
LATTICE-ORDERED RINGS OF QUOTIENTS 

F. W. ANDERSON 

Introduction. R. E. Johnson (10), Utumi (18), and Findlayand Lambek 
(7) have defined for each ring R a unique maximal "ring of right quotients" 
Q. When R is a commutative integral domain (in this paper an integral domain 
need not be commutative) or an Ore domain, then Q is the usual division ring 
of quotients of R. Moreover, it is well known that in these special cases, if R 
is totally ordered, then so is Q. 

The main purpose of this paper is to study the ring of quotients Q, and in 
particular its order properties, for certain lattice-ordered rings R. Since very 
little is known about the structure of general lattice-ordered rings, we shall 
restrict our attention to lattice-ordered rings which are subdirect sums of 
totally ordered rings; these are the i-rings of Birkhoff and Pierce (4). For the 
sake of simplicity, but at the expense of some generality, we shall also assume 
that R has an identity. 

As we shall show, the fact that R is an f-ring (even a totally ordered integral 
domain) does not imply that Q is an f-ring extension of R. If Q is an f-ring 
extension of R, then R is called a qî-ring. Two of our results are devoted to 
characterizing the qf-rings. The more interesting of these states that if R has a 
zero singular ideal (10), then R is a qf-ring if and only if for all a, b 6 R, if 
aR C\ bR = 0, then a JL b. Thus the qf-integral domains are precisely the 
ordered Ore domains. In general, however, not every qf-ring, even with zero 
singular ideal, is an Ore ring. 

Since not every semi-prime f-ring with the maximum condition for right 
1-ideals is a qf-ring, the natural f-ring analogue of Goldie's theorem (8) for 
the ring of quotients of a semi-prime noetherian ring is not possible. However, 
in §6 we obtain an analogue for qf-rings. 

If the singular ideal of a ring R is zero, then Q is a regular right self-injective 
ring. Utumi (18) has characterized such rings in terms of cosets of principal 
right ideals; in §7 we prove a new characterization of regular self-injective 
f-rings. 

1. Preliminaries. Unless explicitly stated otherwise all rings will be assumed 
to possess an identity element. 

We begin this section by recalling a few facts concerning generalized rings 
of quotients. Further details can be found in (7, 10, 11, 12, and 18). 
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If J? is a ring, then there is a right i^-module E, called the injective envelope 
of R, characterized by the properties (6): 

(1) RR is an essential submodule of ER\ 
(2) ER is injective. 
Given a right ideal D of R and an jR-homomorphism 4>:D —> R, the injectivity 

of E insures the existence of an extension <f>:R^ E of <£. The right ideal D is 
dense in R in case each such </> has a unique extension $ G Hom^i? , £ ) . Then 
one readily proves: 

1.1. LEMMA. For a right ideal D of R the following conditions are equivalent: 
(1) D is dense in R; 
(2) for each h G HomR(E, £ ) , D Ç ker h implies R Ç ker h\ 
(3) {x G E;xD = 0} = 0. 
Let A denote the set of all dense right ideals of R. Further easily proved 

properties of A include: 
(D.l) each D G A is essential in RR; 
(D.2) A is a dual ideal in the lattice of right ideals of R; 
(D.3) if a £ E and if D, Df G A, then {x G D;ax G D'} G A; 
(D.4) if D G A and if I is a right ideal of R such that (I:x) G A for each 

x G D, then I G A (if A, B are subsets of a right i^-module M, then 
(A:B) = {x G R\Bx QA}). 

1.2. THEOREM (Utumi 18). The ring R has a unique, to within isomorphism 
over R, ring extension Q satisfying: 

(1) Dq = {x G R', qx G R} is dense for each q G Q\ 
(2) for each D G A and each <j> G HomR(D, R) there is a unique q G Q such 

that 
<j)(x) = qx (x G D). 

The unique ring extension Q of R assured by Utumi's theorem is called the 
maximal ring of right quotients of R (when no ambiguity is likely, we shall call 
Q simply the ring of quotients of R). Several characterizations of Q are known; 
cf. (12). Here it will suffice to observe that with the obvious ring structure, 

{x G E\ (R:x) G A} 
is isomorphic to Q. 

Next we review some material from the theory of lattice-ordered rings. A 
detailed treatment can be found in the work of Birkhoff and Pierce (4). For 
more on the structure of f-rings, see D. G. Johnson (9). 

A partial ordering > defined on the underlying set of a ring R is compatible 
with the ring structure in case for all x, y, z G R, 

(i) x > y implies x + z > y + z; 
(ii) x > 0 and y > 0 imply xy > 0. 

