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Abstract

A number of sufficient conditions for stability or strong stability, as used in the context of
Hamiltonian systems, are found for the differential equation

[p(D) + f{t)q(D)]y = 0

where the continuous function f(t) is periodic of period u> in t, D = djdt and p(s), q(s) are
real monic polynomials having special properties which allow the differential equation to be
transformed into a canonical system of k second order equations.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 34 C 11, 58 F 05.

We consider the differential equation

(1) [p(D) + f(t)q(D)]y = 0

where D = djdt, p(s) and q(s) are real monic polynomials of even order with
no common factors, and each polynomial has only distinct zeros, all of which
lie on the imaginary axis such that the zeros of the two polynomials interlace
with each other, above, and of course, below the origin on the imaginary axis.
The function f(t) is continuous and periodic of period co in t.

As we shall be considering pairs of polynomials of the above type, let us
denote by & the set of all pairs of polynomials, p(s) and q(s), which have
the above list of properties.

The differential equation (1) occurs in feedback control theory problems.
Under the above conditions, the differential equation (1), can be written as
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[2] Sufficient conditions for the strong stability 281

a canonical system of k second order equations:

(2)

where y is a k x 1 vector, Po and R(t) are real symmetric matrices and R(t)
is periodic of period co in t. System (2) is a special case of the linear Hamil-
tonian system:

(3) J^ = //(Ox,

with periodic coefficients. Here H(t) is a 2k x 2A; real symmetric matrix,
continuous and periodic of period co in / and

J =

Sufficient conditions for the differential equation (1) to be strongly stable
are found by considering when the equivalent system (2) or the equivalent
Hamiltonian system (3) belongs to a domain of stability. Stability tests for (1)
were obtained, in this manner, by Brockett [2] and Chiou [3]. The stability
criteria of Brockett and Chiou are restricted to particular domains of stability.
We will refine the tests of Brockett and Chiou and also give stability criteria
which are not restricted to a particular domain of stability.

Here stability is taken to mean boundedness of the solutions and strong
stability means that all neighbouring differential equations of the same form,
are stable.

We begin by showing that, under the conditions stated above, the differ-
ential equation (1) can be written in the form of the system (2).

On account of the interlacing of the zeros of the pair of polynomials p(s)
and q(s) e &>, we can write, in the differential equation (1):

p(D)y = y{2k} + a^(2fc-2) + • • • + « * _ , / ' + aky,

q{D)y = /2k~V + V( 2*-4 ) + • • • + h_2y" + bk_xy,

where a,, / = 1,2,..., k, and bj, j = 1,2,..., k - 1, are real constants. The
case of a differential equation (1) with p(s) and q(s) being of the same even
order can be easily rewritten as an equation of the same form but with new
p(D) and q(D) of the form given by (4), provided that the coefficients of
s2k-2 m t j j e o r iginai p(s) a n ( j q(s) a r e different. Otherwise we will not have
interlacing of the zeros.

If we write X\ = y, xi = y", xj = y ( 4 ) , . . . , xk = y(2k-2) then the equation

p(D)y = v
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can be written in the form of the system:
0 1 0

d2x
dt2

0 1
0

x +

"On
0

LiJ

v,
0 0 1
: : : 1

l - a k - a f c _ i - f l / t - 2 • • • - f l i J

where x denotes the column vector [xi,X2,... ,xk]
T. Now we need only take

v = -f{t)q{D)y

.\bk-2 •• bil]x

in order to obtain the equivalent system of differential equations for the
differential equation (1). The system is

System

(6)

=

(5)

0
0

0
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0
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and

= -f{t)y,

0
0

0
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0

0

0
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0
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0
•• 0

1
. . ft

0
0

0
1

A =

C - [bk_i bk_2 •• b\ 1].

