LATTICE-ORDERED RINGS OF QUOTIENTS

F. W. ANDERSON

Introduction. R. E. Johnson (10), Utumi (18), and Findlay and Lambek (7) have defined for each ring R a unique maximal "ring of right quotients" Q. When R is a commutative integral domain (in this paper an integral domain need not be commutative) or an Ore domain, then Q is the usual division ring of quotients of R. Moreover, it is well known that in these special cases, if R is totally ordered, then so is Q.

The main purpose of this paper is to study the ring of quotients Q, and in particular its order properties, for certain lattice-ordered rings R. Since very little is known about the structure of general lattice-ordered rings, we shall restrict our attention to lattice-ordered rings which are subdirect sums of totally ordered rings; these are the f-rings of Birkhoff and Pierce (4). For the sake of simplicity, but at the expense of some generality, we shall also assume that R has an identity.

As we shall show, the fact that R is an f -ring (even a totally ordered integral domain) does not imply that Q is an f-ring extension of R. If Q is an f-ring extension of R, then R is called a qf-ring. Two of our results are devoted to characterizing the qf-rings. The more interesting of these states that if R has a zero singular ideal (10), then R is a qf-ring if and only if for all $a, b \in R$, if $a R \cap b R=0$, then $a \perp b$. Thus the qf-integral domains are precisely the ordered Ore domains. In general, however, not every qf-ring, even with zero singular ideal, is an Ore ring.

Since not every semi-prime f-ring with the maximum condition for right 1-ideals is a qf-ring, the natural f-ring analogue of Goldie's theorem (8) for the ring of quotients of a semi-prime noetherian ring is not possible. However, in §6 we obtain an analogue for qf-rings.

If the singular ideal of a ring R is zero, then Q is a regular right self-injective ring. Utumi (18) has characterized such rings in terms of cosets of principal right ideals; in §7 we prove a new characterization of regular self-injective f-rings.

1. Preliminaries. Unless explicitly stated otherwise all rings will be assumed to possess an identity element.

We begin this section by recalling a few facts concerning generalized rings of quotients. Further details can be found in (7, 10, 11, 12, and 18).

[^0]If R is a ring, then there is a right R-module E, called the injective envelope of R, characterized by the properties (6):
(1) R_{R} is an essential submodule of E_{R};
(2) E_{R} is injective.

Given a right ideal D of R and an R-homomorphism $\phi: D \rightarrow R$, the injectivity of E insures the existence of an extension $\bar{\phi}: R \rightarrow E$ of ϕ. The right ideal D is dense in R in case each such ϕ has a unique extension $\bar{\phi} \in \operatorname{Hom}_{R}(R, E)$. Then one readily proves:
1.1. Lemma. For a right ideal D of R the following conditions are equivalent:
(1) D is dense in R;
(2) for each $h \in \operatorname{Hom}_{R}(E, E), D \subseteq \operatorname{ker} h$ implies $R \subseteq \operatorname{ker} h$;
(3) $\{x \in E ; x D=0\}=0$.

Let Δ denote the set of all dense right ideals of R. Further easily proved properties of Δ include:
(D.1) each $D \in \Delta$ is essential in R_{R};
(D.2) Δ is a dual ideal in the lattice of right ideals of R;
(D.3) if $a \in E$ and if $D, D^{\prime} \in \Delta$, then $\left\{x \in D ; a x \in D^{\prime}\right\} \in \Delta$;
(D.4) if $D \in \Delta$ and if I is a right ideal of R such that $(I: x) \in \Delta$ for each $x \in D$, then $I \in \Delta$ (if A, B are subsets of a right R-module M, then $(A: B)=\{x \in R ; B x \subseteq A\})$.
1.2. Theorem (Utumi 18). The ring R has a unique, to within isomorphism over R, ring extension Q satisfying:
(1) $D_{q}=\{x \in R ; q x \in R\}$ is dense for each $q \in Q$;
(2) for each $D \in \Delta$ and each $\phi \in \operatorname{Hom}_{R}(D, R)$ there is a unique $q \in Q$ such that

$$
\phi(x)=q x \quad(x \in D)
$$

The unique ring extension Q of R assured by Utumi's theorem is called the maximal ring of right quotients of R (when no ambiguity is likely, we shall call Q simply the ring of quotients of R). Several characterizations of Q are known; cf. (12). Here it will suffice to observe that with the obvious ring structure,

$$
\{x \in E ;(R: x) \in \Delta\}
$$

is isomorphic to Q.
Next we review some material from the theory of lattice-ordered rings. A detailed treatment can be found in the work of Birkhoff and Pierce (4). For more on the structure of f-rings, see D. G. Johnson (9).

A partial ordering \geqslant defined on the underlying set of a ring R is compatible with the ring structure in case for all $x, y, z \in R$,
(i) $x \geqslant y$ implies $x+z \geqslant y+z$;
(ii) $x \geqslant 0$ and $y \geqslant 0$ imply $x y \geqslant 0$.

If \geqslant is a compatible partial ordering on R, then the set P of positive elements clearly satisfy:

$$
P \cap(-P)=0 ; \quad P+P \subseteq P ; \quad P P \subseteq P
$$

Moreover, the correspondence associating with each compatible partial ordering its positive set is one to one.

By a partially ordered ring is meant a pair consisting of a ring and a compatible partial order. A lattice ordered ring (a totally ordered ring) is a partially. ordered ring whose partial ordering is a lattice ordering (a total ordering). An f-ring is a lattice-ordered ring R such that for all $x, y, z \in R$,

$$
x \wedge y=0 \text { and } z \geqslant 0 \quad \text { imply } x z \wedge y=z x \wedge y=0
$$

1.3. Theorem (Birkhoff and Pierce 4). A lattice-ordered ring is an f-ring if and only if it is isomorphic to a subdirect sum of totally ordered rings.