If > is a compatible partial ordering on R, then the set P of positive elements 
clearly satisfy: 

p n ( - P ) = 0 ; P + PQP; PPQP. 
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Moreover, the correspondence associating with each compatible partial ordering 
its positive set is one to one. 

By a partially ordered ring is meant a pair consisting of a ring and a com
patible partial order. A lattice ordered ring (a totally ordered ring) is a partially 
ordered ring whose partial ordering is a lattice ordering (a total ordering). 
An i-ring is a lattice-ordered ring R such that for all x, y, z Ç R, 

x A j = 0 and z > 0 imply xz A y = zx A y = 0. 

1.3. THEOREM (Birkhoff and Pierce 4). A lattice-ordered ring is an i-ring if 
and only if it is isomorphic to a subdirect sum of totally ordered rings. 

We now recall some notation. Let R be an f-ring and let a Ç R. Then we 
set a+ = a V 0, a~ = — (a A 0), and \a\ = a V ( — a). It follows that 

a = a+ — a~, 

\a\ = a+ + a~, 

a+ A a~ = 0. 

Two facts that we shall frequently use are that for a, 6 G 7£ with & > 0, 

a+b = (ab)+ and a~b = (ab)~. 

For a, 6 Ç R we write a _L b and say that a and 6 are orthogonal in case 
|<z| A |6| = 0. If A Ç7?, then 

i + = j f t U ; 0 0}, 
A± = {x £ R; x ± a for all a £ A]. 

Again let R be an f-ring. A right ideal I of R is an l-ideal in case for each 
a G / and each x G i£ if |x| < \a\, then x £ I. The set iV(i?) of all nilpotent 
elements of R is an l-ideal of R called the \-radical of R. 

1.4. THEOREM (Pierce 17). 7/ R is an i-ring, then N(R) = 0 if and only if 
R is a subdirect sum of totally ordered integral domains. 

1.5. COROLLARY. An i-ring R has no non-zero nilpotent elements if and only 
if the ring R is semi-prime. 

1.6. COROLLARY. Let R be a semi-prime i-ring and let a, b Ç R. Then ab = 0 
if and only if a JL b. 

2. Uniqueness of order. Let R be an f-ring and let Q be the ring of quotients 
of R. 

2.1. LEMMA. If D is a dense right ideal of the ring R, then D+R is also dense in R. 

Proof. Let x G E with xD+ = {0} and let a G R with xa Ç R. Set 

C = {d £ D; a+d, ard G D}. 
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Then by (D.2) and (D.3) we have C G A. For each d G C+ 

(xa)+d = (xad)+ = (xa+d — xa~d)+ = 0 

since a+d, ard G D+. Thus (xa)+C+ = 0. If cu c2 G C, then (^ + c2)\ cx\ 
c2

2 G C+ so that 

0 = (xa)+(ci + c2)
2 = (xa)+cic2 + {xa)+c2 C\. 

In any totally ordered ring, this would force each term to be zero, so using 
Theorem 1.3 we infer that (xa)+Ci c2 = 0 for each pair Ci, c2 G C. But C G A, 
whence, by Lemma 1.1, we have (xa)+ = 0. Similarly, (xa)~ = 0 and thus 
xa = 0. Therefore since i?# is essential in E, we conclude that x = 0, so by 
Lemma 1.1, D+R G A. 

2.2. LEMMA. Let q £ Q and D £ A. If qD+ C #+, few gZV Ç #+. 

Proof. Let d £ DQ
+ and set 

Then by (D.3), C G A. Since d > 0, dC+ Ç £>+, whence 

(^)C+ ç g£>+ Q R+. 

Thus (qd)-C+ = 0. By Lemma 2.1, C+R G A, so by Lemma 1.1, (qd)~ = 0, 
and therefore qDq

+ Ç R+. 

Let 5 be a subring of Q containing R. Then 5 admits at least one compatible 
partial order extending that of R, namely that obtained by taking S+ = R+. 
Since the property of being the positive set for a compatible partial order is 
one of finite character, there is at least one maximal partial order for S such 
that S+ H R = R+. 

2.3. THEOREM. Let S be a subring of Q containing the i-ring R. Then there is a 
unique maximal partial ordering for the ring S relative to which S+ C\ R = R+. 
In fact, in this ordering 

S+ = {s G S\sD8+QR+}. 