System (6), with the second derivative replaced by the first derivative, are
state equations having transfer function

(7) G(r) = | S =

where q(s2) = q(s) and p(s2) — p(s). The matrices {A,B, C) are a realization
of (7) and its well known that all other realizations {A, B, C}, with Aakxk
matrix are equivalent under the relationship

A = PAP~\ B = PB, C = CP~\

where P is a real constant nonsingular k x k matrix.
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[4] Sufficient conditions for the strong stability 283

We note that in terms of the matrices A, B and C, system (5) may be
simply written

(8) ^

and as the matrix of coefficients A - f{t)BC is a companion form matrix, its
eigenvalues are zeros of the polynomial p(s) + f{t)q(s). since p(s2) = p{s)
and q(s2) = q{s), we see that if s,-(f) is a zero of p(s) +f(t)q(s) then Sj(t)2 will
be a zero of p(s)+f(t)q(s) and hence an eigenvalue of the matrix A-f{t)BC.

The matrix A in (6) and (8) is a companion form matrix with characteristic
polynomial p(x), which, by hypothesis, has distinct real negative roots, say
—a2, -a2,,..., -a2.. Therefore the matrix A is diagonalizable. We should note
that companion form matrices with eigenvalues of multiplicity greater than
one are not diagonalizable. Hence we consider a new realization {-Po, Q, R}
of G{x) where

(9) />0 = ? i [
Then system (8) has the form

and in this system QR is symmetric if and only if

QR = CTC or QR = BBT,

where C is a 1 x k row vector and B is a k x 1 column vector. Therefore a
symmetric realization of G{x) is of the form {-Po, B, BT}, giving rise to the
system of differential equations

Also ifB = [bi,b2,...,bk]
T then

(11)

x + af

The derivative of G, given by

17 W " (r + af)2 (r + a2)2 (T + a 2 ) 2

is negative for all x ^ - a 2 and as

.. 1 , 1
hm r = +oo, hm r- = -oo,

t-(-«?)+ T + a2
 T-»(-O?)- T + a2
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284 A. Howe [5]

we see that G is monotonic between the poles with distinct zeros which in-
terlace with the poles. Hence the differential equation (1) can be written as
a canonical system (10) of k second order equations when p(s) and q(s) are
a pair of polynomials belonging to the set &.

Since the companion form matrix A in (6) has only distinct eigenvalues,
there exists a nonsingular matrix T such that A = -T~lP0T where Po is the
diagonal matrix given by (9). Then the substitution

w = Tx

will transform system (8) into the system

(12)

The similarity transformation matrix T is by no means unique. We take the
nonuniqueness of T into account by making the substitution

in (12). Here S is any nonsingular matrix such that S~' PoS — Po- The matrix
S is, of course, diagonal and after making the substitution in (11) we obtain
the system

(13) ^ + [Po + f(t)STBCT-lS-l]y = O.

From the symmetric property and basic algebraic manipulations we find that

where L is the k x I column vector given by

S\{a\-a2)

(14)

with

S2(a\ - a\)
S3(a2

4 - a2)

k-i(atl -a\)
sk{a\ - a\)

A 2 = S 2 { a \ ~ « i ) 2 + S2
2(a

2 - a 2 ) 2 + • • • + S 2 ( a 2 - a 2 ) 2

and the Si, i = 1,2,...,k, are arbitrary finite real non zero numbers, which
are also the diagonal entries of the diagonal matrix S.

From the form of the transfer function G in (11), we see that no matter
what finite nonzero values the sit i - l,2,...,k, assume, the structure of
the transfer function G remains the same. Therefore differing values of s,,
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[6] Sufficient conditions for the strong stability 285

i = 1,2,...,k, give rise to differing values of the zeros of G, which also
interlace with the poles of G, provided that the s,, / = 1,2,...,k, are all
finite and nonzero. The solutions to the systems (8) and (13) are related to
each other by

y = STx

and as the S and T are finite, we obtain

THEOREM 1. All differntial equations of the form (1), with fixed f(t) con-
tinuous and periodic of period co in t, and fixed p{s) but with differing q{s)
such that the polynomial pairs p(s) and q(s) always belong to 3s, have the
same stability property.

The above theorem tells us that if the poles of the transfer function G
are fixed and provided the zeros and poles of G interlace, we can move the
zeros of G around without affecting the stability property of the differential
equation (1). That is to say, the differential equation (1) remains stable or
unstable when the q{s) is changed in the manner stated above.

Also Theorem 1 tends to suggest that we choose the Sj, i = 1,2,..., k, so
that the entries in the matrix BBT are simple and then consider the stability
properties of the corresponding system (13). However choice of particular
Sj does not greatly simplify our considerations of the stability properties of
(13).