We now recall some notation. Let R be an f -ring and let $a \in R$. Then we set $a^{+}=a \vee 0, a^{-}=-(a \wedge 0)$, and $|a|=a \vee(-a)$. It follows that

$$
\begin{aligned}
& a=a^{+}-a^{-} \\
& |a|=a^{+}+a^{-} \\
& a^{+} \wedge a^{-}=0
\end{aligned}
$$

Two facts that we shall frequently use are that for $a, b \in R$ with $b \geqslant 0$,

$$
a^{+} b=(a b)^{+} \text {and } a^{-} b=(a b)^{-}
$$

For $a, b \in R$ we write $a \perp b$ and say that a and b are orthogonal in case $|a| \wedge|b|=0$. If $A \subseteq R$, then

$$
\begin{aligned}
& A^{+}=\{a \in A ; a \geqslant 0\} \\
& A^{\perp}=\{x \in R ; x \perp a \text { for all } a \in A\}
\end{aligned}
$$

Again let R be an f-ring. A right ideal I of R is an l-ideal in case for each $a \in I$ and each $x \in R$ if $|x| \leqslant|a|$, then $x \in I$. The set $N(R)$ of all nilpotent elements of R is an l-ideal of R called the 1 -radical of R.
1.4. Theorem (Pierce 17). If R is an f -ring, then $N(R)=0$ if and only if R is a subdirect sum of totally ordered integral domains.
1.5. Corollary. An f-ring R has no non-zero nilpotent elements if and only if the ring R is semi-prime.
1.6. Corollary. Let R be a semi-prime f -ring and let $a, b \in R$. Then $a b=0$ if and only if $a \perp b$.
2. Uniqueness of order. Let R be an f-ring and let Q be the ring of quotients of R.
2.1. Lemma. If D is a dense right ideal of the ring R, then $D^{+} R$ is also dense in R.

Proof. Let $x \in E$ with $x D^{+}=\{0\}$ and let $a \in R$ with $x a \in R$. Set

$$
C=\left\{d \in D ; a^{+} d, a^{-} d \in D\right\} .
$$

Then by (D.2) and (D.3) we have $C \in \Delta$. For each $d \in C^{+}$

$$
(x a)^{+} d=(x a d)^{+}=\left(x a^{+} d-x a^{-} d\right)^{+}=0
$$

since $a^{+} d, a^{-} d \in D^{+}$. Thus $(x a)^{+} C^{+}=0$. If $c_{1}, c_{2} \in C$, then $\left(c_{1}+c_{2}\right)^{2}, c_{1}{ }^{2}$, $c_{2}{ }^{2} \in C^{+}$so that

$$
0=(x a)^{+}\left(c_{1}+c_{2}\right)^{2}=(x a)^{+} c_{1} c_{2}+(x a)^{+} c_{2} c_{1} .
$$

In any totally ordered ring, this would force each term to be zero, so using Theorem 1.3 we infer that $(x a)^{+} c_{1} c_{2}=0$ for each pair $c_{1}, c_{2} \in C$. But $C \in \Delta$, whence, by Lemma 1.1, we have $(x a)^{+}=0$. Similarly, $(x a)^{-}=0$ and thus $x a=0$. Therefore since R_{R} is essential in E, we conclude that $x=0$, so by Lemma 1.1, $D^{+} R \in \Delta$.
2.2. Lemma. Let $q \in Q$ and $D \in \Delta$. If $q D^{+} \subseteq R^{+}$, then $q D_{q}^{+} \subseteq R^{+}$.

Proof. Let $d \in D_{q}{ }^{+}$and set

$$
C=\{x \in D ; d x \in D\} .
$$

Then by (D.3), $C \in \Delta$. Since $d \geqslant 0, d C^{+} \subseteq D^{+}$, whence

$$
(q d) C^{+} \subseteq q D^{+} \subseteq R^{+}
$$

Thus $(q d)^{-} C^{+}=0$. By Lemma $2.1, C^{+} R \in \Delta$, so by Lemma 1.1 , $(q d)^{-}=0$, and therefore $q D_{q}{ }^{+} \subseteq R^{+}$.

Let S be a subring of Q containing R. Then S admits at least one compatible partial order extending that of R, namely that obtained by taking $S^{+}=R^{+}$. Since the property of being the positive set for a compatible partial order is one of finite character, there is at least one maximal partial order for S such that $S^{+} \cap R=R^{+}$.
2.3. Theorem. Let S be a subring of Q containing the f -ring R. Then there is a unique maximal partial ordering for the ring S relative to which $S^{+} \cap R=R^{+}$. In fact, in this ordering

$$
S^{+}=\left\{s \in S ; s D_{s}^{+} \subseteq R^{+}\right\}
$$

Proof. Set $P=\left\{s \in S ; s D_{s}{ }^{+} \subseteq R^{+}\right\}$. It will clearly suffice to show that P is the positive set for a compatible partial ordering on S. So first let $s,-s \in P$. Then $s D_{s}{ }^{+} \subseteq R^{+} \cap\left(-R^{+}\right)=0$, so that $s D_{s}{ }^{+}=0$. Hence from Lemma 1.1 and Lemma 2.1 we infer that $s=0$. Next let $s, t \in P$. Then

$$
(s+t)\left(D_{s} \cap D_{t}\right)^{+}=(s+t)\left(D_{s}^{+} \cap D_{t}^{+}\right) \subseteq R^{+}
$$

Therefore, by (D.2) and Lemma 2.2, $s+t \in P$. Finally, let

$$
C=\left\{x \in D_{t} ; t x \in D_{s}\right\} .
$$

Then by (D.3), $C \in \Delta$. Since we clearly have $s t C^{+} \subseteq R^{+}$, it follows from Lemma 2.2 that $s t \in P$.

If S is a ring between R and Q, then the ordering for S described in the last theorem will be called the canonical ordering for S. In the remainder of the paper, unless otherwise stated, we shall assume that each such S is equipped with its canonical ordering.
2.4. Theorem. Let S be a subring of Q containing the $\mathrm{f}-\mathrm{ring} R$. If S admits a partial ordering relative to which it is an f-ring extension of R, then this partial ordering is the canonical one.

