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A one-dimensional model of magnetic relaxation in a pressureless low-resistivity
plasma is considered. The initial two-component magnetic field b(x, t) is strongly
helical, with non-uniform helicity density. The magnetic pressure gradient drives a
velocity field that is dissipated by viscosity. Relaxation occurs in two phases. The first
is a rapid initial phase in which the magnetic energy drops sharply and the magnetic
pressure becomes approximately uniform; the helicity density is redistributed during
this phase but remains non-uniform, and although the total helicity remains relatively
constant, a Taylor state is not established. The second phase is one of slow diffusion,
in which the velocity is weak, though still driven by persistent weak non-uniformity
of magnetic pressure; during this phase, magnetic energy and helicity decay slowly
and at constant ratio through the combined effects of pressure equalisation and finite
resistivity. The density field, initially uniform, develops rapidly (in association with
the magnetic field) during the initial phase, and continues to evolve, developing sharp
maxima, throughout the diffusive stage. Finally it is proved that, if the resistivity is
zero, the spatial mean 〈(b ·∇×b)/b2〉 is an invariant of the governing one-dimensional
induction equation.

1. Introduction
The process of magnetic relaxation in a low-resistivity plasma was envisaged by

Woltjer (1958), who showed that, under certain circumstances, minimisation of energy
subject to the single constraint of invariance of total magnetic helicity leads to a force-
free equilibrium, in which current j and magnetic field B satisfy the Beltrami relation†

j=∇×B= α0B, (1.1)
where α0 is a constant. It was subsequently recognised (Moffatt 1969) that there is a
whole family of helicity invariants

HD =
∫
D

A ·B dV, B=∇×A, (1.2)

where D is any Lagrangian subdomain of fluid on whose surface the normal
component of B vanishes. If due account is taken of the invariance of these
‘sub-helicities’, then the field still relaxes to a force-free equilibrium, but now with

j=∇×B= α(x)B, with B · ∇α = 0, (1.3)

i.e. with α merely constant on magnetic lines of force (‘B-lines’).

† Email address for correspondence: hkm2@cam.ac.uk
†In this paper, SI units are used with the conventional constant µ0 absorbed in the definition of current.
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2 H. K. Moffatt

It was conjectured by Taylor (1974) that, in a turbulent low-density plasma, only
the global invariant HV survives, where D = V is the whole plasma volume. This
evidently leads to Beltrami fields of the form (1.1), a conclusion that provided a
plausible explanation for the observed field structures in ‘reversed-field-pinch’ (RFP)
experiments of that period. This conjecture, together with associated theory and further
extensive experimental evidence, was reviewed by Taylor (1986), and has become
part of the ‘received knowledge’ concerning turbulent relaxation processes in plasma
physics. Escande (2015) provides a recent review of relaxation in the RFP context,
and of variants of the Taylor conjecture. An excellent review of the role of magnetic
helicity in laboratory and astrophysical plasma dynamics has been provided by Berger
(1999).

Despite the appeal of the Taylor conjecture, there is as yet no rigorous justification
for it, although various heuristic arguments have been advanced. Counter-arguments
can however be advanced with equal force. For example, if an untwisted flux tube
in the form of a figure of eight, and of cross-section small compared with its length,
reconnects by a purely diffusive process to form two unlinked flux tubes, then,
according to the theory of Kimura & Moffatt (2014), the initial ‘writhe’ helicity
can be destroyed without any compensating generation of ‘twist’, whereas the
magnetic energy is reduced by a relatively small amount. This suggests that there are
circumstances in which helicity is destroyed more rapidly than energy, rather than
more slowly as required by the Taylor scenario.

Examples of relaxation of initially braided magnetic fields have been considered by
Pontin et al. (2011), and more recently by Russell et al. (2015), which further reveal
that the invariance of global helicity is in itself insufficient to determine the end state
of a relaxation process. These authors define a ‘field-line helicity’ loosely related to
the ‘sub-helicities’ defined above, which can evidently play an important role in the
process.

In fact, as pointed out by Qin et al. (2012), ‘there is no conclusive experimental or
numerical evidence in support of Taylor’s conjecture’. These authors have considered
alternative mechanisms that may lead to equilibrium states described by (1.1), without
invoking this conjecture. However, they make a significant assumption in relation to
the relaxation process, namely that ‘the variation of magnetic energy due to the
Lorentz force is small compared with that due to the resistivity’. The Lorentz force
generates kinetic energy that may indeed be small compared with the magnetic energy,
but, as we shall find, the rate of dissipation of energy by viscosity via this route can,
during the primary phase of relaxation of a non-equilibrium field, be much larger
than the direct rate of dissipation of magnetic energy by resistivity.

