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Abstract Let A be the Laplace operator on Kd and 1 < 6 < 2. Using transference methods we show
that, for max{q,q/(q — 1)} < 4d/(2d+ 1 — S), the maximal function sup t > 0 | e l t A / | for the Schrodinger
group is in Lq, for / € Lq with A*/2/ £ Lq. We obtain a similar result for the Airy group expitA3/2.
An abstract version of these results is obtained for bounded Co-groups e'tL on subspaces of Lp spaces.
Certain results extend to maximal functions defined for functions with values in UMD Banach spaces.
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1. Introduction

Let Q be a complete and separable metric space, and \x a a-finite Radon measure on Q.
Let E be a closed linear subspace of the Lebesgue space Lp(f2;/j,), where 1 < p < oo.
Suppose that L is a closed and densely defined linear operator in E; for convenience we
will take its null space to be zero. We are concerned with the abstract Cauchy problem

iwt = Lw, w(x,0) = f(x), (1.1)

which has a unique solution for initial data / G E, in the sense of Hille and Phillips [13,
p. 622], whenever {-\L) is the generator of a Co-semigroup of bounded linear operators
on E. It is of interest to determine when the solution satisfies w(x, t) -t f(x) /^-almost
everywhere as t -* 0. This involves imposing extra conditions on / in order to control
the maximal function supt>0 |w(x,t)|, as in the following theorem.

Theorem 1.1. Let A = - Y?j=i dlj oe tne Laplace operator in Lp(Md), and let 2 <
a < 3 and max.{p,p/(p - 1)} < 12d/(6d + 3 - 2a).

(i) Then there is a uniformly bounded family of linear operators on Lp(K'i)

_ r

< t 0 ) ( 1 2 )
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58 G. Blower

for which the maximal function

f >-> sup \m{tl'z>/A)/| (/ € V) (1.3)

defines a strongly bounded sublinear operator Lp(Rd) —> LP(Kd).

(ii) farther, the solution w of (1.1) with L = A3/2 satisfies w{x,t) -» /(x) almost
everywhere as t —> 0+, when f E Lp is in the domain of Aa/2.

The method of proof is based upon a device of Cowling [10, Theorem 6]. For suitable
m, we can take the Fourier transform of h(x) = m(ex) and write

m(tL)f = f hW&LKf d£/27r ( f e E , t > 0 ) (1.4)

for the multiplier operator m(tL). We will usually take m(tL) to be defined by this
formula, whenever the right-hand side is a convergent Bochner-Lebesgue integral. The
operators to which we apply our results have a rich functional calculus which is essentially
unique, so this mode of definition may be adopted without ambiguity.

In §3 I prove Theorem 1.1, and the result on the Schrodinger group stated in the
abstract, by showing that the right-hand side of (1.4) is suitably convergent. The key
step, which suggests the subsequent generalizations, is to use the Marcinkiewicz multiplier
theorem to control the group L1^ of imaginary powers of L = VK. In cases of interest
involving Lp (1 < p < oo, p ^ 2), the operator group U^ is locally but not uniformly
bounded.

In § 4 we extend the method for application to the generators (iL) of bounded Co-
groups eltL of operators on subspaces E of Lp(f2; y). In order to achieve bounds on (1.4),
we use the functional calculus for spectral integration, as developed in [1-3]. In §2 we
describe the class of g-Marcinkiewicz multipliers of [2,9,11,20] which include the classical
Marcinkiewicz multipliers. We then transfer bounds on the mulipliers into bounds on the
operators m{L).

In § 5 we use similar techniques to deal with almost everywhere convergence of solutions
of an abstract wave equation. See [8] for an introduction to cosine families and hyperbolic
equations. The technique works for functions with values in a suitable Banach space,
precisely a UMD Banach space. Throughout the paper we use transference techniques for
Co-groups of operators, as in [3,4], rather than analytic semigroups as in [10, Theorem 1].