Proof. Let P be the positive set for such an f-ring ordering on S and let S^{+} be the positive set for the canonical ordering. By the maximality of S^{+}it will suffice to show that $S^{+} \subseteq P$. So let $s \in S^{+}$and let

$$
D=D_{s} \cap D_{s^{+}} \cap D_{s^{-}} .
$$

(All lattice operations are taken relative to P.) If $s \notin P$, then $s^{-} \neq 0$; thus by Lemmas 1.1 and 2.1, there is an $a \in D^{+}$such that $s^{-} a>0$. As S is an \dot{f}-ring relative to P, we have $\left(s^{+} a\right) \perp\left(s^{-} a\right)$. Thus

$$
s a=s^{+} a-s^{-} a \notin P .
$$

But $s \in S^{+}$and $a \in D_{s}{ }^{+}$, so that $s a \in R^{+}$, contrary to $R^{+} \subseteq P$. Thus $S^{+}=P$.
3. qf-rings. If the quotient ring Q is an f-ring in its canonical ordering, then we call the f -ring R a qf-ring.
3.1. Theorem. An f-ring R (with identity) is a qf-ring if and only if for each $q \in Q$ and each pair $d_{1}, d_{2} \in D_{q}{ }^{+}$,

$$
\begin{equation*}
\left(q d_{1}\right)^{+} \wedge\left(q d_{2}\right)^{-}=0 \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
d_{1} \wedge d_{2}=0 \text { implies }\left(q d_{1}\right)^{+} \wedge d_{2}=0 \tag{ii}
\end{equation*}
$$

Remark: Not every f-ring R, without identity, can be embedded in an f-ring with identity (9, Chapter III). Thus this result is less general than possible. However, every left faithful qf-ring, without identity, is, by virtue of (7, Proposition 6.2), embeddable in an f-ring with identity. Hence there is no loss of generality in our assumption in §§4-8.

Proof. The necessity of the condition is clear from Theorem 1.3. Conversely, assume the stated condition. We show first that the canonical ordering on Q is a lattice ordering, and for this it will suffice to show that $q \vee 0 \in Q$ for each $q \in Q(3, \mathrm{p} .215)$. So let $q \in Q$. Let $d_{i} \in D_{q}{ }^{+}$and $r_{i} \in R(i=1, \ldots, n)$, and suppose that

$$
\sum_{i} d_{i} r_{i}=0 .
$$

By Theorem 1.3, R is a subdirect sum of totally ordered rings, and since the assumed condition implies that the signs of the $q d_{i}$ all agree co-ordinate-wise,

$$
\sum_{i}\left(q d_{i}\right)^{+} r_{i}=0
$$

Therefore there is an $h \in \operatorname{Hom}_{R}\left(D_{q}+R, R\right)$ such that

$$
h\left(\sum_{i} d_{i} r_{i}\right)=\sum_{i}\left(q d_{i}\right)^{+} r_{i}
$$

for all $d_{i} \in D_{q}{ }^{+}$and $r_{i} \in R(i=1, \ldots, n)$. By Lemma $2.1, D_{Q}{ }^{+} R \in \Delta$; so by Utumi's theorem there is a $q^{*} \in Q$ such that

$$
q^{*} x=h(x) \quad\left(x \in D_{q}^{+} R\right)
$$

As $q^{*} D_{q}{ }^{+} \subseteq R^{+}$, it follows from Lemma 2.2 that $q^{*} \geqslant 0$. Also for each $d \in D_{q}{ }^{+}$,

$$
\left(q^{*}-q\right) d=(q d)^{+}-(q d)=(q d)^{-} \geqslant 0
$$

so that $q^{*} \geqslant q$. Now if $p \in Q^{+}$such that $p \geqslant q$, then $p d \geqslant 0$ and $p d \geqslant q d$ for all $d \in\left(D_{p} \cap D_{q}\right)^{+}$. Therefore

$$
\left(p-q^{*}\right) d=p d-(q d)^{+} \geqslant 0
$$

for all $d \in\left(D_{p} \cap D_{q}\right)^{+}$and so $p \geqslant q^{*}$. Hence $q^{*}=q \vee 0$ and the canonical ordering for Q is a lattice ordering.

Finally we show that Q is an f-ring. For this it will suffice (4, p. 59, Corollary 1) to prove that if $s \in Q^{+}$, then multiplication by s is both left and right distributive over joins. So let $p, q \in Q$ and set

$$
D=\left\{x \in R ; p x, q x,(p \vee q) x \in D_{s}\right\}
$$

Then by (D.2), (D.3), and Lemma 2.1, $D^{+} R \in \Delta$. For each $x \in D^{+}$, $(q-p)^{+} x \in D_{s}^{+}$and so by condition (ii), $s(q-p)^{+} x \perp s(q-p)^{-} x$. Therefore, $s(q-p)^{+} x=[s(q-p) x]^{+}$, whence

$$
\begin{aligned}
s(p \vee q) x & =s\left[p+(q-p)^{+}\right] x=s p x+[s(q-p) x]^{+} \\
& =s p x+(s q-s p)^{+} x=(s p \vee s q) x .
\end{aligned}
$$

So by Lemma 1.1, $s(p \vee q)=s p \vee s q$. For the other side, let

$$
C=\left\{x \in R ; s x \in D_{p} \cap D_{q} \cap D_{p \vee q}\right\} .
$$

Again $C^{+} R \in \Delta$ and for each $x \in C^{+}$,

$$
\begin{aligned}
(p \vee q) s x & =\left[p+(q-p)^{+}\right] s x=p s x+[(q-p) s x]^{+} \\
& =p s x+[(q-p) s]^{+} x=(p s \vee q s) x .
\end{aligned}
$$

So, as before, $(p \vee q) s=p s \vee q s$ and Q is an f-ring.
3.2. Corollary. Every commutative f-ring with identity is a qf-ring.