We propose here to analyse the relaxation process for a simple one-dimensional
model, for which the evolution of magnetic, velocity and density fields, as well as
of energy density, helicity density, total energy and total helicity, can be followed
in detail. In adopting a one-dimensional model, we follow the precedent of Cowley
et al. (2015), who provide a similar one-dimensional model for explosive instabilities
in a magnetised plasma. The great advantage of one-dimensional models is their
simplicity and the physical insight that they can thereby provide. It is hoped that
the model presented in this paper retains enough of the essential physics of the fully
three-dimensional situation as to be not wholly without relevance for the general
problem of turbulent relaxation.

A closely related paper, in which many useful references can be found, has
appeared very recently (Smiet et al. 2015). The authors present a brilliant set of fully
three-dimensional computations of relaxation in an isothermal plasma, the end state
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being a slowly decaying magnetostatic (rather than force-free) equilibrium. This is
consistent with the scenario developed by Moffatt (1985), but with the incorporation
of weak magnetic diffusion effects that are responsible for changes in the magnetic
field topology and ultimate slow decay.

For general background concerning plasma physics in relation to tokamak reactor
design, we may refer to the recent article by Freidberg, Mangiarotti & Minervini
(2015), where some outstanding challenges are presented.

2. One-dimensional relaxation in a pressureless plasma
Suppose that a low-resistivity, low-density plasma is contained between two

perfectly conducting planes x = ±πL. Suppose that, at time t = 0, the plasma has
uniform density ρ0, and is at rest and permeated by a two-component magnetic field,

B(x, 0)= B0[0, by0(x), bz0(x)], (2.1)

where B0 is a representative value of |B(x, 0)|. The B-lines are rectilinear and lie
in planes x = const., the magnitude and direction of B being dependent on x. The
associated current is

j(x, 0)=∇×B= B0[0,−b′z0(x), b′y0(x)] (2.2)

and the Lorentz force is

j(x, 0)×B(x, 0)= (−dpM0/dx, 0, 0), (2.3)

where pM0(x)=B2/2 is the magnetic pressure distribution. The electric field is E= η j,
where η is the magnetic resistivity of the plasma, assumed small; and since Ey and
Ez must be zero at the perfectly conducting boundaries, it follows that

b′y0(±πL)= b′z0(±πL)= 0, (2.4)

conditions that we shall assume to persist for all t> 0.
We further assume that the density of the plasma is so low that its pressure is

negligible compared with the magnetic pressure (the ‘low-β’ approximation). For t>0,
the plasma flows in response to the magnetic pressure with velocity

u(x, t)= [u(x, t), 0, 0], with u(±πL, t)= 0. (2.5)

The electric field E(x, t) in the plasma is then given by Ohm’s law,

E+ u×B= η j, (2.6)

and the magnetic field B(x, t) with components [0, by(x, t), bz(x, t)] evolves for t> 0
according to the induction equation

∂B
∂t
=−∇×E=∇× (u×B)+ η∇2B, (2.7)

with components

∂by

∂t
+ u

∂by

∂x
=−by

∂u
∂x
+ η∂

2by

∂x2
,

∂bz

∂t
+ u

∂bz

∂x
=−bz

∂u
∂x
+ η∂

2bz

∂x2
. (2.8a,b)
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We note that, together with the boundary conditions (2.4) and (2.5), these equations
imply that

Φy =
∫ π

−π

by(x, t) dx= const. and Φz =
∫ π

−π

bz(x, t) dx= const., (2.9a,b)

i.e. the flux vector (0, Φy, Φz) is constant, being trapped between the perfectly
conducting boundaries. We may choose the axes Oyz so that Φy=0. Flux conservation
then implies that, whatever the initial field b0 may be, the long-term asymptotic state
is just the uniform field

b∼ (0, 0, Φz/2π) as t→∞. (2.10)

Following Bajer & Moffatt (2013), we adopt a viscous model for the relaxation
process, with an effective viscosity µ; then u and ρ evolve according to the one-
dimensional equations

ρ

(
∂u
∂t
+ u

∂u
∂x

)
=−∂pM

∂x
+µ∂

2u
∂x2

,
∂ρ

∂t
+ u

∂ρ

∂x
=−ρ ∂u

∂x
, (2.11a,b)

where pM = B2
0(b

2
y + b2

z )/2. We note that, for this geometry, (2.7) and (2.11b) may be
combined to give