When k = 2, system (13) has the simple form

which is the equivalent system (13) for the differential equation (1). Here,
in (1), we have

p(s) = (s2 + a]){s2 + a\),

and
q{s) = s2 + a,

where
a2 + (s2/Si)

2a2

1 + feM)2 '
We can easily show that a lies between a2 and a\. An obvious choice of S\,
52, in the above, would be S\ = S2 = 1.

We now consider some stability criteria for the differential equation (1)
and its equivalent system (13). However, before doing so, we briefly describe
what we mean by stability and strong stability for our systems of differential
equations.
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The Hamiltonian system (3) is said to be stable if each solution x(t) is
bounded for -oo < t < oo and is strongly stable if all neighbouring systems
of the same form as (3) are stable. Two strongly stable Hamiltonian systems
(3) are said to belong to the same domain of stability if and only if they can
be continuously deformed into one another without ceasing to be strongly
stable and without ceasing to be of the form (3).

Likewise the differential equation (1) and the second order system (2) are
said to be stable if their respectively solutions, y and y, are bounded for
-oo < / < oo. We define strong stability for the differential equation (1) and
the second order system (2) as meaning that their equivalent Hamiltonian
system is strongly stable. Clearly if the equivalent Hamiltonian system to (1)
or (2) is stable, then so is the differential equation (1) or the system (2), stable.
Therefore strong stability for the differential equation (1) or the system (2)
has the meaning that all neighbouring differential equations or systems of the
same form as (1) or (2), respectively, are also stable.

Gelfand and Lidskii [4] and Krein [6] have shown that the domains of
stability &ffl for the Hamiltonian system (3) are characterised by a signature
a and an integer m (-oo < m < oo) which is called the index of the domain
of stability.

The signature a represents the distribution by type, on the upper half unit
circle, of the multipliers of any Hamiltonian system (3) in a given domain of
stability. There are 2k different signatures. A multiplier p is of positive type
or of the first kind if i{Ji, f) > 0 for all vectors f belonging to the eigenspace of
p and p is of negative type or of the second kind if i(Jf, f) < 0 for all vectors
f belonging to the eigenspace of p. A Hamiltonian system (3) is stable if and
only if its multipliers have unit modulus and simple elementary divisors. The
system (3) is strongly stable if, in addition, there are no repeated multipliers
of mixed type.

A real matrix X is said to be symplectic if

XTJX = / .

The matrix solution X{t), 0 < t <co, X(0) — I, of the Hamiltonian system (3)
lies in the real symplectic group S and two Hamiltonian systems (3) belong
to the same domain of stability if and only if their matrix solutions X(t),
0 < t < to, X(0) = I, can be continuously deformed into each other in S
without ceasing to be strongly stable. Since the real symplectic group S is
homeomorphic to the topological product of the circumference of a circle
and a simply-connected topological space, the index of a domain of stability
indicates the number of twists and turns which the matrix solution X(t),
0 < t < co, X(0) = / , of any Hamiltonian system in the domain of stability,
can make in the real symplectic group S.
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[8] Sufficient conditions for the strong stability 287

There are a number of different formulae for the index of a domain of
stability and for each particular formula the index remains invariant under
any continuous deformation, of a Hamiltonian system, that preserves strong
stability. From Gel'fand and Lidskii [4], a very applicable formula for the
index m is given by

k w k

(16) ^Aarg/?;(f) - y^Vj — 2mn,

w h e r e pj(co) = eiu>, - n < vj < n (j = 1 , 2 , . . . , k ) , p l ( t ) , p 2 ( t ) , . . . , p k ( t ) a r e
eigenvalues of positive type of the matrix solution X(t), 0 < t < co, X(0) = I,
of a Hamiltonian system (3) in the domain of stability.

We will now consider a number of stability tests for the differential equa-
tion (1) where f(t) is continuous and periodic of period co in t, D = d/dt
and p(s), q(s) are a pair of polynomials belonging to the set J8 .

The differential equation (1) with the above special conditions, will be
denoted by (/).