Notation. The Bochner-Lebesgue space of strongly measurable functions / : R —> E
with ||/(£)HB integrable is denoted V(R;E) [13, p. 79]. When W : D>(R) -4 L"(R) is
a bounded linear operator, it has a natural extension W <g> / : LP(R) <g> E —> L^R) ® E
which, under favourable circumstances, extends to define a bounded linear operator on
L^R; E); we then write W for this extension. We denote by (en) the Rademacher random
variables, and by E£ the expectation with respect to their usual probability measure.
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Maximal functions and transference for groups of operators 59

2. q-variation and multipliers

Definition. Let Afc = [2fc,2fc+1) and Afc = (-2f c + 1 , -2*] for k e Z be the intervals
defining the standard dyadic decomposition of R. For any bounded interval / , 1 ^ q < oo
and complex-valued function H, the q-variation of H over I is defined to be the supremum
over all finite partitions:

K
JV-1 . l/g s

] T \H(tj+1) - H(tj)\" 1 \tjeI;t1<t2<---<tNy (2.1)
j=i ' '

When q = 1 this gives the usual notion of variation, as in the classical Marcinkiewicz mul-
tiplier theorem [16, Theorem 6]. The Marcinkiewicz q-multipliers of R are the functions
H for which the norm

| |#I |M«(3) = sup \H(t)\ + supvarg(#; Afc) + supvar , (# ; Afc) (2.2)
tes fcez fcez

is finite. The space M9(R) thus formed is a Banach algebra under pointwise multiplication
of functions. In [9] it is shown that q-multipliers do indeed give bounded Fourier multi-
pliers on suitable IP spaces. Further, MX(R) includes all functions of bounded variation
o n l .

Let L be a closed and densely defined operator in a Banach space E with zero null
space, and suppose that the imaginary powers Uu (u e R) form a Co-group of operators
on E. (In the cases of interest, the powers may be defined by functional calculus, see
(4.2) below.) As in [4], we define the modular function of this group to be

TE{U) = sup{ | |L i s | | E ^ E | \s\ < |«|} (u 6 R). (2.3)

By an application of the uniform boundedness theorem, given in [13, p. 306], the function
TB{U) is at most of exponential growth in |u|.

Proposition 2.1. Let m(A) (A > 0) be a function with h(x) = m(ex) integrable, and
let h(£) be the Fourier transform. Let E be a closed linear subspace of V{Q; n) for some
1 < p < oo, and let q with 1 ^ q < oo have | l /2 — l /p | < 1/q.

(i) Then m(L), defined as in (1.4), has operator norm

| |m(L) | |E->E ^ Cp 2__, T e ( 2 ) (\\h * V'fcllr/^ca) + ll̂ 1 * ^fe||:/:«(3))> (2-4)
fc=-oo

where
, . . sin2fc-1a;exp(i3-2fe-1x)

1>k{x) = (x 6 K);
nx

so that m(L) is a bounded linear operator, whenever this series converges.
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(ii) Suppose further that U^ is a bounded Co-group of operators, so that the modular
function is bounded byr. Then \\m(L)\\E->E ^ C(p,g)r2||/i||M,(R).

Proof, (i) Let us suppose that the series in (2.4) converges. By the Fourier inversion
theorem we can write

m(A) = J T f + f A*/i(0 d£/27r (A > 0), (2.5)

so that, at least formally, the multiplier operator is

m(L)f= JT [ +[ h{i)L*fti-l2* (feE). (2.6)
k=-oo'

Our task is to show that the right-hand side is norm convergent; this we do by considering
a typical summand. The operator

Hk:f-* I h(0L^fd^/2n (/ e E) (2.7)
JAk

is certainly well defined, since h is integrable over Afe and ^ —> L'^f is norm continuous.
By the transference theorem for Co-groups [4, Theorem 2.1], the operator norm of Hk is
^ 21/pr|(2':+1)||yl(Afc)||, where ||yl(^fc)|| is the operator norm of the convolution operator

[ (geL?(R;E)) (2.8)
Ak

on the Bochner—Lebesgue space LP(K; E). By Fubini's Theorem, this is just the norm of
A(hk) acting on the scalar-valued function space LP(R); and by the multiplier theorem 1
of [9], this is < CPtq\\h * ipk\\Mi(R)- Summing up these estimates over k we obtain the
stated result.

(ii) This is a special case of [2, Theorem 1.2]. •

Proposition 2.2. Let E and L be as in Proposition 2.1(i). Suppose further that
T£;(£)ft(£) is integrable. Then the Bochner integrals

m{tL)f=f h(Z)t*L*f &Z/2-K (f£E,t>0) (2.9)
J — oo

define a uniformly bounded family of linear operators m(tL) on E for which the maximal
function

f >-> sup \m(tL)f\ (/ € E) (2.10)

defines a strongly bounded sublinear operator E —t IPifl; [i).
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Maximal functions and transference for groups of operators 61

Proof. Since £ >-» L'^f 6 E is norm-continuous and each image is bounded by
Ili'^IU-yEll/llfi! the expression (2.9) is a well-defined Bochner-Lebesgue integral. By [13,
Theorem 3.8.2] the integral defines a bounded linear operator m(tL), and the following
computation will additionally achieve a uniform bound on the operator norms.