D
Dt

(
B
ρ

)
≡
(
∂

∂t
+ u

∂

∂x

)(
B
ρ

)
= η
ρ

∂2B
∂x2

, (2.12)

where D/Dt is the Lagrangian derivative following a material element of fluid.
As explained in the introduction, a primary aim of this paper is to explore the

extent to which the Taylor conjecture is valid for the model under consideration. That
is, is the global helicity the only relevant invariant during relaxation to a minimum
energy state? And does the field relax to a ‘Taylor state’ in which the Beltrami
condition (1.1) is satisfied? For this purpose we need to introduce a vector potential
A= [0, ay(x, t), az(x, t)] with

B=∇×A=
(

0,−∂az

∂x
,
∂ay

∂x

)
. (2.13)

It is evident that any vector potential of this kind satisfies ∇ ·A= 0. We may further
pin down the gauge of A so that ay(0, t)= az(0, t)= 0. Since from (2.6), E has no x
component, we may assume that E=−∂A/∂t, so that A then satisfies the equation

∂A
∂t
= u×B+ η∇2A. (2.14)

With u×B= (0,−ubz, uby), we then have

∂ay

∂t
=−u

∂ay

∂x
+ η∂

2ay

∂x2
,

∂az

∂t
=−u

∂az

∂x
+ η∂

2az

∂x2
, (2.15a,b)

or equivalently
DA/Dt= η∇2A. (2.16)
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The helicity density is given by

H(x, t)=A ·B= az
∂ay

∂x
− ay

∂az

∂x
, (2.17)

and it is evident from (2.12) and (2.16) that, when η= 0,

D
Dt
(H/ρ)= 0, (2.18)

i.e. H/ρ is a Lagrangian invariant. Thus, a fortiori, the ‘global’ helicity per unit area
of the (y, z) plane, given by†

HV =
∫

A ·B dx=
∫

A ·
(

B
ρ

)
ρ dx, (2.19)

is invariant when η= 0. When η 6= 0, standard manipulations give

dHV

dt
=−2η

∫
j ·B dx. (2.20)

The vector potential A is of course generally not unique: under the gauge
transformation A→A∗=A+∇φ, the helicity density becomes H∗(x, t)=H+B · ∇φ.
If we insist that A as well as B be one-dimensional, then ∇φ = (∂ψ/∂x, c1, c2),
where ψ(x, t) is arbitrary and c1 and c2 are at most functions of time. Hence

H∗(x, t)=H(x, t)+ c1By + c2Bz. (2.21)

Here c1 and c2, with dimensions of magnetic flux, are actually fluxes that may be
imposed (in the z and y directions, respectively!) external to the slab |x|<πL in which
the plasma is located. We shall suppose that these external fluxes are zero for all t,
i.e. c1 = c2 = 0. They cannot therefore contribute to gauge transformation. With this
understanding, the helicity density, like the total helicity, is in fact gauge-invariant.

It will be convenient to use non-dimensional variables. Defining

x̂= x/L, t̂= t/(µ/B2
0), ρ̂ = ρ/ρ0, b̂=B/B0, û= u/(B2

0L/µ), (2.22a−e)

equations (2.11) and (2.8) become (dropping the hats)

ερ

(
∂u
∂t
+ u

∂u
∂x

)
=−∂pM

∂x
+ ∂

2u
∂x2

,
∂ρ

∂t
+ u

∂ρ

∂x
=−ρ ∂u

∂x
, (2.23a,b)

∂by

∂t
+ u

∂by

∂x
=−by

∂u
∂x
+ κ ∂

2by

∂x2
,

∂bz

∂t
+ u

∂bz

∂x
=−bz

∂u
∂x
+ κ ∂

2bz

∂x2
, (2.24a,b)

where the dimensionless parameters ε and κ (both assumed small) are given by

ε = ρ0B2
0L2/µ2� 1, κ = ηµ/B2

0L2� 1. (2.25a,b)

Here, ε is like a Reynolds number based on the velocity scale B2
0L/µ, and is small by

virtue of the smallness of ρ0; and κ is small by virtue of the smallness of η. For this
combination of reasons, we must suppose that the magnetic Prandtl number µ/ρ0η=
(εκ)−1 is large, not unreasonable in a very low-density, high-conductivity plasma.