Krein [5], [6], [8] proved

THEOREM A. The second order system of differential equations

(17)

where y isakxl vector and P(t) is a real symmetric matrix, periodic of period
co in t, such that P{t) > 0 (0 < t < co) and /o

w P(t) dt > 0, is strongly stable
whenever

4
0 < <

where PM(1) is the largest eigenvalue of the matrix P(t).

Krein showed that Theorem A is restricted to systems of differential equa-
tions (17) in the domain of stability (f^ where (+) denotes the signature
+ + ••• + +.

Brockett [2] used Theorem A with n — 1 to establish

THEOREM 2. The differential equation (1) with f{t) > 0 (0 < t < co) is
strongly stable when

where X(t) is the zero ofp(s) + f(t)q(s) which has the largest magnitude.
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The value |A(f)|2 is the largest eigenvalue, PM{(), of the symmetric matrix
of coefficients

(18) P(t) = PQ + f(t)LLT

of the equivalent system (13). Since the matrix P(t), given by (18), is the
sum of two symmetric matrices, it follows (see Marshall and Olkin [9, page
243]) that for f(t) >0(0<t<co), the largest eigenvalue of P(t) is less than
or equal to the sum of the largest eigenvalues of each of the matrices on the
right hand side of (18), that is,

(19) PM(t)<a2
j{max)+f(t),

where aj(maX) is the largest eigenvalue of the matrix PQ, given by (9), and
therefore ±/a/(max) are zeros of p(s) with the largest magnitude. Hence The-
orem 2 can be written

THEOREM 2'. The differential equation (1) with f(t) > 0 (0 < t < co) is
strongly stable when

where ±*a;(max) are zeros ofp(s) with the largest magnitude.

As the matrix PQ, in (18), is similar to the negative of the coefficient matrix
A in system (6), we can use Theorem 2.1 of Wolkowicz and Styan [12] to
obtain an upper bound for a?(max) in terms of the coefficients of p(s). Then
Theorem 2 has the form

THEOREM 2". The differential equation (1) with f{t) > 0 (0 < t < co) is
strongly stable when

where a\ and ai are the coefficients of s2k~2 and s2k~4, respectively, in the
polynomial p(s).

The matrix P(t), given by (18), is similar to the negative of the coefficient
matrix of system (5) and therefore if we apply Theorem 2.1, of Wolkowicz
and Styan [12], to the negative of the coefficient matrix of system (5), we will
obtain a bound for pM(t) in terms of the coefficients of the polynomials p(s)
and q{s). Then another form of Theorem 2 would be the following theorem.
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THEOREM 2"'. The differential equation (1) with f(t) > 0 (0 < t < co) is
strongly stable when

where a\ and a2 are the coefficients of s2k~2 and s2k~4, respectively, in the
polynomial p(s); and b\ is the coefficient ofs2k~4 in the polynomial q(s).

In Theorems 2 to 2'" we require / ( / ) > 0 (0 < t < a>). A stability test
for the differential equation (1) with f(t) < 0 (0 < t < co) is obtained by
applying the following theorem of Krein [6]:

THEOREM B. Iff" P(t) dt>0 and P(t) = P+(t) - P~(t) where P+(t) > 0
and P~(t) > 0 then the first zone of stability of

(17) ^

is not smaller than the first zone of stability of

(19)

Theorem B tells us that if (19) is strongly stable at n = 1 then so is (17)
strongly stable at n = 1.

With P(t) given by (18) we take

P+(t) = P0 and p-(t)

where tc{t) > 0 (0 < t < co) and f(t) = -tc(t). Then by Theorem A, system
(19) is strongly stable when ft — 1 if

The condition that f£ P{t) dt > 0, gives rise to

/ K{t) dtLLT < coP0
Jo

and from the form of PQ we have

(21)
/o

If we choose K(t) such that

(22) J\(t)dt<coa2
j{max),
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then (21) is immediately satisfied, since the symmetric matrix LLT has only
eigenvalues 0 and 1.

Hence we have shown that the combined inequalities (20) and (22) are
conditions for system (17), with P(t) given by (18) and f(t) < 0 (0 < t < co),
to be strongly stable. We have obtained

THEOREM 3. The differential equation (1) with f{t) = -K(t), K(t) > 0
(0 < t < co) is strongly stable when

where ±/Q;(max) ore zeros ofp{s) with the largest magnitude.