Proof. Set P = {s G S; sDs
+ C R+\. It will clearly suffice to show that P is 

the positive set for a compatible partial ordering on 5. So first let s, —s^P. 
Then sDs

+ Q R+ Pi (-R+) = 0, so that sD+ = 0. Hence from Lemma 1.1 
and Lemma 2.1 we infer that s = 0. Next let s, t G P- Then 

(s + t) (D, r\Dt)
+ = (s + t) (D + nz),+)c R+. 

Therefore, by (D.2) and Lemma 2.2, 5 + t G P. Finally, let 

C = {x G Dt;tx G Ds). 

Then by (D.3), C G A. Since we clearly have stC+ C R+f it follows from 
Lemma 2.2 that st G P . 
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If 5 is a ring between R and Q, then the ordering for 5 described in the last 
theorem will be called the canonical ordering for S. In the remainder of the 
paper, unless otherwise stated, we shall assume that each such S is equipped 
with its canonical ordering. 

2.4. THEOREM. Let S be a subring of Q containing the l-ring R. If S admits a 
partial ordering relative to which it is an i-ring extension of R, then this partial 
ordering is the canonical one. 

Proof. Let P be the positive set for such an f-ring ordering on 5 and let 5 + 

be the positive set for the canonical ordering. By the maximality of S^ it will 
suffice to show that 5 + CI P. So let 5 G S+ and let 

D = Dsr\Ds+ r\Ds~. 

(All lattice operations are taken relative to P.) Iî s (t P, then s~ ^ 0: thus by 
Lemmas 1.1 and 2.1, there is an a G D+ such that s~a > 0. As S is an f-ring 
relative to P , we have (s+a) JL (s~a). Thus 

sa = s+a — s~a G P. 

But 5 G S+ and a G Ds+, so that sa G R+, contrary to R+ C P. Thus 5^ - P. 

3. qf-rings. If the quotient ring Q is an f-ring in its canonical ordering, 
then we call the f-ring R a qi-ring. 

3.1. THEOREM. An {-ring R (with identity) is a qi-ring if and only if for each 
q G Q and each pair d\, d2 G Dq

+, 

(i) (qd{)+ A (qd2)~ = 0. 

(ii) d\ A d2 = 0 implies (qdi)+ A d2 = 0. 

Remark: Not every f-ring R, without identity, can be embedded in an 
f-ring with identity (9, Chapter I I I ) . Thus this result is less general than 
possible. However, every left faithful qf-ring, without identity, is, by virtue 
of (7, Proposition 6.2), embeddable in an f-ring with identity. Hence there is 
no loss of generality in our assumption in §§4-8. 

Proof. The necessity of the condition is clear from Theorem 1.3. Conversely, 
assume the stated condition. We show first that the canonical ordering on Q 
is a lattice ordering, and for this it will suffice to show that q V 0 G Q for 
each q G Q (3, p. 215). So let q G Q. Let dt G D+ and rt G R (i = 1, . . . , n), 
and suppose that 

Ysidiri = 0. 

By Theorem 1.3, R is a subdirect sum of totally ordered rings, and since the 
assumed condition implies that the signs of the qdt all agree co-ordinate-wise, 

T,i(qdi)+rt =0. 
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Therefore there is an h G HomR(Dq+R, R) such that 

h(Eidtri) = Y,t (qdi)+ri 

for all dt G Da+ and rt G R (i = 1, . . . , n). By Lemma 2.1, Z>fl+R G A; so by 
Utumi's theorem there is a g* G Q such that 

g*x = /*(x) (x G D+R). 

As g*ZV C i?+, it follows from Lemma 2.2 that g* > 0. Also for each d G £>ç
+, 

(g* - g)d = (gd)+ - (qd) = (qd)~ > 0, 

so that g* > q. Now if £ G Q+ such that p > q, then £d > 0 and £<i > gd for 
all J G (Dpr\ Dq)+. Therefore 

(p - q*)d = pd - (qd)+ > 0 

for all d G (DP H Dq)
+ and so p > g*. Hence g* = g V 0 and the canonical 

ordering for Q is a lattice ordering. 
Finally we show that Q is an f-ring. For this it will suffice (4, p. 59, Corollary 

1) to prove that if s G Q+, then multiplication by 5 is both left and right 
distributive over joins. So let p, q G Q and set 

D = {x G R] px, qx, (p V q)x G Ds}. 

Then by (D.2), (D.3), and Lemma 2.1, D+R G A. For each x G £>+, 
(g — p)+x G Ds

+ and so by condition (ii), s(q — £)+x J_ s(g — £)~~x. There
fore, s(q — p)+x = [s(q — p)x]+, whence 

s(p V g)x = s[/> + (g — £)+]x = s£x + [s(q — p)x]+ 

= spx + (sq — ^/?)+x = (sp V sg)x. 