†Integrals are from −π to π, unless otherwise stated.
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3. Two-stage process
We may ensure that the initial helicity is non-zero by adopting initial conditions of

the form
by0(x)= β sin[xm(x)], bz0(x)= γ cos[xm(x)]. (3.1a,b)

The coefficients β and γ are arbitrary; the only important thing is that they are
unequal, and, for the sake of illustration, we shall adopt values β = 2, γ = 3.
The variable wavenumber m(x) must be chosen in such a way that the conditions
b′y0(±π)= b′z0(±π)= 0 are satisfied. A simple choice is

m(x)= k(3π2 − x2), (3.2)

where k is constant. The field (3.1) provides an initial non-uniform magnetic pressure
distribution,

pM0(x)= 1
2 [4 sin2(xm(x))+ 9 cos2(xm(x))] = 1

2 [4+ 5 cos2(xm(x))]. (3.3)

It is the gradient of this magnetic pressure that drives the subsequent flow. Note
that pM0(x) nowhere vanishes, i.e. there are no null points of B. In this respect, the
situation differs from that considered by Bajer & Moffatt (2013), wherein the null
points played a crucial role.

Obviously by0(−x) = −by0(x) and bz0(−x) = bz0(x), and, with the further initial
conditions

u(x, 0)= 0, ρ(x, 0)= 1, (3.4a,b)

and boundary conditions

∂by0

∂x
(±π, t)= ∂bz0

∂x
(±π, t)= u(±π, t)= 0, (3.5)

these symmetries are respected for t> 0, as are the symmetries

pM(−x, t)= pM(x, t), u(−x, t)=−u(x, t),
ρ(−x, t)= ρ(x, t), H(−x, t)=H(x, t).

}
(3.6)

With the choice k = 0.1 (again arbitrary), the initial field components by0(x) and
bz0(x) are as shown in figure 1. The corresponding fluxes are then

Φy = 0, Φz = 3
∫ π

−π

cos(kx(3π2 − x2)) dx≈ 3.4504, (3.7a,b)

and these values are conserved. Adopting the suitably small parameter values ε=0.001
and κ = 0.001, (2.23) and (2.24) may be integrated numerically†. Figure 2 shows the
manner in which the initial magnetic energy distribution M(x, t) (= pM(x, t)) relaxes
to a near-uniform (i.e. nearly force-free) state. Figure 2(a) shows that, by time t =
1, the energy density (and so the magnetic pressure) is nearly uniform in x, and
remains so for later times. It does not however become exactly uniform, as indicated
by figure 2(b), which shows M(x, 50) expanded in the vertical by a factor of about
100. Figure 3 shows the relatively rapid initial decay of the mean magnetic energy
M(t) up to about t = 0.2 (with M(0) = 3.396), and the subsequent relatively slow

†The computations in this paper were carried out using Mathematica.
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FIGURE 1. Initial field components in the interval (−π, π), defined by (3.1) and (3.2),
with k= 0.1.

(a) (b)

FIGURE 2. (a) Magnetic energy M(x, t) (= pM(x, t)) for t= 0, 0.2, 1 and 50. (b) Expanded
view of M(x, t) at time t= 50; the ordinate here runs just from 1.86 to 1.89.

FIGURE 3. Relaxation of the mean magnetic energy M(t) for 0 < t < 1; M(0) = 3.396.
Note the initial rapid relaxation followed by relatively slow decay for t & 0.2.

decay driven by magnetic resistivity (which forces a continuing weak x dependence
of magnetic energy density and pressure).

As previously noted, the lines of force are rectilinear and lie in planes x = const.
At time t, as x increases from −π to π, the line of force through the point (x, 0, 0)
sweeps out a ruled surface S[t] with parametric representation [x, sby(x, t), sbz(x, t)].
This surface is shown in figure 4 for the range {−π< x<π,−1< s< 1} at the initial
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(a) (b)

FIGURE 4. Ruled surface S [t] containing the B-lines through the points (x, 0, 0) for −π<
x<π: (a) non-equilibrium initial field; (b) nearly force-free relaxed field at time t= 50.

(a) (b)

FIGURE 5. (a) Helicity density H(x, t) at times t= 0 (solid), 0.5 (dashed) and 10 (dotted).
(b) Mean helicity H(t) (=HV(t)/2π) for 0< t< 1; H(0)= 2.367. The ordinate runs from
0.95 to 1.005, as in figure 3. There is a redistribution of helicity density but mean helicity
is almost constant.

instant t = 0 and at time t = 50 when the field is well relaxed; the helical character
of the field structure is very evident from this representation.