Proof. Let $q \in Q$ and let $d_{1}, d_{2} \in D_{q}{ }^{+}$. Since R is a commutative f-ring, we have for each $d \in D_{q}{ }^{+}$,

$$
\left[\left(q d_{1}\right)^{+} \wedge\left(q d_{2}\right)^{-}\right] d=(q d)^{+} d_{1} \wedge(q d)^{-} d_{2}=0
$$

As $D_{q}{ }^{+} R \in \Delta$, this implies that $\left(q d_{1}\right)^{+} \wedge\left(q d_{2}\right)^{-}=0$. If $d_{1} \wedge d_{2}=0$, then for each $d \in D_{q}{ }^{+}$,

$$
\left[\left(q d_{1}\right)+\wedge d_{2}\right] d=(q d)+d_{1} \wedge d_{2} d=0
$$

and as before $\left(q d_{1}\right)^{+} \wedge d_{2}=0$.
Recall that an f-ring R is Archimedean in case for every pair $a, b \in R$ if $n a \leqslant b$ for all integers n, then $a=0$.
3.3. Corollary. If R is an Archimedean f-ring, then R is a qf-ring and Q is Archimedean.

Proof. Since an Archimedean f-ring is commutative (4, Theorem 13), the first statement follows from Corollary 3.2. Finally, if $p, q \in Q$ with $n p \leqslant q$ for all n, then $n p d \leqslant q d$ for each $d \in\left(D_{p} \cap D_{q}\right)^{+}$and each n. But since R is Archimedean, this means that $p d=0$ for all $d \in\left(D_{p} \cap D_{q}\right)^{+}$; hence $p=0$.
3.4. Theorem. Let R be a qf-ring. If $e \in R$ is a weak order unit, then e is also a weak order unit of Q.

Proof. Let $q \in Q$ with $e \wedge q=0$. For each $d \in D_{q}{ }^{+}$we have

$$
(e \wedge q) d=e \wedge q d=0
$$

since Q is an f-ring. Since e is a weak order unit in R, this means that $q d=0$ for all $d \in D_{q}^{+}$; thus $q=0$.
3.5. Corollary. If R is a totally ordered qf-ring, then Q is totally ordered.

In general, strong order units in qf-rings are not strong order units in the ring of quotients. For example, a hyper-real field is the ring of quotients of the ring of its bounded elements.
4. qf-rings with zero singular ideal. An element x of the ring R is a singular element of R if $(0: x)$ is an essential right ideal. The set of all singular elements of R form a two-sided ideal called the singular ideal of $R(\mathbf{1 0})$. The rings R with zero singular ideal are precisely those for which Q is regular (in the sense of von Neumann).
4.1. Lemma. Let R be a qf-ring. Then the singular ideal of R is zero if and only if R is semi-prime; that is, if and only if R has no non-zero nilpotent elements.

Proof. If the singular ideal of R is zero, then Q is a regular f -ring and thus a subdirect sum of totally ordered division rings. Clearly then the subring R has no non-zero nilpotent elements. Conversely, by (1.6), if R is semi-prime and if $x \in R$, then $(0: x)=x^{\perp}$. Thus, as $a x \perp x$ implies $a x=0$, it is clear that if ($0: x$) is essential in R; then $x=0$.

The next example shows that in general the l-radical and the singular ideal of an f-ring are not the same.
4.2. Example. Let S be the semigroup with identity e and zero element 0 on generators a and $b a$ with $a^{2}=0$. Totally order S by
$e>\ldots>(b a)^{n}>(b a)^{n+1}>\ldots .>a>\ldots .>a(b a)^{n}>a(b a)^{n+1}>\ldots \ldots 0$.
Finally, let R be the semigroup ring on S over the rational field and totally order R lexicographically. The largest annihilator right ideal of R is the inessential right ideal $a R$; thus R has zero singular ideal. However, the l-radical of R is $a R$; hence R is not semi-prime. In particular, R is not a qf-ring.

Two further properties of a ring with zero singular ideal that we shall need are, first, that Δ coincides with the set of essential right ideals and, second, that Q_{R} is injective (18).
4.3. Theorem. Let R be an f-ring with zero singular ideal. Then R is a qf-ring if and only if for each pair $a, b \in R^{+}$

$$
a R \cap b R=0 \text { implies } a \perp b .
$$

Proof. (Necessity) Assume R is a qf-ring and let $a, b \in R^{+}$with $a R \cap b R=0$. Then there is an R-homomorphism $h: a R \oplus b R \rightarrow R$ defined by

$$
h(a x+b y)=a x-b y \quad(x, y \in R) .
$$

Since Q_{R} is injective, there is a $q \in Q$ such that

$$
q(a x+b y)=a x-b y \quad(x, y \in R) .
$$

By hypothesis Q is an f -ring, so that $(q a)^{+} \perp(q b)^{-}$. But $(q a)^{+}=a$ and $(q b)^{-}=b$.
(Sufficiency) Assume the given condition for R, let $q \in Q$, and let $d_{1}, d_{2} \in D_{q}{ }^{+}$. If $d_{1} \wedge d_{2}=0$, then clearly $\left[\left(q d_{1}\right)^{+} \wedge d_{2}\right]^{2}=0$, whence $\left(d q_{1}\right)^{+} \wedge d_{2}=0$. Next set

$$
s=\left(q d_{1}\right)^{+} \text {and } t=\left(q d_{2}\right)^{-} .
$$

By Theorem 3.1 it will suffice to show that $s \wedge t=0$. We establish this via a sequence of numbered steps.
(1) For each right ideal I of $R, I+I \perp \in \Delta$: For if J is a right ideal of R with $J \cap I=0$, then by hypothesis $J \subseteq I^{\perp}$. So if $J \cap\left(I+I^{\perp}\right)=0$, then $J \subseteq I^{\perp}$ and $J \cap I \perp=0$, whence $J=0$. Thus $I+I \perp$ is essential in R so that as the singular ideal is zero, $I+I \perp \in \Delta$.
(2) For each $d \in D_{q}, q d \in d^{\perp \perp}$. Since R is semi-prime, it follows from (1.6) that $d \perp=(0: d) \subseteq(0: q d)$ and $(0: q d) \perp=(q d) \perp \perp$. Thus