So by Lemma 1.1, s(p V g) = sp V sq. For the other side, let 

C = {x G R; sx G Dv C\Dq C\ Dvyq). 

Again C+R G A and for each x G C+, 

(p V q)sx = [p + (q — p)+]sx = psx + [(g — £)sx]+ 

= psx + [(g — £)s]+x = (ps V gs)x. 

So, as before, (p V g)s = ps V qs and <2 *s an f-ring. 

3.2. COROLLARY. Every commutative i-ring with identity is a ql-ring. 

Proof. Let q G Q and let d\, d2 G Dq
+. Since i? is a commutative f-ring, we 

have for each d G Dq
+, 

[(grfi)+ A (gd2)-]rf = (ffd)+di A (qd)~d2 = 0. 

As Z V ^ G A, this implies that (gdi)+ A (gd2)~ = 0. If di A d2 = 0, then for 
each d G £><z+, 
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[(gdi)+ A d2]d = (gd)+di A d2d = 0, 

and as before (qdi)+ A d2 = 0. 

Recall that an f-ring R is Archimedean in case for every pair a, b £ R if 
na K b for all integers w, then a = 0. 

3.3. COROLLARY. 7/ R is an Archimedean {-ring, then R is a qi-ring and Q 
is Archimedean. 

Proof. Since an Archimedean f-ring is commutative (4, Theorem 13), the 
first statement follows from Corollary 3.2. Finally, if p, q £ Q with np < q for 
all n, then npd < qd for each d £ (Z}p H D ç )+ and each n. But since R is 
Archimedean, this means that pd = 0 for all d G (A? ^ Dq)

+\ hence p = 0. 

3.4. THEOREM. LeJ R be a qi-ring. If e £ Ris a weak order unit, then e is also 
a weak order unit of Q. 

Proof. Let q (z Q with e A q = 0. For each d G 7^+ we have 

(e A q)d = e A qd = 0 

since Q is an f-ring. Since e is a weak order unit in R, this means that qd = 0 
for all d £ Dq

+; thus g = 0. 

3.5. COROLLARY. 7/ i£ is a totally ordered qi-ring, then Q is totally ordered. 

In general, strong order units in qf-rings are not strong order units in the 
ring of quotients. For example, a hyper-real field is the ring of quotients of 
the ring of its bounded elements. 

4. qf-rings with zero singular ideal. An element x of the ring R is a 
singular element of R if (0:x) is an essential right ideal. The set of all singular 
elements of R form a two-sided ideal called the singular ideal of R (10). The 
rings R with zero singular ideal are precisely those for which Q is regular (in 
the sense of von Neumann). 

4.1. LEMMA. Let R be a qi-ring. Then the singular ideal of R is zero if and only 
if R is semi-prime; that is, if and only if R has no non-zero nilpotent elements. 

Proof. If the singular ideal of R is zero, then Q is a regular f-ring and thus a 
subdirect sum of totally ordered division rings. Clearly then the subring R 
has no non-zero nilpotent elements. Conversely, by (1.6), if R is semi-prime 
and if x G R, then (0:x) = x-*-. Thus, as ax±_ x implies ax = 0, it is clear that 
if (0:x) is essential in R; then x = 0. 

The next example shows that in general the 1-radical and the singular ideal 
of an f-ring are not the same. 

4.2. Example. Let 5 be the semigroup with identity e and zero element 0 
on generators a and ba with a2 = 0. Totally order S by 
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e > . . . > {ba)n > (ba)n+l > . . . > a > . . . > a(ba)n > a(ba)n+1 > . . . > 0. 

Finally, let R be the semigroup ring on 5 over the rational field and tota l ly 
order R lexicographically. T h e largest annihilator r ight ideal of R is the 
inessential r ight ideal aR; thus R has zero singular ideal. However, the 1-radical 
of R is aR; hence R is not semi-prime. In part icular, R is not a qf-ring. 

Two further properties of a ring with zero singular ideal t h a t we shall need 
are, first, t h a t A coincides with the set of essential right ideals and, second, t h a t 
QR is injective (18). 

4.3. T H E O R E M . Let R be an i-ring with zero singular ideal. Then R is a qî-ring 
if and only if for each pair a, b G R+ 

aR r\ bR = 0 implies a _L b. 