Our interest is primarily focused on the behaviour of the helicity during the
relaxation process. The helicity density is shown in figure 5(a) for times t = 0, 0.5
and 10. Up to about time t=0.5, there is merely a redistribution of lines of force, with
conservation of mean helicity H(t) = HV(t)/2π (actually about a 1 % decrease due
to diffusive decay). For greater values of t, this diffusive decay continues (figure 5b),
with no sign of any change of behaviour as t increases through values O(1). This is
entirely consistent with conservation of global helicity in the non-diffusive limit κ = 0.
However, the non-uniformity of H(x, t) remains marked throughout, as expected given
that, as shown above, H(x, t)/ρ is a Lagrangian invariant when κ = 0. The contrasting
behaviour of M(t)/M(0) (figure 3) and H(t)/H(0) (figure 5b) is to be noted.

We may view this differently in terms of an α-effect. After the early stage of
relaxation when the magnetic pressure has become approximately uniform, the field
is nearly force-free, so that at leading order j= α(x, t)B, i.e.

jy = α(x, t)by, jz = α(x, t)bz and so α(x, t)= jy/by = jz/bz. (3.8a,b)
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(a) (b) (c)

FIGURE 6. The x dependence of jy/by (solid) and jz/bz (dashed) at times t = 0, 0.1
and 1. (The vertical segments on these curves appear at points where the ratios are
not well defined other than by continuity.) By time t = 1, the two curves are almost
indistinguishable, as implied by (3.8).

(a) (b)

FIGURE 7. Kinetic energy K(t) in (3.9): (a) for 0< t< 0.5, K(t) rises rapidly from zero
to a maximum of 0.393 at t= 0.004, and then decays monotonically; (b) for 0< t< 0.01,
showing the initial rise on an O(ε) time scale.

Figure 6 shows curves for jy/by and jz/bz for t = 0, 0.1 and 1. There is indeed a
convergence of the two curves as t increases, and by time t = 1 they are almost
indistinguishable. From this point on, the single curve evidently gives an excellent
approximation for the function α(x, t). This is obviously non-uniform in x, providing a
clear signal that the Taylor state (1.1) is not attained, and therefore that global helicity
is certainly not the only relevant invariant during the initial rapid relaxation process.

During this initial phase, there is a transfer of energy from the magnetic field to
the velocity field, i.e. to kinetic energy K(t) defined by

K(t)= 1
2

∫ π

−π

ρ(x, t)(u(x, t))2 dx. (3.9)

Figure 7(a) shows this kinetic energy for 0 < t < 0.5. It rises initially very rapidly
to a maximum, u being subsequently determined in quasi-static manner. The kinetic
energy K(t) falls to a low value (K . 10−3 for t > 0.5), a further indication of the
nearly force-free state. Figure 7(b) shows K(t) for 0 < t < 0.01, showing how this
kinetic energy grows initially on an O(ε) time scale.

We may note that, if ε = 0, then the development is truly quasi-static as far as
the velocity is concerned. In this situation, a single integration of (2.23) using the
boundary conditions (3.5) gives

∂u
∂x
= pM(x, t)− 〈pM(x, t)〉 = 1

2
(b2 − 〈b2〉), (3.10)
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FIGURE 8. Density field ρ(x, t) at times t= 0 (solid), t= 1 (dashed) and t= 50 (dotted).
Note the development of increasingly sharp maxima as t increases.

where b2 = b2
y + b2

y , and the angular brackets indicate an average over the range
(−π,π). This gives an initial kinetic energy (with ρ0 = 1)

K(0)=
∫ π

−π

[∫ x

−π

[pM0(ξ)− 〈pM0(ξ)〉] dξ
]2

dx, (3.11)

which may be evaluated numerically using (3.3). The result is K(0) = 0.416,
marginally greater than the maximum of K(t) shown in figure 7 (actually, with
ε = 0.001, Kmax(t)= 0.393 at t= 0.004). This is consistent with the establishment of
quasi-static evolution in a time t=O(ε).

Note that if we return to dimensional variables via (2.22), the dimensional magnetic
and kinetic energies are

Md(t)= B2
0LM(t), Kd(t)= (ρ0B2

0L3/µ2)K(t), (3.12a,b)

so that
Kd(t)/Md(t)= εK(t)/M(t), (3.13)

and this ratio is certainly small. Nevertheless, the initial drop in M(t) evident in
figure 2(c) is due to conversion M(t)→K(t) and immediate dissipation by viscosity.