$$
q d \in(q d) \perp \perp=(0: q d) \perp \subseteq d^{\perp \perp}
$$

(3) $\left(d_{2} R: d_{1}\right) \subseteq(0: s \wedge t)$. For let $d_{1} x=d_{2} y$. As $d_{1}, d_{2} \geqslant 0$, we have $d_{1}|x|=d_{2}|y|$ so that $\left(q d_{1}\right)+|x|=\left(q d_{2}\right)+|y|$. Therefore $s|x| \perp t$. This implies that $(s \wedge t)|x|=0$ so that $x \in(0: s \wedge t)$.
(4) $\left(d_{2} R: d_{1}\right) \perp \subseteq(0: s \wedge t)$. For let $x \in\left(d_{2} R: d_{1}\right)^{\perp}$; we may assume that $x \geqslant 0$. Then $d_{1} x \perp d_{2} x$; for if not, our hypothesis implies the existence of
$u, v \in R$ such that $d_{1} x u=d_{2} x v \neq 0$, whence $x u \in\left(d_{2} R: d_{1}\right) \cap\left(d_{2} R: d_{1}\right) \perp$ contrary to $x u \neq 0$. From (2) we infer that

$$
(s x \wedge t x) \in\left(d_{1} x\right) \perp \perp \cap\left(d_{2} x\right) \perp \perp
$$

But as $d_{1} x \perp d_{2} x$, we have $\left(d_{1} x\right) \perp \perp \cap\left(d_{2} x\right) \perp \perp=0$, whence

$$
(s \wedge t) x=s x \wedge t x=0
$$

Finally (1), (3), and (4) together with Lemma 1.1 yield the desired fact that $s \wedge t=0$.
5. The classical case. Let R be a ring and let M be the set of all non zero-divisors of R. An over-ring Q_{c} of R is a classical ring of quotients of R in case each element of M is invertible in Q_{c} and

$$
Q_{c}=\left\{a d^{-1} ; a \in R \text { and } d \in M\right\} .
$$

If R has a classical ring of quotients, then it is unique to within isomorphism over R. The ring R is an Ore ring when for each $a \in R$ and $d \in M$,

$$
(d R: a) \cap M \neq \emptyset
$$

It is well known that the ring R has a classical ring of quotients if and only if it is an Ore ring. Moreover, if R is an Ore ring, then Q_{c} is a subring of Q (12).
5.1. Theorem. Let R be both an f-ring and an Ore ring. Then in its canonical order Q_{c} is an f-ring.

Proof. Since $d^{-1}=d\left(d^{2}\right)^{-1}$ for each $d \in M$, it follows that

$$
Q_{c}=\left\{a d^{-1} ; a \in R \text { and } d \in M^{+}\right\}
$$

Set

$$
P=\left\{a d^{-1} ; a \in R^{+} \text {and } d \in M^{+}\right\}
$$

Then it is a routine matter to show that P is the positive set for a partial ordering on Q_{c} such that $P \cap R=R^{+}$. To complete the proof it will suffice, in view of Theorem 2.4, to show that Q_{c} is an f-ring relative to the ordering given by P. So let $a d^{-1} \in Q_{c}$, where $d>0$. Set $\left(a d^{-1}\right)^{*}=a^{+} d^{-1}$. Then

$$
\left(a d^{-1}\right)^{*}-\left(a d^{-1}\right)=\left(a^{+}-a\right) d^{-1}=a^{-} d^{-1} \in P
$$

so that (in the ordering given by $P)\left(a d^{-1}\right)^{*} \geqslant a d^{-1}, 0$. Next let $b c^{-1} \geqslant a d^{-1}, 0$ where $c \in M^{+}$. As R is an Ore ring, there exist $h, k \in M$ such that $c h=d k$. As $c, d \geqslant 0$ and $|h|,|k| \in M$, we may assume that $h, k \geqslant 0$. Then

$$
\left(b c^{-1}\right)-\left(a d^{-1}\right)^{*}=(b h)(c h)^{-1}-\left(a^{+} k\right)(d k)^{-1}=\left(b h-a^{+} k\right)(c h)^{-1},
$$

and similarly

$$
\left(b c^{-1}\right)-\left(a d^{-1}\right)=(b h-a k)(c h)^{-1} .
$$

Since $b c^{-1} \geqslant a d^{-1}$ in Q_{c}, we have in R

$$
b h-a k \geqslant 0
$$

Thus, in R,

$$
b h-a^{+} k=(b h-a k)+a^{-} k \geqslant 0,
$$

whence $\left(b h-a^{+} k\right)(c h)^{-1} \in P$. That is, $b c^{-1} \geqslant\left(a d^{-1}\right)^{*}$. Therefore

$$
\left(a d^{-1}\right)^{*}=\left(a d^{-1}\right) \vee 0
$$

and Q_{c} is an l-ring. Finally, to show that Q_{c} is an f-ring, it will suffice to show that absolute value is preserved under multiplication (4, §9). So let $h, k \in M$ with $d h=b k$. Then

$$
\begin{aligned}
\left|a d^{-1}\right|\left|b c^{-1}\right| & =\left(|a| d^{-1}\right)\left(|b| c^{-1}\right)=(|a||h|)(c|k|)^{-1} \\
& =|a h \| c k|^{-1}=\left|\left(a d^{-1}\right)\left(b c^{-1}\right)\right| .
\end{aligned}
$$

Applying our results and Ore's theorem (16) to totally ordered integral domains, we obtain:
5.2. Corollary. Let R be a totally ordered integral domain (not necessarily commutative). Then the following are equivalent:
(1) R is a qf-ring;
(2) R is an Ore ring;
(3) Q is a totally ordered division ring;
(4) Q is a division ring.