Theorem B also only holds for the domain of stability cf^\ Because
Theorems A and B are restricted to the domain of stability C9Q+\ the stability
tests provided by Theorems 2 and 3 are also restricted to only a certain range
of differential equations of type (1).

In a slightly more general situation, Chiou [3] applies the following theo-
rem to the differential equation (1):

THEOREM C. The second order system of differential equations

(23)

where P(t) is a k x k real symmetric matrix, continuous in t and periodic of
period co in t, is strongly stable if

CO2 CO2

where n is some integer greater than or equal to zero.

Chiou [3] establishes Theorem C as a corollary of a theorem concerning
a more general system of equations. Theorem C was originally established
by Neigauz and Lidskii [11] where no proof was given. However Theorem
C can easily be proved by application of the directional wideness theorem of
Yakubovich [14]:

THEOREM D. The linear Hamiltonian system

where H(t) is a Ik x Ik real symmetric matrix, continuous in t and periodic
of period co in t, is strongly stable if

H{{t) < H{t) < H2(t)
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[12] Sufficient conditions for the strong stability 291

where H\{t) and H2(t) are 2k x 2k real symmetric matrices, continuous in t
and periodic of period co in t, such that the Hamiltonian system

Jd£=H{t,s)x

where H(t,s) = H\{t) + s[H2(t) - Hx(t)], is strongly stable for anyO<s<l.

In fact, from Yakubovich [13], we know that Hill's equation

(24)

where p(t) is continuous and periodic of period co in /, is strongly stable, in
the set of second order linear Hamiltonian systems if

for some n = 0,1,2, Also under condition (25), Hill's equation (24)
belongs to the domain of stability &„ where OQ = + if n is even and a$ = —
if n is odd.

The stability test given by (25) for Hill's equation (24) is known as
Zhukovskii's test (see Zhukovskii [16]).

The system of differential equations

(26) J£+P(t)y = 0

where p(t) is a continuous function, periodic of period co in t, is a set of
k scalar differential equations (24). Therefore its equivalent Hamiltonian
system

(27) d t ~ [ 0 / J X

will be strongly stable if (25) is satisfied, and will belong to the domain of
stability ^jfj, where a — {+ + -\ h) if n is even and a = ( ) if n
is odd. This follows from a result in Yakubovoch [14]. Yakubovich proves
that a Hamiltonian system

J^ = H(t)x,

which is separable into k second order Hamiltonian systems

(28) J2^=Hj(t)Zj, (j=l,2,...,k),

where J2= [° ~~o
l ] and the Hj{t) are 2x2 real symmetric matrices, continuous

in t and periodic of period co in t, has signature a and index n given by
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Here the Oj and itj are the respective signatures and indices of the second
order Hamiltonian systems (28) and these Hamiltonian systems are arranged
in the order given by the decomposition

RTJR = J2+J2+ • • • +J2, RTH(t)R = Hi (t)+H2{t)+ • • • +Hk(t),

where the 4- denotes the direct sum of the 2 x 2 matrices.
The 2k x Ik orthogonal matrix given by

(29) R =

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0

0 0
0 0
0 0
0 0

0 0
0 0
0 0
0 0

0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

will transform the Hamiltonian system (27) into k second order Hamiltonian
system (28), each of which is equivalent to the Hill's equation (24).

If p\{t) and pi{t) are continuous functions, periodic of period a in t, such
that for some n > 0,

n2n2 ( n + I ) 2
 2

then the corresponding Hamiltonian system (27) or the second order system
(26) will be strongly stable and they will both belong to the same domain of
stability. Also, since

\)2n2n2n2

< (I -s)pi(t) + sp2(t) <

for 0 < s < 1, the Hamiltonian system (27) or the second order system (26)
with

p(t) = (l -s)pi(t) + s p 2 ( t ) , (0<s<l),

will be strongly stable and belong to the same domain of stability as system
(27) with p(t) = p\(t) or p(t) — Pi{t). Hence by Theorem D, the second order
system (23) or the Hamiltonian system (3) with

