Proof. We only have to show the relation (48). By (26) and (46) we see that

inf |Vf;L, 1= inf |lf; W, )]s Cli; a0 sCCy.

Tf=1x 11=1x
By the quasi Dirichlet principle (30),
IVwy; L) | = B/a) |V 5 L, Q) |
for any f with 7f = 1, since ©f = wy. Hence we see that
IVwg; LA = C

where we denote by C the constant (8/a)CCy. Any bounded set in the reflexive
Banach space L,(4) = LP(A;RZ) is weakly sequentially compact. Terefore we
can find a countable sequence (X(m)) ., . in the set {X} of admissible X such
that X(m) € X(m + 1),

m Wy, = w,

m— o0
locally uniformly on 4, and (Viy) 1<mee is weakly convergent in L,(4). Since 0
= w, £ 1on 4, w, belongs to L,(4) and

[0,@7 0@dz=lim [, @V 0@da
A4 A

m—oo

= — lim leX(m) () O(x)dx = — J;(weak lim Vwy,,, (1)) - @(x)dx

m—oo m—oo

for every C” vector field @ with compact support in A. This means that the dis-
tributional gradient Vw, = weak lim,,_,, Vwy,, € L,(4) and therefore w, €
W;(A). By (47), wy < w, < w(A, 4;4) on A for any admissible X. By (43) we
see that
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1, < yw, £1,

ae. on I' for any admissible X. A fortiori we can conclude that yw, = 1, in
L,(I). Hence yw, = yw, = 1, implies that w, = w, = 7v1,. Similarly we can
show that w, = w, = t1,. The proof of (48) and hence that of Proposition 49 is
thus complete. ]

We turn to the study of the #/-harmonic measure w(4, 4; &) when N = oo
sothat A= U,_ A, We will base our reasoning upon the fact that Lys a, always
belongs to A,(I) for every k < o as was shown in Proposition 49. However
1, = 14z 4, may or may not belong to A,(I) in general.

50. ProproSITION., Suppose N = © and 1 < p < 2. The A-harmonic measure
w(A, A; o) is p-Dirichlet finite on A if and only if 1, € A,(I) and in this case the
trace Y(w(A, 4;4)) =1, n T

Proof. Suppose w(A, 4 ; o) is p-Dirichlet finite so that w(4, 4 ; o) belongs
to W;(A). Then by (43) and (23) we see that y(w(A, 4;4)) = 1, on I except
for the boundary of U,_,(A, U B,) relative to I" and hence a.e. on I Therefore
1, belongs to A,(I).

Convsersely assume that 1, € A,(I). Then we can define w, = 71, so that
D,(w,) =||Vuw,; L,(4) |’ < oo Leta= lim, ; ..a, which belongs to (0, 7]. Set

v, =" — e (k=1,2,--+)

and choose a function %, on A(e*, 3) = A(e", 3) such that x, is continuous on
A", 3), p-harmonic on A 3)\ A", 7)), Xk[ﬁ(em, 7) =0 and yx, | 94, 3)
= 1. Choose an arbitrary ¢ in C, (4(e", 3)) with ¢ 2 1 on A", 7,) and set
¢ = max(min(¢, 1), 0). Observe that

4(e,3)\4(e,r})

l—yx,=m, ¢

on A", 3)\A—(em,rk) where 7, =m, with d(x, h) = | 2)”h. The quasi
Dirichlet principle (30) is nothing but the Dirichlet principle in this case of @ = 8
=1fordlz, B =|h|"n:

IV Q= %) L, D\NAC ) [ < 1Vg:L,(AC", H\AE"7) |
<IVe; LA™, D\ A", 7)) |.

Since cap,(4(e’, 7)), 4(e", 3)) is the infimum of |V ; L,(4(", 3)) | for ev-
ery ¢ € C, (A", 3)) with ¢ = 1 on A(e”, 7,), we see that
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17x.; L,(Ae™, 3) I < cap,(d(e”, 7,), A(e™,3))

(and actually we can replace = by = in the above). Note that A(e”, 7,) and
{e"} are compact and A(e", #,) | {e"} as k— oo. This assures that

cap,(d(e", r), A(e”,3)) | cap,({e}, A(e", 3)) (k T o).

Since cap, ({e'}, 4(e", 3)) = 0 (cf. e.g. [2, p. 35]), we see that

lim [Vx, (@ ["dz = 0.
k1o Y4%3)

By the comparison principle and the Harnack principle, we see that (X,) <<

is increasing and converges to a p-harmonic function x locally uniformly on

A, 3)\(e}. Here 0 S x =1, x € C(A", 3)\{'}) and x| 84(™, 3) =1,

and in particular x € L,(4(e", 3)). Hence

[ 2@V 0@ =lm [ 1@V 0@d
A(e'9,3) 'Ae9,3)

k— o0

=—1lm | Vy, @ 0o@dxr=0
k—oo Y4('%,3)

for every C” vector field @ with compact support in 4(e', 3). This proves that
Vx =0 on A(e™, 3). Thus X is a constant, which must be 1. Therefore we see in
particular that x, 1 1 (k T ) locally uniformly on A\ {e"} and D,(x) =
IV LD 'L 0 (k1 oo).