Moreover, when these conditions apply, $Q=Q_{c}$.
The fact that an f-ring with zero l-radical is a subdirect sum of totally ordered integral domains suggests the possibility that such an f-ring R is a qf-ring if and only if it is an Ore ring, and moreover that when R is a qf-ring, $Q=Q_{c}$. The following examples discount these.
5.3. Example. Let R be the sub-f-ring of $\mathbf{Q}^{\mathbf{Z}}$, the f -ring of all rational valued functions on the integers, consisting of those functions that are constant off finite sets. Then R is clearly a commutative f-ring with zero singular ideal. Moreover, in this case $Q=\mathbf{Q}^{\mathbf{Z}}$; cf. (18, (2.1)). Also, it is clear that each non zero-divisor of R is invertible, so $Q_{c}=R$. Thus a qf-ring which is an Ore ring need not have $Q=Q_{c}$.
5.4. Example. It is known that the group ring $\mathbf{Q}[F]$ over the rationals on the free group F with two generators a and b admits a total order, that it is not an Ore ring, but that it can be embedded in a totally ordered division ring K; cf. (15). Let R be the sub-f-ring of $K^{\mathbf{Z}}$ consisting of those functions that assume only finitely many values outside of $\mathbf{Q}[F]$. Then R is easily seen to be a qf-ring with zero singular ideal (and $Q=K^{\mathbf{Z}}$). However, R is not an Ore ring since $\mathbf{Q}[F]$ is not. Thus, a semi-prime qf-ring need not be an Ore ring.

Finally, we remark that we have been unable to determine whether or not in general every semi-prime Ore f-ring is a qf-ring. In the next section, however, we shall find one class of semi-prime f-rings for which the two properties are equivalent.
6. Semi-prime f-rings with a maximum condition. An l-ideal I (left, right, or two-sided) of an f-ring R is closed in case $I=I \pm \perp$. For a semi-prime f -ring an l-ideal I is closed if and only if it is a right annihilator ideal; moreover, each closed l-ideal is two-sided; cf. (4, p. 63, Corollary 2).
6.1. Theorem. Let R be a semi-prime f -ring satisfying the maximum condition for closed 1-ideals. Then R is a qf-ring if and only if it is an Ore ring. Moreover, if R is a qf-ring, then $Q=Q_{c}$.

Proof. By (1, Lemmas 1 and 4) R has a finite set of maximal closed 1-ideals $\left\{M_{1}, \ldots, M_{n}\right\}$, each $I_{i}=M_{i}{ }^{\perp}$ is a totally ordered closed l-ideal of R, the sum $D=I_{1}+\ldots+I_{n}$ is direct, and $D \perp=0$. For each $i=1, \ldots, n$, let $x_{i} \in I_{i}$ be non-zero. As each I_{i} is totally ordered, it is clear that $x_{i}{ }^{\perp}=I^{\perp}=M_{i}$, and as the sum of the I_{i} 's is direct, it is clear that if $x=x_{1}+\ldots+x_{n}$, then $x^{\perp}=D^{\perp}=0$. Thus, since R is semi-prime, x is a non zero-divisor. If $a \in R$, then as each I_{i} is a two-sided ideal, $a x_{i} \in I_{i}$. Therefore, we have that $a x \in D$, and since $x^{\perp}=0$, that $(a x)^{\perp}=a \perp$.

Now suppose that R is a qf-ring and that $a, d \in R$ with d a non zero-divisor. By Theorem 4.3 and the fact that each I_{i} is totally ordered, there exist $s_{i}, t_{i} \in R$ such that

$$
a x_{i} s_{i}=d x_{i} t_{i} \quad(i=1, \ldots, n)
$$

and such that $a x_{i} s_{i}=0$ only if $a x_{i}=0$. As each I_{i} has no non-zero zerodivisors, we may assume that $x_{i} s_{i} \neq 0$ for all $i=1, \ldots, n$. Thus

$$
\left(x_{1} s_{1}+\ldots+x_{n} s_{n}\right) \perp=D \perp=0
$$

whence $x_{1} s_{1}+\ldots+x_{n} s_{n}$ is not a zero-divisor. Moreover, since

$$
a\left(x_{1} s_{1}+\ldots+x_{n} s_{n}\right)=d\left(x_{1} t_{1}+\ldots+x_{n} t_{n}\right)
$$

R is an Ore ring.
The same basic approach, namely reducing to D by multiplying everything in sight by x, is used in proving that if R is an Ore ring, then it is a qf-ring. We omit the details.

Finally, if R is a qf-ring, then Theorem 4.3 implies that each I_{i} has no proper essential submodule or supermodule in R; thus R is finite dimensional in the sense of (11) and so, by (11, Theorem 4.4), $Q=Q_{c}$.

Now it is an easy matter to prove an f-ring version of Goldie's theorem (8, Theorem 4.4) for semi-prime rings with a maximum condition.
6.2. Theorem. Let R be a qf-ring. Then R is a semi-prime f-ring with the maximum condition for closed 1-ideals if and only if Q is a direct sum of totally ordered division rings.

Proof. For the necessity we first observe that by the previous theorem R is an Ore ring. Next it follows from Theorem 4.3 that any independent sequence of right ideals of the ring R is pairwise orthogonal. Therefore, R has no infinite independent set of non-zero right ideals. So R satisfies Goldie's r.q. conditions (8, p. 206), and hence by (8, Theorem 4.4), $Q=Q_{c}$ is a semi-simple artinian ring. But since R is a qf-ring, Q is an f-ring; hence Q must have the asserted structure. In our case the converse is absolutely trivial since R is a sub-f-ring of Q, and R inherits both the maximum condition for closed 1-ideals and its 1 -radical from Q.