Proof. (Necessity) Assume R is a qf-ring and let a, b G R+ with aR C\ bR = 0. 
Then there is an i^-homomorphism h:aR © bR —* R defined by 

h (ax + by) = ax — by (x, y G R). 

Since QR is injective, there is a a G Q such t h a t 

q(ax + by) = ax — by (x, y G R). 

By hypothesis Q is an f-ring, so t h a t (qa)+ _L (qb)~. Bu t (qa)+ = a and 

(qb)~ = b. 
(Sufficiency) Assume the given condition for R, let q G (?, and let di, d2 G T^"1-. 

If di A d2 = 0, then clearly [ ( ^ i ) + A d2]
2 = 0, whence (dgi)+ A d2 = 0. 

Next set 

5 = (qdi}+ and £ = (qd2)~~. 

By Theorem 3.1 it will suffice to show tha t s A t = 0. We establish this via a 
sequence of numbered steps. 

(1) For each right ideal I of R, I + I± G A: For if 7 is a right ideal of R with 
J C\ I = 0, then by hypothesis 7 Ç J*. So if J C\ (I + 7-0 = 0, then J Q I* 
and J C\ I± = 0, whence 7 = 0. Thus 7 + /•*• is essential in R so t h a t as the 
singular ideal is zero, 7 + /•*• G A. 

(2) For mdz d G £><?, #d G d*-±. Since i? is semi-prime, it follows from (1.6) 
thatd-i- = (0:d) C (0:gd) and (0:ç<K = (grf)-^. T h u s 

^ G M 1 1 = (0:gd)-L Ç rfj-J-. 

(3) (d2R:di) C (0:5 A / ) . For let di x = d2y. As di, d2 > 0, we have 
di |x| = d2M so t h a t (gdi)+ |x| = (#d2)+|;y|. Therefore s\x\ _L t. This implies 
t h a t (s A t)\x\ = 0 so t h a t x G (0:5 A / ) . 

(4) (d2R:d1)-
L C (0:5 A / ) . For let x G (d2R:di)-L; we may assume tha t 

x > 0. Then i x _L d2x; for if not, our hypothesis implies the existence of 
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u,v G R such that d\ xu = d2xv ^ 0, whence xu G (d2 R:di) C\ (d2R:di)J-
contrary to xu ^ 0. From (2) we infer that 

(sx A tx) G {d\x)^C\ (d2x)J-±. 

But as d\ x JL d2 #, we have (dx x)^-1- C\ (d2 x)±J- = 0, whence 

(s A i)x = sx A tx = 0. 

Finally (1), (3), and (4) together with Lemma 1.1 yield the desired fact that 
s A t = 0. 

5. The classical case. Let R be a ring and let M be the set of all non 
zero-divisors of R. An over-ring Qc of R is a classical ring of quotients of R in 
case each element of M is invertible in Qc and 

Qc = {ad-1; a G i? and d G Jkf}. 

If JR has a classical ring of quotients, then it is unique to within isomorphism 
over R. The ring R is an Ore ring when for each a G R and d G M, 

(dR:a) C\M ^ 0. 

It is well known that the ring R has a classical ring of quotients if and only 
if it is an Ore ring. Moreover, if R is an Ore ring, then Qc is a subring of Q 
(12). 

5.1. THEOREM. Let R be both an l-ring and an Ore ring. Then in its canonical 
order Qc is an {-ring. 

Proof. Since d~l = did2)-1 for each d G M, it follows that 

Qc = {ad'1; a G R and d G M+\. 

Set 
P = {ad-1; a G R+ and d G M+}. 

Then it is a routine matter to show that P is the positive set for a partial 
ordering on Qc such that P C\ R = R+. To complete the proof it will suffice, in 
view of Theorem 2.4, to show that Qc is an f-ring relative to the ordering 
given by P. So let ad'1 G Qc, where d > 0. Set (ad -1)* = a+d-1. Then 

(ad-1)* ~ M " 1 ) = (a+ - a ) ^ 1 = a^d"1 G P , 

so that (in the ordering given by P) (ad-1)* > ad - 1 , 0. Next let be-1 > ad - 1 , 0 
where c G -M4". As R is an Ore ring, there exist h, k G M such that £Â = dk. 
As c, d > 0 and |fe|, |fe| G M, we may assume that h, k > 0. Then 

(fc-1) - (ad-1)* = (MO(cA)-1 - (a+k)(dk)~1 = (bh - a+k)(ch)~\ 

and similarly 

(fc-1) - (ad-1) = (ÔA - a*) (cA)"1. 
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Since bc~l > ad"1 in Qct we have in R 

bh — ak > 0. 