Next we consider the sequence ()X,W,)<i<e In 4. Clearly we see that
xiWwy T w, (kT ) locally uniformly on A. We also have that D,(x,w, — w,)
— 0 (kT ). In fact,

1/p

D,(x,w, — w,)
1/p 1/p
< ([10@ = 1P17w,@ Vaz) + ([ 10,@ P17 V)

<([1n@—1ra@)” + ([1vx@ Paz)

where du(x) = |Vw,(x) [’dr is a finite measure on A. The second term of the
rightmost side of the above is D,(x,} | 0 (k T o). The first term of the right-
most side of the above tends to zero as k£ T o by the Lebesgue dominated con-
vergence theorem since x, T 1 ond ask T 0.

We now set

u, = nﬁj(kaA) = T;((Txk)l,q) = Wy
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on A. The last inequality comes from the monotoneity of ﬂ; and T;. By the same
reason, (#;),s,<. 1S increasing on A. By the Harnack principle there exists an
A -harmonic function # on 4 such that #, T u = w, (k T o) on 4. By the quasi
Dirichlet principle

D,(w) < (B/a)"D,(,w) — (B/a)’D,(w,) (kT ).

Hence (V#;) <4< is a bounded sequence in L,(4) and we can extract a weakly
convergent subsequence (Vu,,). Then

Lu(x) V - &(x)dr = lim Auk,(x) V- owdr

Kk’ —oo

= — lim j; Vu, (2)  @(x)dxr = —L(weak limVu, (x)) - ®(x)dx

k" —oo

for every C” vector field @ with compact support in 4, which proves that the dis-
tributional Vu = weak lim,, ; ., Vu,. belongs to L,(4). Hence D,(u) < oo and
u € W;(A). Therefore yu, < 7 = yw, or (yx,)1, = yu =1, ae. on I Since
x, 1 1 (kT o) locally uniformly on 4\ {¢"*} and thus x, 71 (k1T o) ae on
I, we see that yu = 1, so that ¥ = w,, ie. lim; ; 4, = w, on 4.
Observe that
(TXk)lu;‘,,lA,, =1,

so that we have u;, = w.x_, = w, on 4. By Proposition 49 we have
k
w(U A, A4;4) = w4
n=1

on A. Hence we have

on A and by letting k T © we conclude that
k
lim w(U A,, 4;4) = w,
kleo  n=1

on A. Since O, = Ut A, isopenin I, 0, € 0O,,, and

0=00,=04,=4

1 n=1

TCs

is again open, we can show (cf. e.g. [2, p. 29]) that
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k
lim w(U A,, 4;4) = lim w(0,, 4;4) = w(0, 4;4) =w, 4;4).
1

koo n= kT oo

Thus w(4, 4;4) =w, = tl, is p-Dirichlet finite and 7(w(4, 4;4)) =1, €
A, (D). ]

51. Proof of Main theorem

If N < oo, then, by Proposition 49, w(A, 4; o) is p-Dirichlet finite on A.
Hence, hereafter in this proof, we assume that N = oo so that A = A((a,),
(b)) = U,_A, Let

B,=I'\U (4, U B,)
n=1

and set B= U,_B,.

We now start the essential part of this proof by showing that (15) implies the
p-Dirichlet finiteness of w(A, 4; &) on A. Suppose first that =, _, | B, ™ < oo
Observe that

1 -1 ? b
a0 =10 Lo 1+ ([ f 00 )
* -7
= lAll/P _+_ (ZS(AC, A))l/b.

By the estimate 38, S(B,, BL) < C| B, |””” where C is a constant independent of
n = 1,2, . Therefore we have

SUAC, A) = S(A)°, A) = S(U B, A) = 3 S(B,, A)

8

<3 SB,B)<CS|B, "<
0 n=0

n

Hence we see that 1, € A,(I). Next suppose that >, | A, [*”” < . In the same
fasion as above simply replacing the role of A and (4,)] by B and (B,);, we see
that 1, € A,(I. Clearly

L=1-1,=1-1;=1-1,

a.e. on I' and thus 1, € A,(I). Hence in any case the condition (15) implies that
1, € A,(I). By Proposition 50 we can conclude that w(4, 4; &) is p-Dirichlet
finite.