(30) H(t) = [ Q

where P(t) is a real k x k symmetric matrix, continuous in t and periodic in
t with period co, will be strongly stable if in addition

\Pl(t)I 01 \P(t) 01 \P2(t)I 01

[ o / J - [ o / J - l o
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[14] Sufficient conditions for the strong stability 293

that is

px{t)I < P(t) < P2(t)I
n2n2

O)2 - " ' - ' ^L

Furthermore the Hamiltonian system (3) with (30) or the second order system
(23) will belong to the same domain of stability as that of the systems (27) or
(26), respectively, with p(t) = p\{t) or p{t) = p2(t). This domain of stability
is of the form 0J^ where n is some integer greater than or equal to zero and
a = (+ + H h) if n is even and a — ( • —) if n is odd.

Therefore we have proved Theorem C.
Applying Theorem C to the differential equation (1), Chiou [3] obtained

the following stability criteria

THEOREM 4. The differential equation (1) is strongly stable when

(31) ^

for some integer n, greater than or equal to zero and where the lj{t), j =
1,2,...,2k, are the zeros ofp(s) + f(t)q(s).

The \lj{t)\2 in (31) are also the eigenvalues of the matrix P(t) given by
(18) and therefore (31) has the meaning that

_ , c n, , (2n+ l)n2

0 < spread of P(t) < ~—.

The spread of a matrix is denned as the maximum distance between two
of its eigenvalues. There are a number of estimates for the spread of a
matrix. One of the sharper results is that of Brauer and Mewborn [1], which,
when applied to the negative of the matrix of coefficients of the system of
differential equations (5) that is the matrix to which P(t) is similar, gives rise
to

THEOREM 4'. The differential equation (1) is strongly stable when

for some integer n, greater than or equal to zero, and where

- = (k - l)(a, + /(/))4 - 4fc(a, + f(t))2(a2 + f[t)bx)

6)(a2+f(t)bi)2

4(k - 3)(fl, + f(t))(a3 + f(t)b2 - 4k(a4 + f(t)b3).
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Here the ai (i — 1,2,3,4) are the respective coefficients ofs2^k~1'1 (i = 1,2,3,4)
in the polynomial p(s) and b\ and bi are the coefficients ofs2k~4 and s2k~6,
respectively in the polynomial q(s).

Also from the form of P(t), given by (18), and by use of Weyl's inequalities
(see Marshall and Olkin [9, page 243]), we see that, for f(t) > 0;

spread of P(t) < a2
(max) - a2

(min) + f(t)

where a2
(max) and a2

{min) are respectively the largest and smallest eigenvalues
of the matrix PQ in (18). We therefore have

THEOREM 4". The differential equation (1) with f(t) > 0 (0 < / < to) is
strongly stable when

0<aj{max)-a
2

{min)<^±P^-nt)

for some integer n, greater than or equal to zero and where ±/a;(max) are zeros
ofp(s) with the largest magnitude and ±m;(m;n) are zeros of p{s) with the
smallest magnitude.

The difference a2
(max) - aj(min) is the spread of the matrix Po in (18) or in

fact the spread of the negative of the matrix A in the system of differential
equations (6). We can apply the estimate for the spread of a matrix given by
Mirsky [10] or Wokowicz [12] to obtain

THEOREM 4"'. The differential equation (1) with f(t) > 0 (0 < t < co) is
strongly stable when

1/2

for some integer n, greater than or equal to zero and where a\ and a-i are the
coefficients of s2k~2 ands2k~4, respectively, in the polynomial p{s).

The stability tests given by the Theorems 4 are restricted to only a certain
range of differential equations of the type (1), since Theorem C, the theorem
on which the Theorems 4 are based, holds only for domains of stability (fjfn
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where n is some integer greater than or equal to zero and a — (+ + H h)
if n is even and a = ( ) if n is odd.

A more general theorem to apply to the differential equation (1) is that of
Yakubovich [14]:

THEOREM E. Consider the system of differential equations

(32) J'?j;

where H(t) is a real continuous symmetric Ik x 2k matrix, periodic of period
co in t such that

H'(t) + H0(t),
H'(t) = A, (t)I2+h2(t)I2+ • • • +h(t)h,

J' = J2+J2+ • • • +J2.