Thus, in R, 

bh — a+k = {bh — ak) + a~k > 0, 

whence {bh — a+k){ch)~1 6 R. That is, be*1 > (ad-1)*. Therefore 

{ad-1)* = (ad"1) V 0 

and Qc is an 1-ring. Finally, to show that Qc is an f-ring, it will suffice to show 
that absolute value is preserved under multiplication (4, §9). So let h, k £ M 
with dh = bk. Then 

M-*||for-i| = (\a\d-*)(\b\(ri) = (\a\\h\Kc\k\)-* 

= \ah\lck\-1 = \{ad~l){bc-% 

Applying our results and Ore's theorem (16) to totally ordered integral 
domains, we obtain: 

5.2. COROLLARY. Let R be a totally ordered integral domain {not necessarily 
commutative). Then the following are equivalent: 

(1) R is a qî-ring; 
(2) R is an Ore ring; 
(3) Q is a totally ordered division ring; 
(4) Q is a division ring. 

Moreover y when these conditions apply, Q = Qc. 

The fact that an f-ring with zero 1-radical is a subdirect sum of totally 
ordered integral domains suggests the possibility that such an f-ring R is a 
qf-ring if and only if it is an Ore ring, and moreover that when R is a qf-ring, 
Q = Qc. The following examples discount these. 

5.3. Example. Let R be the sub-f-ring of Q z , the f-ring of all rational valued 
functions on the integers, consisting of those functions that are constant off 
finite sets. Then R is clearly a commutative f-ring with zero singular ideal. 
Moreover, in this case Q = Q z ; cf. (18, (2.1)). Also, it is clear that each non 
zero-divisor of R is invertible, so Qc = R. Thus a qf-ring which is an Ore ring 
need not have Q = Qc. 

5.4. Example. It is known that the group ring Q[F] over the rationals on 
the free group F with two generators a and b admits a total order, that it is not 
an Ore ring, but that it can be embedded in a totally ordered division ring K; 
cf. (15). Let R be the sub-f-ring of Kz consisting of those functions that assume 
only finitely many values outside of Q[F]. Then R is easily seen to be a qf-ring 
with zero singular ideal (and Q = Kz). However, R is not an Ore ring since 
Q[F] is not. Thus, a semi-prime qf-ring need not be an Ore ring. 
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Finally, we remark that we have been unable to determine whether or not 
in general every semi-prime Ore f-ring is a qf-ring. In the next section, however, 
we shall find one class of semi-prime f-rings for which the two properties are 
equivalent. 

6. Semi-prime f-rings with a maximum condition. An 1-ideal I (left, 
right, or two-sided) of an f-ring R is closed in case I = /•L-L. For a semi-prime 
f-ring an 1-ideal I is closed if and only if it is a right annihilator ideal ; moreover, 
each closed 1-ideal is two-sided; cf. (4, p. 63, Corollary 2). 

6.1. THEOREM. Let R be a semi-prime i-ring satisfying the maximum condition 
for closed \-ideals. Then R is a qi-ring if and only if it is an Ore ring. Moreover, 
if R is a qi-ring, then Q = Qc. 

Proof. By (1, Lemmas 1 and 4) R has a finite set of maximal closed 1-ideals 
{Mi, . . . , Mn}, each It = M^ is a totally ordered closed 1-ideal of R, the 
sum D = h + . . . + In is direct, and D± = 0. For each i = 1, . . . , n, let 
Xi G 1% be non-zero. As each It is totally ordered, it is clear that x^ = I->- = Mu 

and as the sum of the TVs is direct, it is clear that if x = Xi + . . . + xn, then 
xx = Dx = 0. Thus, since R is semi-prime, x is a non zero-divisor. If a G R, 
then as each It is a two-sided ideal, axt G If. Therefore, we have that ax G D, 
and since xx = 0, that (ax)-*- = a*-. 

Now suppose that R is a qf-ring and that a, d G R with d a non zero-divisor. 
By Theorem 4.3 and the fact that each It is totally ordered, there exist sutt G R 
such that 

ax i s i == ax % 11 \i == J., . . . , n), 

and such that axtSi = 0 only if axt = 0. As each It has no non-zero zero-
divisors, we may assume that xt st 7^ 0 for a lH = 1, . . . , n. Thus 

(xi si + . . . + xn sn)± = ZU = 0, 

whence X\ S\ + . . . + xn sn is not a zero-divisor. Moreover, since 

a(xi si + . . . + xn sn) = d(xi h + . . . + xn tn) 

R is an Ore ring. 
The same basic approach, namely reducing to D by multiplying everything 

in sight by x, is used in proving that if R is an Ore ring, then it is a qf-ring. 
We omit the details. 