Finally, we may consider the evolution of the density field ρ(x, t), bearing in
mind that, in the zero-resistivity limit (κ = 0), by/ρ and bz/ρ are both Lagrangian
invariants so that evolution of by and bz is necessarily accompanied by corresponding
evolution of ρ. This correspondence is of course broken when κ 6= 0. Figure 8 shows
the density field at times t = 0, 1 and 50. During the early relaxation phase, the
density field, initially uniform, is significantly perturbed, as expected. The evolution
continues during the subsequent slow diffusive phase, due to the cumulative effect
of the non-vanishing velocity field (as similarly found by Bajer & Moffatt (2013)),
and persistent convergence towards the four minima of magnetic pressure (see
figure 2a) causes these maxima of density to become increasingly pronounced while
the magnetic field slowly decays.

In a fully three-dimensional situation, B and ρ are still strongly coupled in the
non-diffusive limit through the equation D(B/ρ)/Dt = (B/ρ) · ∇u, so a similar
development of density variations is to be expected, although perhaps not with such
strong peaks. Previous computations have mainly focused on the evolution of the
magnetic field, ignoring the associated evolution of the density field that must clearly
be significant in any low-β plasma.
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FIGURE 9. Plots of 〈α2〉 and 〈α〉 as functions of time for 0< t< 30.

4. Energy and helicity decay during the slow diffusion stage
During the slow diffusion stage, although by and bz are still strongly non-uniform

in x, b2 = b2
y + b2

z is approximately uniform, and j≈ α(x, t)B. The exact equation for
b2 may be readily found from (2.24) in the form

∂

∂t
b2 + ∂

∂x
(ub2)=−b2 ∂u

∂x
− 2κb · ∇× j. (4.1)

Here, ∂u/∂x is now given by the quasi-static relation (3.10), and it is the first term on
the right that is responsible for keeping b2 approximately uniform. (Note that b2 would
not remain uniform under purely diffusive decay, without the all-important smoothing
effect of magnetic pressure.) Here, using j= α(x, t)B, the diffusive term becomes, at
leading order,

−2κb · ∇× (αb)=−2κb · (αj− b×∇α)=−2κα2b2. (4.2)

Now, we may average (4.1) over the range (−π,π) using u(±π, t)= 0, giving, again
at leading order using the approximate uniformity of b2,

∂

∂t
〈b2〉 =−2κ〈α2b2〉 ≈−2κ〈α2〉〈b2〉, so 〈b2〉 = b2

0 exp
[
−2κ

∫ t

td

〈α2〉(τ ) dτ
]
, (4.3)

where b2
0 is the value of 〈b2〉 at some nominal instant t= td∼1 by which time the slow

diffusive stage may be deemed to be established. The function 〈α2〉(t)= 〈( j · b/b2)2〉
is shown in figure 9. It varies by only ±1 % from the value 5.7 over the (diffusive)
range td < t< 30, so that (4.3) indicates mild exponential decrease of energy over this
range:

〈b2〉 ≈ b2
0 exp[−11.4κ(t− td)]. (4.4)

The decay of mean helicity H(t) (= (2π)−1HV(t)) may be calculated to the same
modest degree of accuracy. We have

dH
dt
=−2κ〈 j · b〉 =−2κ〈αb2〉 ≈−2κ〈α〉〈b2〉, (4.5)

exploiting again the near-uniformity of b2. The function 〈α〉 is also shown in figure 9;
it is remarkably constant near the value 1.98, over the whole range 0 < t < 30.
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Adopting this value, and noting that H(t) must tend to zero as t→∞, (4.5) integrates
to give

H(t)≈ 0.34b2
0 exp[−11.4κ(t− td)], (4.6)

at least for td . t.30. What is important here is that both energy and helicity decrease
at the same rate, the characteristic decay time for both being td ∼ (2κ〈α2〉)−1. Clearly,
the ratio H(t)/〈b2〉 remains constant throughout the diffusive stage.

We note however that this behaviour cannot continue for ever, since ultimately
by(x, t) must decay to zero, whereas bz(x, t) must level off at the level Φz/2π≈ 0.5491
determined by the conserved flux. This levelling off occurs when M(t) has fallen
to such a low level that the nonlinear convection terms of (2.24) become negligible
compared with the diffusion terms. For the parameter values chosen here, this occurs
when t ∼ 250, well beyond the range shown in figures 3 and 5(b). For t & 250, the
field gradient is so weak that the continuing decay is due to ohmic diffusion alone.

5. Lagrangian invariance of 〈α〉
The near-constancy of 〈α〉 evident in figure 9 contrasts with the behaviour of 〈α2〉

and calls for explanation. First, whether the force-free equation j=α(x, t)b is satisfied
or not, we may define α(x, t) (a measure of the rate of rotation of the field vector with
increasing x, as shown in figure 4) by the equation

α(x, t)= (b · j)/b2. (5.1)

Then we have the following theorem.