To estimate the maximal function we take the supremum norm in the f-variable, and
then the !/(/?; /i) norm, to obtain

/ |fc(O|||L«/||Bd£/27r (/ G E); (2.11)
J-oo

| | |
t>0

and by considering the triangle inequality for integrals we see this is

I"
J —

(/ G E). (2.12)

By the assumptions on h and the modular function, the latest integral is finite. D

3. Maximal functions for Schrodinger and KdV groups

Let A be the operator - Ylj=i &x m L2(Rd,dx). This defines an essentially self-adjoint
and positive operator in C£°(Rd); and we can use the spectral theorem to form functions
of A, in particular, we form the square root \fK ^ 0. One can extend suitably bounded
operators, defined initially on I? D LP, to Lp for 1 < p < oo [8, p. 412].

Lemma 3.1. Let 0 < /? < d and max{p,p/(p - 1)} < 2d/(d - j3). Then there is
C(p, (3) < oo such that the modular function TP of the group of imaginary powers Am on
Lp(Ed) satisfies

TP(U) ^ C(p, 0){1 + \uf) (u 6 R). (3.1)

Proof. We may suppose that 2 < p < oo, for the other cases follow by duality. We
set 6 = 1 - p/d, so that there exists q with p < q < oo for which 1/p = 9/2 + (1 — 0)/q;
this exploits the assumptions on 0 and p.

The operator Am corresponds to the Fourier multiplier (J2J=i £j)'U/'2- By the Marcin-
kiewicz multiplier theorem [16, Theorem 6'], A1U defines a Co-group of operators on
Lq(md) with

IIAiuIU«(*<)-n,«(K««) ^ C(q, d)(l + \u\)d (u G R); (3.2)

and by the Plancherel formula

i = 1 (u G R). (3.3)

We interpolate between the estimates (3.3) and (3.2) using the Riesz-Thorin Theorem
[21, p. 95] to achieve the desired bound (3.1). D

https://doi.org/10.1017/S0013091500020691 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020691


62 G. Blower

In the course of the proofs of Theorems 3.3 and 1.1, we require to estimate various
oscillatory integrals. The basic technique may be summarized in the following variant of
van der Corput's Lemma from [18, p. 334].

Lemma 3.2. Suppose that the phase function <j> is real-valued and smooth on (a, b)
and that \4>w(\)\ ^ 1 for all A € (a, 6), where either

(i) k ^ 2; or

(ii) k = I, and <j)'{\) is monotonic.

Then there is Cfc, independent of 4> &nd s, with

f ei f |V' (s > 0).

The following result was stated in the abstract. The group of operators eltA involved is
used to solve the Cauchy problem for the Schrodinger equation in free Euclidean space.

Theorem 3.3. For 1 < S < 2 and 4d/{2d + 6 - 1) < q < 4d/(2d +1-6), the maximal
function

f sup
t>0

eitA - /
(/ e L2 n L") (3.4)

defines a strongly bounded sublinear operator Lq(Rd) —> L9(Md).

Proof. We begin by making a Fourier transform representation of h{x) = m(ex),
where m is the multiplier

m(A) = —g— (A > 0).

The maximal function involves a scaling of m. We calculate

/

oo
h(x)e-ix

_ i

(3.5)

(3.6)

where we have introduced the variable A = ex; the latest integral is absolutely convergent
when 0 < 6 < 2. Consequently, h(£) is bounded near to £ = 0; by considering large £,
we shall show /»(£)rp(£) € L^. Integration by parts gives us, since the integrated term
vanishes, the expression
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which invites the method of stationary phase. The phase function </>(A) = A2 - £ log A
has derivative <j>'{\) = 2A — £/A, which vanishes only when £ > 0 and A = \ /£ /2 ; there

= 4. Consequently, we have an asymptotic estimate [12, p. 51]

\ko\ (3.8)

since FresneFs integral takes the value

(a > 0). (3.9)