It is known (8, Theorem 4.1) that a noetherian semi-prime ring, indeed any ring with Goldie's r.q. conditions, is an Ore ring. Thus, by Theorem 6.1, every semi-prime f-ring with the maximum condition for right (ring) ideals is a qf-ring. The following example shows, however, that the maximum condition for right 1-ideals does not force a semi-prime f -ring to be a qf-ring.
6.3. Example. The free group F on two generators a, b admits a total order (14), whence the set

$$
S=\{x \in F ; x \geqslant e\}
$$

is a sub-semigroup, where e is the identity of F. We may assume that $a, b \in S$. The semigroup ring R of S over the rational field can be totally ordered lexicographically in such a way that the natural mapping $S \rightarrow R$ preserves the order of S. Then R is a totally ordered integral domain, and every non-zero right (or left) 1-ideal contains 1 . In particular, R satisfies the maximum condition for right l-ideals. However, R is not a qf-ring since $a R \cap b R=0$.
7. Self-injective f-rings. A ring R is right self-injective in case the right R-module R_{R} is injective. If R has a zero singular ideal, then Q is right selfinjective (and regular). Utumi (18, Theorem 4) has proved that a regular ring R is right self-injective if and only if every family $\left\{a_{\alpha}+e_{\alpha} R\right\}_{\alpha \in \Omega}$ of cosets of principal right ideals which has the finite intersection property has non-void intersection. The main purpose of this section is to characterize self-injective f-rings by means of a type of order completeness.
> 7.1. Lemma. In a regular f-ring R every idempotent is central and every one-sided ideal is two-sided.

Proof. A totally ordered regular ring is a division ring; thus a regular f-ring is strongly regular. The result now follows from (2, Theorem 3.4).
7.2. Corollary. A semi-prime f-ring is right self-injective if and only if it is left self-injective.

Proof. By Lemmas 4.1 and 7.1 together with the right- and left-hand versions of Utumi's characterization of self-injectivity.

In view of this corollary we shall dispense, in what follows, with the qualification "right" when speaking of self-injective f-rings.

If R is a regular ring and if $a \in R$, then there is an $x \in R$ such that axa $a=a$; we denote by e_{a} the idempotent $a x$. By Lemma 7.1 if R is an f -ring, then also $e_{a}=x a$.
7.3. Theorem. Let R be a regular f-ring. Then the following conditions are equivalent:
(1) R is self-injective;
(2) for every pairwise orthogonal set S in R there is an $x \in R$ such that $x e_{a}=a$ for all $a \in S$;
(3) every pairwise orthogonal set of positive elements of R has a supremum in R.

Proof. (1) implies (2). Let $S \subseteq R$ be pairwise orthogonal. Then $S R=\oplus \sum_{a \epsilon S} e_{a} R$, so there is a $\phi \in \operatorname{Hom}_{R}(S R, R)$ such that $\phi\left(e_{a}\right)=a$ for all $a \in S$. As R is self-injective, it follows from (5, Theorem I.3.2) that there is an $x \in R$ satisfying the desired condition: $x e_{a}=a$ for all $a \in S$.
(2) implies (3). Let S be a pairwise orthogonal set of positive elements. Then there exists a set S^{\prime} of pairwise orthogonal idempotents maximal with respect to $S \perp S^{\prime}$. Set

$$
T=S^{\prime} \cup\left\{a+e_{a} ; a \in S\right\} .
$$

Then T is a maximal orthogonal set in R^{+}, and by (2) there is an $x \in R$ such that $x e_{t}=t$ for all $t \in T$. So for each $a \in S$ and each $j \in S^{\prime}$ we have

$$
x e_{a}=a+e_{a} \text { and } x e_{j}=e_{j}=j
$$

We claim that $x-1$ is the supremum of S. For first let $a \in S$. Then for all $b \in S$, and for all $j \in S^{\prime}$,

$$
\begin{aligned}
& (a-x+1)^{+} e_{b}=\left(a e_{b}-b-e_{b}+e_{b}\right)^{+}=0 \\
& (a-x+1)^{+} e_{j}=\left(a e_{j}-e_{j}+e_{j}\right)^{+}=0
\end{aligned}
$$

So $(a-x+1)^{+} \in T \pm$, whence by the maximality of $T,(a-x+1)^{+}=0$ or $x-1 \geqslant a$. Thus $x-1$ is an upper bound for S. Next suppose $y \geqslant a$ for all $a \in S$. Then $y \geqslant 0$ and for each $a \in S, y e_{a} \geqslant a e_{a}=a$. So for each $a \in S$ and each $j \in S^{\prime}$,

$$
\begin{aligned}
& (x-1-y)^{+} e_{a}=\left(x e_{a}-e_{a}-y e_{a}\right)^{+}=\left(a+e_{a}-e_{a}-y e_{a}\right)^{+}=0, \\
& (x-1-y)^{+} e_{j}=\left(e_{j}-e_{j}-y e_{j}\right)^{+}=0 .
\end{aligned}
$$

Thus $(x-1-y)^{+} \in T \perp$ and, as before, $y \geqslant x-1$. Hence $x-1$ is the supremum of S.
(3) implies (1). By (5 , Theorem I.3.2) it will suffice to show that if I is a (right) ideal of R and if $\phi \in \operatorname{Hom}_{R}(I, R)$, then there is an $x \in R$ such that

$$
\phi(a)=x a \quad(a \in I)
$$

Let $\left\{e_{\alpha}\right\}_{\alpha \in \Omega}$ be a maximal set of orthogonal idempotents in I and for each $a \in \Omega$ set