THEOREM. If b= (0, by(x, t), bz(x, t)) and u= (u(x, t), 0, 0) with u(±π, t)= 0, and
if {b(x, 0), u(x, 0), ρ(x, 0)} are arbitrary C2 fields subject only to u(±π, 0)= 0, then
〈(b · ∇× b)/b2〉 is an invariant of the zero-resistivity equations

∂b
∂t
=∇× (u× b),

∂ρ

∂t
+ ∂

∂x
(ρu)= 0, (5.2a,b)

where the angular brackets represent an average over the range (−π,π).

Proof. Writing 〈α〉 in the form

〈α〉 = 1
2π

∫ π

−π

j · (b/ρ)
b2

ρ dx, (5.3)

and using the standard Lagrangian results (D/Dt)(b/ρ)= 0 and (D/Dt)(ρ dx)= 0, we
have immediately that

2π
d〈α〉

dt
=
∫ π

−π

b ·
D
Dt

(
j

b2

)
dx. (5.4)

Now from (5.2), we may readily derive the equations

D
Dt

j=−2 j
∂u
∂x
+ (0, bz,−by)

∂2u
∂x2

,
D
Dt

b2 =−2b2 ∂u
∂x
. (5.5a,b)
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Hence we have

D
Dt

(
j

b2

)
= 1

b2

[
−2 j

∂u
∂x
+ (0, bz,−by)

∂2u
∂x2

]
+ 2

j
b2

∂u
∂x
= 1

b2
(0, bz,−by)

∂2u
∂x2

, (5.6)

and so

b ·
D
Dt

(
j

b2

)
= 0. (5.7)

It follows immediately from (5.4) that

d〈α〉/dt= 0, and so 〈α〉 = const. (5.8)

(Actually, it is clear from the above argument that j · b/ρb2 is a Lagrangian invariant,
so the integral (5.3) is in fact constant if taken over any Lagrangian (co-moving) sub-
interval of (π,π).)

6. An example with concentrated initial field near the boundaries
We now briefly consider what happens if the initial field is more concentrated near

the boundaries x=±π. We adopt initial conditions (again somewhat arbitrarily)

by0(x)= 2x(f (x))2, bz0(x)= (1− (f (x))2)2, with f (x)= (x/π)4(π2 − x2). (6.1a,b)

These field components are shown in figure 10(a). Again, in this case, by symmetry
Φy= 0, and the conserved flux in the z direction is Φz= 9.0881. The initial magnetic
pressure distribution is shown by the solid curve of figure 10(b). Note how this
distribution is quite concentrated near the boundaries; there are two minima at
x = ±1.5, and a very flat weak maximum (not visible in this plot) at x = 0. The
pressure maxima near the boundaries push in towards the centre, as evidenced by the
dashed curve (for time t= 0.01). By time t= 0.2 (dotted curve), the magnetic pressure
is close to its ultimate uniform value (indicated by the thin red line). Figure 10(c,d)
shows the ruled surface representation of the field; just as in figure 4, the field lines
are the intersections of these surfaces with planes x= const.

Figure 10(e,f ) shows the density and helicity fields at times t = 0 (solid), t = 0.2
(dashed) and t = 3 (dotted). Peaks of density form near x = ±0.4, and there is also
a build-up of density at the boundaries due to the local magnetic pressure gradient.
As regards the helicity density, there is a corresponding redistribution (as implied
by (2.18)), but it remains distinctly non-uniform after the initial relaxation is complete.
This initial relaxation is evident in the lower curve of figure 10(g), which shows that
the mean magnetic energy has in fact relaxed by time t ≈ 0.2. Here, M(0)= 11.943
and we may note that the asymptotic mean magnetic energy as t→∞ is M(∞) =
1.0461, so that M(∞)/M(0)= 0.0876. The upper curve of figure 10(g) indicates the
very nearly constant value of mean helicity right through the initial relaxation phase
and well beyond. This behaviour is much the same as found in the previous sections
(figures 3 and 5b).