Finally, if R is a qf-ring, then Theorem 4.3 implies that each 11 has no 
proper essential submodule or supermodule in R; thus R is finite dimensional 
in the sense of (11) and so, by (11, Theorem 4.4), Q = Qc. 

Now it is an easy matter to prove an f-ring version of Goldie's theorem 
(8, Theorem 4.4) for semi-prime rings with a maximum condition. 
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6.2. THEOREM. Let R be a qi-ring. Then R is a semi-prime i-ring with the 
maximum condition for closed l-ideals if and only if Q is a direct sum of totally 
ordered division rings. 

Proof. For the necessity we first observe that by the previous theorem R is 
an Ore ring. Next it follows from Theorem 4.3 that any independent sequence 
of right ideals of the ring R is pairwise orthogonal. Therefore, R has no infinite 
independent set of non-zero right ideals. So R satisfies Goldie's r.q. conditions 
(8, p. 206), and hence by (8, Theorem 4.4), Q = Qc is a semi-simple artinian 
ring. But since R is a qf-ring, Q is an f-ring; hence Q must have the asserted 
structure. In our case the converse is absolutely trivial since R is a sub-f-ring 
of Q, and R inherits both the maximum condition for closed l-ideals and its 
1-radical from Q. 

It is known (8, Theorem 4.1) that a noetherian semi-prime ring, indeed any 
ring with Goldie's r.q. conditions, is an Ore ring. Thus, by Theorem 6.1, every 
semi-prime f-ring with the maximum condition for right (ring) ideals is a 
qf-ring. The following example shows, however, that the maximum condition 
for right l-ideals does not force a semi-prime f-ring to be a qf-ring. 

6.3. Example. The free group F on two generators a, b admits a total order 
(14), whence the set 

S = {x G F] x > e) 

is a sub-semigroup, where e is the identity of F. We may assume that af b £ S. 
The semigroup ring R of S over the rational field can be totally ordered 
lexicographically in such a way that the natural mapping S —> R preserves 
the order of S. Then R is a totally ordered integral domain, and every non-zero 
right (or left) 1-ideal contains 1. In particular, R satisfies the maximum con
dition for right l-ideals. However, R is not a qf-ring since aR P\ bR = 0. 

7. Self-injective f-rings. A ring R is right self-infective in case the right 
i^-module RR is injective. If R has a zero singular ideal, then Q is right self-
injective (and regular). Utumi (18, Theorem 4) has proved that a regular ring 
R is right self-injective if and only if every family {aa + ea R}aev of cosets of 
principal right ideals which has the finite intersection property has non-void 
intersection. The main purpose of this section is to characterize self-injective 
f-rings by means of a type of order completeness. 

7.1. LEMMA. In a regular î-ring R every idempotent is central and every one-sided 
ideal is two-sided. 

Proof. A totally ordered regular ring is a division ring; thus a regular f-ring 
is strongly regular. The result now follows from (2, Theorem 3.4). 

7.2. COROLLARY. A semi-prime i-ring is right self-injective if and only if it 
is left self-injective. 
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Proof. By Lemmas 4.1 and 7.1 together with the right- and left-hand versions 
of Utumi's characterization of self-injectivity. 

In view of this corollary we shall dispense, in what follows, with the qualifi
cation "right" when speaking of self-infective f-rings. 

If R is a regular ring and if a G R, then there is an x G R such that axa = a; 
we denote by ea the idempotent ax. By Lemma 7.1 if R is an f-ring, then also 
ea = xa. 

7.3. THEOREM. Let R be a regular i-ring. Then the following conditions are 
equivalent: 

(1) R is self-infective; 
(2) for every pairwise orthogonal set S in R there is an x G R such that xea = a 

for all a G S; 
(3) every pairwise orthogonal set of positive elements of R has a supremum in R. 

Proof. (1) implies (2). Let S Q R be pairwise orthogonal. Then 
SR =® Ylaes ea R, so there is a 0 G HomB(SR, R) such that <t>{ea) = a for all 
a G S. As R is self-injective, it follows from (5, Theorem 1.3.2) that there is an 
x G R satisfying the desired condition : X i / g "— \M for all a £ S. 

(2) implies (3). Let 5 be a pairwise orthogonal set of positive elements. Then 
there exists a set S' of pairwise orthogonal idempotents maximal with respect 
to 5 J_ S'. Set 

T = Sr\J {a + ea;a G S}. 