We close this proof by showing that (16) implies that w(A, 4; ) is
p-Dirichlet infinite. We prove this by contradiction. Suppose, contrary to the
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assertion, that w(A4, 4; &) is p-Dirichlet finite. By Proposition 50 we must have
1, € A, (D). Since A, and B, (n = 1) are in I'", (36) implies that

T4, B,) =S@A4,, B,) n=1,2,--).

Therefore we deduce that, for any fixed positive integer k,

k

4, B) s 354, B) = 3 (2 54, B,)

n=1

M=
~

I

n=1

oo

s(f}An, 0 B,) =25(0 A, U B,) = 25(4, (A))

m=0

= 25(4, A9 = ff” | lA(f;:;AI(p”)' ds.ds, < | 1,5 4,(D) |

On letting k T ©°, we obtain
(52) > T@A, B) =|1,;4,D .
n=1

By the identity 37 we have
T(A,, B,) = C,( A, "+ 1B, — (A, | +|B,D*™.

Here we used the fact that the Riemannian distance p = p(4,, B,) = 0 considered
in I'since 4, N B, = {e""} #+ 0.

We pause here to observe the validity of the following simple and elementary
inequality for 1 < p < 2:
63) 2+ =@t T2+ — @+ 0Sasz,05b=y).

In fact, consider f,(x) = 277+ " — (x+ 9)*” as a function of £ = 0 for an
arbitrary fixed y 2 0. Since

%f,,(x) =@2-p"— @+ z0 &>0),

we see that f,(2) is increasing and hence f,(z) 2 f,(a) (0 < a = x). By the sym-
metry f,(a) = f,(y) we also see that f,(y) = f,(b) or f,(a@) 2 f,(a). Thus f,(zx) =
i@ (0=a=zx,0=b=y) which proves (53).

On setting x =1|A,|,y=1|B,|, and a=b=min( 4,1, | B,) in (53), we
obtain

A, "+ 1B, — (A, +1B,D*"*
= 2(min( 4,1, | B,1)*” — @2min( 4,1, | B, [))*™.
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Since the left hand side of the above is C;IT(A,,, B,), we have
c,C-min( A, ", |B,|”") = T4,, B)

where C = 2 — 2°7" € (0, 1). Hence by (52) and (16)
o = CpCEl min(| 4, "7, | B,I"") = 1,54, || < o,
which is clearly a contradiction. L]

54. Appendix: Nonlinearity of o,(R%)

The p-Laplace operator &(x, h) =|h|"°h is a typical example of o €
,sz@(Rd) which makes the equation (6) nonlinear if p ¥ 2. However it is important
to recognize that szfz(Rd) contains an & which produces a genuinely nonlinear
equation (6) as was pointed out e.g. by Martio in [4]. Even in the borderline con-
formal case p = d = 2, the & -harmonicity in general belongs in essence to the
category of nonlinearity. In this appendix we will exhibit such an & € ﬂz(Rd) for
every dimension d 2 2. The author owes a lot to Professor Masaru Hara in con-
structing this example.

As a required & € 4,(R”) we only have to take the one of the form & (z, k)
= A(h) independent of x € R’ such that A = A,: R°—> R’ (d = 2) is nonlinear.

Consider a closed surface X in R® (d = 2) which is star-shaped and sym-
metric with respect to the origin O of R’ belonging to the region bounded by 2. In
terms of the polar coordinate expression x = rw of x € Rd\ {0} with » = |x|
and w = z/| x| in dB° since X is star-shaped with respect to 0, we have the po-
lar coordinate expression of 2 as follows:

S:r=glw (w<dB.

By the symmetry of X with respect to 0 we see that g(— w) = g(w) for every
w € 3B°. Since the origin O is contained in the interior region bounded by 2 we

have
s = inf{g(w) : w € 3B“} > 0.
We then set
C,i= sup(| g(wc)o : f—,)(w) | rw, o E OB’ w # &))

which lies in (0, oo] at the moment. As a candidate of the required A we now set
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gh/Ihh (h#0),

AWk = lo (h=0).

Then we have the following

55. Fact. If the condition Cy < V2 ¢y is satisfied, then A belongs to d,(R%)
(d = 2) and moreover A is not linear if and only if X is not a sphere with center Q.