$$
x_{\alpha}=\phi\left(e_{\alpha}\right) .
$$

As $x_{\alpha} e_{\alpha}=x_{\alpha}$ and $x_{\alpha} e_{\beta}=0$ for all $\alpha \neq \beta$ in Ω we infer that $\left\{x_{\alpha}+\right\}_{\alpha \in \Omega}$ and $\left\{x_{\alpha}\right\}_{\alpha \in \Omega}$ are pairwise orthogonal sets in R^{+}. Let their suprema be s and t, respectively, and set $x=s-t$. Since $x_{\alpha}{ }^{+} \perp x_{\beta}^{-}$for all $\alpha, \beta \in \Omega$, we have $s \wedge t=0$ (3, p. 231), whence $x^{+}=s$ and $x^{-}=t$. To complete the proof it will clearly suffice to show that for each idempotent $e \in I$,

$$
\phi(e)=x e
$$

If $f \in R$ is an idempotent orthogonal to all the e_{α}, then $f \in I \perp$, whence

$$
(\phi(e)-x e) f=\phi(e f)-x e f=0
$$

Thus $(\phi(e)-x e) I \perp=0$. Now for each $\alpha \in \Omega$ we have (13, Theorem 25.1)

$$
x e_{\alpha}=x^{+} e_{\alpha}-x^{-} e_{\alpha}=x_{\alpha}^{+}-x_{\alpha}^{-}=x_{\alpha} .
$$

Therefore, for each $\alpha \in \Omega$,

$$
(\phi(e)-x e) e_{\alpha}=\phi\left(e_{\alpha}\right) e-x e_{\alpha} e=x_{\alpha} e-x_{\alpha} e=0
$$

Then by the maximality of $\left\{e_{\alpha}\right\}_{\alpha \in \Omega}$ we have $(\phi(e)-x e) I=0$. As R is regular, it follows from Theorem 4.3 that R is a qf-ring. So from statement (1) in the proof of that theorem and the fact that $I+I \perp$ annihilates $\phi(e)-x e$, we conclude that $\phi(e)=x e$, and the proof is complete.
8. Left qf-rings. The maximal left ring of quotients L of a ring R is defined, in the obvious way, as the opposite ring of the right ring of quotients of the opposite ring of R. In general, L and Q are not isomorphic, and, in fact, a right self-injective ring need not be left self-injective (18, §5).

In Corollary 7.2 we saw that for regular f-rings, left and right self-injectivity are equivalent. This suggests that for f-rings we may be able to find even stronger results relating L and Q. As yet, however, our information is skimpy. We do not know, for example, whether every right qf-ring is a left qf-ring, or for R both a right and left qf-ring whether $L=Q$. With respect to this last problem we do have one positive result.
8.1. Theorem. If R is a semi-prime right and left qf-ring, then its maximal ring of right quotients is also a maximal ring of left quotients.

Proof. Let Q be the f-ring of right quotients of R. Since Q is left self-injective (Corollary 7.2), it will suffice to show that ${ }_{R} Q$ is an essential extension of ${ }_{R} R$. So let $q \in Q$ be non-zero. As Q is regular, there is a $q^{\prime} \in Q$ such that $q q^{\prime} q=q$. By Lemma $7.1 q q^{\prime}=q^{\prime} q$ is a central idempotent. Now R_{R} is essential in Q_{R}; so there exist $a, d \in R$ such that $q d=a \neq 0$. Since Q is an f-ring, $|a| \wedge|d| \neq 0$;
so since R is a left qf-ring, the left-hand version of Theorem 4.3 implies that $h d=k a \neq 0$ for some $h, k \in R$. Let $d^{\prime} \in Q$ such that $d d^{\prime} d=d$; then

$$
d k q=d d^{\prime} d k q=d k q d^{\prime} d=d k q d d^{\prime}=d k a d^{\prime}=d h d d^{\prime}=d d^{\prime} d h=d h \neq 0
$$

Thus, $R q \cap R \neq 0$ and ${ }_{R} R$ is essential in ${ }_{R} Q$.

References

1. F. W. Anderson, On f-rings with the ascending chain condition, Proc. Amer. Math. Soc., 13 (1962), 715-21.
2. R. F. Arens and I. Kaplansky, Topological representation of algebras, Trans. Amer. Math. Soc., 63 (1948), 457-81.
3. G. Birkhoff, Lattice theory (rev. ed., New York, 1948).
4. G. Birkhoff and R. S. Pierce, Lattice-ordered rings, An. Acad. Brasil. Ci., 28 (1956), 41-69.
5. H. Cartan and S. Eilenberg, Homological algebra (Princeton, 1956).
6. B. Eckmann and A. Schopf, Über injective Moduln, Arch. Math., 4 (1956), 75-78.
7. G. D. Findlay and J. Lambek, A generalized ring of quotients, Can. Math. Bull., 1 (1958), 77-85, 155-67.
8. A. W. Goldie, Semi-prime rings with maximum condition, Proc. London Math. Soc., 10 (1960), 201-20.
9. D. G. Johnson, A structure theory for a class of lattice-ordered rings, Acta Math., 104 (1960), 163-215.
10. R. E. Johnson, The extended centralizer of a ring over a module, Proc. Amer. Math. Soc., 2 (1951), 891-5.
11. ——Quotient rings of rings with zero singular ideal, Pac. J. Math., 11 (1961), 1385-95.
12. J. Lambek, On Utumi's ring of quotients, Can. J. Math., 15 (1963), 363-70.
13. H. Nakano, Modern spectral theory (Tokyo, 1950).
14. B. H. Neumann, On ordered groups, Amer. J. Math., 71 (1949), 1-18.
15. -On ordered division rings, Trans. Amer. Math. Soc., 66 (1949), 202-52.
16. O. Ore, Linear equations in non-commutative fields, Ann. Math., 32 (1931), 463-77.
17. R. S. Pierce, Radicals in function rings, Duke Math. J., 23 (1956), 253-61.
18. Y. Utumi, On quotient rings, Osaka Math. J., 8 (1956), 1-18.

Institute for Advanced Study and
 University of Oregon

[^0]: Received November 8, 1963. This work was supported by a National Science Foundation Grant (NSF G-19859).