Then T is a maximal orthogonal set in R+, and by (2) there is an x G R such 
that xe t = t for all t G T. So for each a G S and each j G S' we have 

xea = a + ea and xej = ej = j . 

We claim that x — 1 is the supremum of S. For first let a G S. Then for all 
b G S, and for all j G 5' , 

(a - x + l)+eh = (ae& — ô — e& + e&)+ = 0, 
(a — x + l)"1"^- = (ae^ — £j + ef)+ = 0. 

So (a — x + 1)+ G T±, whence by the maximality of T, (a — x + 1)+ = 0 or 
x — 1 > a. Thus x — 1 is an upper bound for S. Next suppose y > a for all 
a Ç 5 . Then 3/ > 0 and for each a G S, yea > aea = a. So for each a G 5 and 
each j G S7, 

(x - 1 - 30+ea = ixea - ea - yea)
+ = (a + ea — ea - yea)+ = 0, 

(x - 1 - 30+e; = (ej - ej - ye3)
+ = 0. 

Thus (x — 1 — 3>)+ G T-1- and, as before, y > x — 1. Hence x — 1 is the 
supremum of 5. 

(3) implies (1). By (5, Theorem 1.3.2) it will suffice to show that if / is a 
(right) ideal of R and if <j> G Homfl(7, R), then there is an x G i^ such that 

<j>{a) = xa (a £ I). 
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Let {ea}aeii be a maximal set of orthogonal idempotents in I and for each a 6 12 
set 

xa = cj)(ea). 

As xaea = xa and xa e$ = 0 for all a ^ /3 in 12 we infer that {xa
+}a& and 

{xa
-}aea are pairwise orthogonal sets in R+. Let their suprema be 5 and t, 

respectively, and set x = s — t. Since xa
+ _L xf for all a, /3 Ç 12, we have 

5 A I = 0 (3, p. 231), whence x+ = s and x~ = t. To complete the proof it 
will clearly suffice to show that for each idempotent e G / , 

0(e) = xe. 

If / £ i? is an idempotent orthogonal to all the ea, t h e n / 6 /•»-, whence 

(0(e) - xe)/ = 0(e/) - xe/ = 0. 

Thus (</>(e) — xe)/-1- = 0. Now for each a Ç 12 we have (13, Theorem 25.1) 

Therefore, for each a Ç 12, 

(0(e) — xe)ea = 0(ea)e — xea e = xa e — xa e = 0 . 

Then by the maximality of {ea}a& we have (0(e) — xe)/ = 0. As R is regular, 
it follows from Theorem 4.3 that R is a qf-ring. So from statement (1) in the 
proof of that theorem and the fact that / + /-1- annihilates 0(e) — xe, we 
conclude that 0(e) = xe, and the proof is complete. 

8. Left qf-rings. The maximal left ring of quotients L of a ring R is defined, 
in the obvious way, as the opposite ring of the right ring of quotients of the 
opposite ring of R. In general, L and Q are not isomorphic, and, in fact, a 
right self-injective ring need not be left self-injective (18, §5). 

In Corollary 7.2 we saw that for regular f-rings, left and right self-injectivity 
are equivalent. This suggests that for f-rings we may be able to find even 
stronger results relating L and Q. As yet, however, our information is skimpy. 
We do not know, for example, whether every right qf-ring is a left qf-ring, or 
for R both a right and left qf-ring whether L = Q. With respect to this last 
problem we do have one positive result. 

8.1. THEOREM. / / R is a semi-prime right and left qi-ring, then its maximal 
ring of right quotients is also a maximal ring of left quotients. 

Proof. Let Q be the f-ring of right quotients of R. Since Q is left self-injective 
(Corollary 7.2), it will suffice to show that RQ is an essential extension of RR. 
So let q G Q be non-zero. As Q is regular, there is a qf G Q such that qq'q = q. 
By Lemma 7.1 qqr = q'q is a central idempotent. Now RR is essential in QR; 
so there exist a, d Ç R such that qd = a ^ 0. Since Q is an f-ring, \a\ A \d\ F^ 0; 
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so since R is a left qf-ring, the left-hand version of Theorem 4.3 implies that 
hd = ka 9e 0 for some h} k G R- Let df £ Q such that dd'd = d; then 

dfeg = dd'dkq = dkqd'd = dkqdd' = d&ad7 = d/wW = dd'^tt = dh ^ 0. 

Thus, Rq (^ R 9^ 0 and Bi? is essential in #(). 
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