Proof. The continuity of A(h) at h € R’\ {0} follows from that of g. Since
| A(h) | = (sup,peg) | k] and A(0) =0, A(h) is continuous at » = 0. Thus A
satisfies (1). Observe that

A h=gh/|hDh-hZcs | h|* (h+#0)
which shows the validity of (2) for p = 2 by taking @ = ¢;. Similarly
LA | =g/ hD |1 h] < (sup,peg) | RI* (h# 0)

which assures (3) for p = 2 by taking 8 = sup,z«g. In passing we observe that
0 < a = B < oo, Next we ascertain that (5) is valid for p = 2. If A > 0, then

AQh) = gQh/A| DAk = 2A) (h # 0).
If 2 <0, then, by A = — | A] and g(— w) = g(w), we see that
AQR) = A( 2] (=) =|2lA(=n =[2|g(=h/| = D (=h)
=—|2lgn/InDh =240 (h#0).
Therefore the proof of (4) only is nontrivial. We need to show that
(56) (A — AR)-(h—h) >0 (h# h).

When one of % and 7 is 0, the other is nonzero and a fortiori (2) and A0) =0
trivially imply (56). Thus we assume that both of # and % are not 0. We can
moreover assume that | 2] = 1 so that we may set 2 = rw (r=|h|, w € B%,
h=a& (@€ 0B") and

w-»=cos B (€ [0, nr]).

Then % # h is equivalent to either # # 1 or w # @ (or 6 # 0). Hence (56) is
equivalent to

(glwrw—gl@a) rwo — @) >0 r+1orw+* o)),

which can be restated as
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(57) Q:= glw)r’ — {(g(w) + g(@))cos Br+ g(@) >0 (r#1or 6§ #0).
We thus have to prove (57). If § = 0, then w = @ and #» ¥ 1 so that
Q=glwr—1">0

and (57) is certainly true. If 6 € [7/2, 7], then cos § = — | cos 6| and hence
we have

Q=glwr*+ {(gw + g@) | cos 8} r+ g@ >0

so that (57) is also true in this case. To prove (57) we thus only have to treat the
case 8 € (0, 7/2). Viewing @ as the quadratic form of 7, it is sufficient to show
that the discriminant of @ is negative:

(g(w) + g(@))’cos’d — 4g(w)g(@)
= (glw) — g@)" — (glw) + g(@))’sin’0 < 0.
Since | w — @ |2 = 4sin’(6/2) > 0, the above inequality is equivalent to

_ (glw) — g@))"

(58) D: :
lw— @l

— (g(w) + g(@))’cos’(6/2) <0 (0<6<7/2).

By virtue of Cy < v2¢; we see that
D £ C:— 4cicos’(n/4) = CL— 262 <0,

i.e. (58) is valid. Therefore we have shown that A € &,(R?) if C; < y2¢;.

Clearly A is linear if g is constant on 9B” or equivalently X' is a sphere with
center 0. Conversely assume that A is linear. Fix an arbitrary o, € dB® and take
any € 0B different from * w,. Then A(w) + A(w,) = A(w + w,) or

gwo + glw)w, = gllw + wy) /| w + w, ) (@ + w,)

and the linear independence of {w, w,} implies g(w) = glw, = gl(w + w,) /
|w + w,|) so that g = g(w,) on 9B’ ie. X is a sphere with center 0. ]

59. EXAMPLE. Let X' be a hyperellipsoid
d (xz)z
2

=1 (0<d sd s =4d.
i=1 (@)

If a’ —a'is positive but enough close to zevo, e.g. if

(60) ad<a' <yd/d—-1d,
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then X induces a nonlinear A € d,(R?) (d = 2) as in the proof of Fact 55. On the
contrary, if a° — a' is sufficiently large, e.g. if a° > 6a’, then A & 4,(R%) (d = 2).

Proof. Assume (60). We express 3 as 7= glw) (w € 6B% by the polar
coordinate (r, w) :

¢@) = (£ (@7 = @I+ @) =W o),

Then clearly we have
¢ = inf{g(w) : w € 3B°} = a' > 0.
We see that
log/d0' | = (@) — @)™ o'l g’ = (@)™ = @)@’
(i=1,-,d—1). Therefore we deduce
Cy £Vd—1(@H 7= (@)™ @)’ =vd— 1"’ — (@)Ha"@)™*
<Yd=T1WUd/@— D) @)’ — @))Wd/d—1a'(a)™*
= (Jd/(d—1)a" £V2a = 2¢,

by which Fact 55 implies the first assertion.
We proceed to the proof of the second part. Observe that A € dz(Rd) implies
(58). Set w = (1/4,0,--+, 0, v15 /4) and

(1/4+5¢0,-+,0,V15/4 — (/15/2 —/15/4 — 4e(1/2 + €))/2)

I

7]
for sufficiently small ¢ > 0 in (58). On letting @ — w or equivalently ¢ | 0 or
60— 0 in (58) with the above choice of w and @ we deduce

To (@) = @ H4g@)) — 4g(@)’ = 0.

Since 1 < y15 — 2 and yI5 + 30 < 36, we have (@) > < 36(a”) % or a” < 64",
Hence we must have A € o,(R%) if a* > 6a’. L]
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