Finally, figure 10(h) shows the time dependence of 10〈α〉 and 〈α2〉, where α is again
defined as j · b/b2. Here, the anomalous behaviour of 〈α〉 for t. 0.1 must be attributed
to diffusion near the boundaries where d2by0/dx2 is large†. This curvature actually has

†By strange accident, for the initial conditions (6.1), it happens that, at time t= 0, 〈α〉 is extremely close
to zero, perhaps exactly zero, though this is difficult to prove.
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(a) (b)

(c) (d)

(e) ( f )

(g) (h)

FIGURE 10. (a) Initial field components by0 (solid) and bz0 (dashed), as defined by (6.1).
(b) Associated magnetic pressure distribution at times t = 0 (solid), 0.01 (dashed), 0.2
(dotted) and 0.6 (faint). (c) Three-dimensional representation of field at t=0, as in figure 4.
(d) Same as (c) at t= 5. (e) Density ρ(x, t) and (f ) helicity density H(x, t) at times t= 0
(solid), 0.2 (dashed) and 3 (dotted). (g) Mean magnetic energy M(t) and mean helicity
H(t), both relative to their initial values, for 0< t< 0.6. (h) Plots of 10〈α(t)〉 and 〈α2(t)〉
for 0< t< 5.
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a maximum value of approximately 496 at x = π, so that diffusion is immediately
(and permanently) significant in this neighbourhood, and similarly near x=−π.

All in all, although the initial condition (6.1) is very different in this example
from that in § 3 (3.1), the gross features of the behaviour are very similar: magnetic
pressure drives a flow that tends to make this pressure uniform, thus establishing a
nearly force-free state, energy being dissipated indirectly by viscosity; helicity density
is redistributed, the mean helicity being approximately constant; and density peaks
develop near minima of magnetic pressure, a process that persists during the slow
diffusive stage.

7. Discussion
We have presented a one-dimensional model of magnetic relaxation having the

following properties:

(i) The initial two-component magnetic field has non-zero helicity, and is not force-
free, i.e. j×B 6= 0 at time t= 0.

(ii) The plasma pressure is assumed negligible compared with the magnetic pressure,
and flow is driven by the gradient of this magnetic pressure.

(iii) The flow is governed by the Navier–Stokes equation with effective viscosity µ.
The plasma is initially at rest, with uniform density. (What is important here
is that some mechanism that dissipates kinetic energy without compromising
the ‘frozen-in’ character of the magnetic field during the initial relaxation phase
should be operative; Newtonian viscosity is the simplest such mechanism.)

(iv) When non-dimensionalised, the system involves two dimensionless parameters,
ε = ρ0B2

0L2/µ2 and κ = ηµ/B2
0L2, both assumed small. If ε = 0, the response of

the plasma to the magnetic field is quasi-static.
(v) The relaxation proceeds in two stages: an initial relatively rapid stage in which

approximate uniformity of magnetic pressure is established; and a subsequent
slow-diffusion stage.

(vi) During the initial stage, magnetic energy decreases, and total magnetic helicity
is relatively constant; however, the helicity density, although redistributed,
remains strongly non-uniform. The current j becomes nearly aligned with B,
i.e. j ≈ α(x, t)B, but α also remains strongly non-uniform, i.e. a ‘Taylor state’
is not established. This is essentially because H/ρ is a Lagrangian invariant, a
constraint on the relaxation process.

(vii) During the subsequent diffusive stage, quasi-static conditions persist, with
magnetic pressure remaining approximately (but never exactly) uniform.
Magnetic energy and helicity both decay exponentially with the same decay
rate proportional to κ〈α2〉.

(viii) A non-uniform density field develops, initially in step with the relaxing magnetic
field. This field continues to develop during the diffusive stage, with maxima
becoming more pronounced near to the (slowly moving) minima of magnetic
energy, as a result of cumulative transport by the velocity field.

As a by-product of the investigation, we have proved in § 5 that 〈(b · ∇× b)/b2〉 is
an invariant of the zero-resistivity one-dimensional induction equation governing the
model.

The behaviour has interesting points of comparison with the fully three-dimensional
relaxation situation studied by Smiet et al. (2015): in particular, the two-stage
character of the relaxation process, and the fact that a Taylor state does not emerge
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from it. The one-dimensional model presented here is of course computationally far
more economical, and the details are easier to visualise. However, in three dimensions,
magnetic tension (hoop stress) as well as magnetic pressure drives the flow. Moreover,
an initially chaotic magnetic field has no magnetic surfaces and only one helicity
invariant for each chaotic subdomain. For these reasons, the details of the evolution
are inevitably very different in this much more complex situation.

For the sake of illustration, we have adopted particular values of the parameters
ε and κ . The choice is to some extent arbitrary, but it seems likely that the above
conclusions are reasonably robust provided only that these parameters are both small.
Adaptation to a cylindrical or toroidal domain, for which magnetic tension as well
as magnetic pressure gradient must play a part, should be reasonably straightforward.
This will be the subject of a future communication.
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