Here J2 = [° ~0' ] and I2 denotes the 2 x 2 unit matrix. Let h{°](t), h2
0)(t)

be the minimum and maximum eigenvalues, respectively, of H0(t), or any
functions such that

hf\t)I < H0(t) < h{
2°\t)I.

Let

*y»= fw
hf\t)dt, j = \,2.

Jo
Suppose that for certain integers mpq

2mpqn <hp + hq + 2/?(,0) < hp + ~hq f

< 2(mpq+ l)n

for all p, q — 1,2,. . . , k, where

hK=fWhK(t)dt, (K=l,2,...,k).
Jo

Then (32) is strongly stable.
Theorem E holds in every domain of stability <fm\
The differential equation (1) is equivalent to the second order system of

differential equations (13) which in turn can be written in the form of the
Hamiltonian system
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The substitution

Z = [ 0 P^\RX'
where R is the orthogonal matrix given by (29), reduces the Hamiltonian
system (33) to the form (32) with

# ' (0 = 01/2+02/2+•••+0**2

and

H0(t) = RT{f{t)p° O
LZ7JPO~

where

is a Ik x 1 column vector. From its form, the symmetric matrix H0(t) must
have eigenvalues f{t), 0 ,0, . . . , 0. The maximum and minimum eigenvalues
of Ho(t) are, respectively,

A(max)(0 = max[/(r),0] = ±[

and
A(min)(/) = min[/(0,0] = i[

for 0 < ? < co. Therefore Theorem E gives us the following stability test for
the differential equation (1):

THEOREM 5. The differential equation (1) is strongly stable if there exist
nonnegative integers mpq such that

2nmpq < (ap + aq)co + [[/(I) - \f(t)\]dt
Jo

<{ap + aq)(o+ / [f(t) + \f(t)\]dt<2n(mpq + l)
Jo

for all p,q — 1,2,..., k and where ±iap, ±iaq (p, q = 1,2,..., k) are zeros of
Pis).

Another new test for strong stability of the differential equation (1) can be
obtained by application of the following theorem from Neigauz and Lidskii
[11]:

THEOREM F. The second order system of differential equations
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where R(t) is nonnegative definite, continuous in t and periodic of period to in
t, is strongly stable if the second order system of differential equations

is strongly stable for any periodic function r(t), continuous in t and periodic of
period w in t, such that 0 < r(t) < \\R\\(t)\\. (For each fixed t, the norm \\R{i)\\
of the matrix R(t) is defined as max, |A,-(/)|, where the Xj(t), i = 1,2,..., k, are
the eigenvalues of the matrix R{t).)

The differential equation (1) is equivalent to the second order system of
differential equations (13). By Theorem F, the system of differential equa-
tions (13) with f(t) > 0 is strongly stable if

(34) §
is strongly stable. Now the system (34) is simply a set of k scalar equations

(35) y" + [a] + f(t)]y = 0, j=\,2,...,k,

and by Zhukovskii's test (25), each of the differential equations in (35) will
be strongly stable if

(36) ^ < a j ^±^l
where «; is some integer greater than or equal to zero. Under the conditions
(36), the differential equations (35) will belong to the respective domains of
stability &Ji°J\ j = l,2,...,k, where Oj — + if n7 is even and Oj - - if «7 is
odd. Therefore in order to avoid multipliers of different types coinciding we
could either take all the «; even or all the n, odd and then (35) or its equiva-
lent Hamiltonian system will be strongly stable and belong to the domain of
stability <9^ where n — n\ + «2 H \- n^ and a — (+ + -\ h) if all the «,,
j = \,2,...,k, are even and a = ( ) if all «;, j = 1,2,...,k, are
odd.

Thus we have obtained the following theorem for the differential equation
(1):

THEOREM 6. The differential equation (1) with f{t) > 0 is strongly stable

where njt j = 1,2,..., k, are nonnegative integers which are either all even or
all odd and ±/o,, j = l,2,...,k, are zeros ofp(s).
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The stability test given by Theorem 6 is more general than that of Theo-
rems 2 and 4 but is not as general as that of Theorem 5.

Most of the materials from the Russian journals quoted can be found in
the English translation of Yakubovich and Starzhinskii [15].
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