When £ < 0 there is no point of stationary phase; so we split the integral (3.7) and
write

r
(2 - s)x i<t>{x) r _ J A i0(A) , >
i ( 2 A » - f l e dA + 7 i ( 2 A 2 O 2 ^ '

The integrated term is O(l/ |£ |) as £ -4 -oo; whereas, for 1 < S < 2, the other integrals
in (3.10) contribute at most

and

A

r

dA g f d A CW
A5 " l ^ l 1 / 2 A A<5 " l ^ l 1 / 2 '

(2A2 - 0 1 / 2 (2A2 - ^)3/2 A*
4A3 dA<_c_r°dx

^ |£|V2 A A* ^

respectively. By repeated integration by parts, one can show that the contribution to
(3.6) arising from f* decays fast enough as £ -> -oo; see (3.15) below for a more delicate
case. (Alternatively, one can transform (3.7) into a Gamma function integral and use
Stirling's formula [4, p. 248].)

By Lemma 3.1, TP{U) = O{\u\p) as \u\ -» oo, where (3 < (6 - l ) /2 ; and hence on
combining the preceding estimates we see that T P (£) / I (£) is integrable. The result follows
from Proposition 2.2. •

We can establish the result stated in the introduction in a similar fashion. This involves
a variant of the Airy group e~td* which solves the linearized KdV equation (ut + uxxx =
0) in one space dimension. We have -id/dx = H\fK, where the Hilbert transform
H is defined as in (5.7) below, and all the operators commute. The Riesz projection
R+ : D> -> HP onto the Hardy space {/ e D> \ /(£) = 0; (£ < 0)} is bounded for
1 < p < oo; so to obtain almost sure convergence for solutions of (KdV), it suffices to
apply Theorem 1.1 to R+u and (/ — R+)u.
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Proof of Theorem 1.1. (i) We introduce

m(A) = ^~J^ = 9W*3~" (A > 0), (3.13)

where g(X) extends to define an entire function; and we proceed to calculate the Fourier
transform of h(x) = m(ex). Let (pj(x) (j = 1,2) be smooth bump functions, supported
on [—1,1] and [1/2,oo) respectively, with 1 = <pi(x) + <p2(x) for x > 0. Then we have
absolutely convergent integrals

= f
JO

A 3- l )A-a- 1 - i«dA. (3.14)
l/2

Integrating by parts, we show that, when a < 3, the first integral is

this expression is clearly O(l/|£|3) as |£| —>• oo.
In this case the crucial integral to estimate is the second integral in (3.14), which we

integrate by parts and write as

3i f°° • .,3 1 f1 3
/ A~Q~'^+ e1 </52(A)dAH / (e1 — l)</?2(A)A~'̂ ~QdA. (3.16)

a + !? Ji/2 a + K Ji/2
The latest integral may be estimated after repeated integration by parts. In the first
integral in (3.16), the phase function is <j)(\) = A3 —£ log A; so there is a point of stationary
phase in the range of integration only when £ > (3/2)3, and it occurs at A = (4/3)1/3.
At this point, <f>" = 35^3^1^3; consequently, we have an asymptotic expression for the
modulus of first integral of (3.16) [12, p. 51] as £ —> oo, namely

(3.17)

Let p and a be as in the statement of the result. By Lemma 3.1, TP(U) = O(\u\P) as
u —y oo, where /3 < 1/6 + (a — 2)/3. We have chosen the constants such that the estimates
(3.1) and (3.17) are good enough to ensure / |^(£)|||A1?|| d£ < oo, as we require to show
that the maximal operator (1.3) is bounded.

(ii) The last statement of the Theorem 1.1, involving almost sure convergence, follows
from part (i) by a standard argument which will be given in § 5 below. •

4. Abstract maximal theorem for subspaces of Lp

In this section and the next we suppose that E is a closed linear subspace of the Lebesgue
space Lp(i7; /Li), where 1 < p < oo. Suppose further that iA is the generator of a bounded
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Co-group of operators on E, and the null space of A is zero. Before stating our maximal
theorem, we recall the functional calculus of spectral integration, as developed in [1—3].

We write r = sup{||elM||£;_>£ | t 6 K} < oo, and introduce a Stone-type spectral
family for the group eltA [3, Theorem 5.1]. There is a unique family of spectral projections
F(X) € B{E) with

(i) \\F{X)\\E^E < Cpr2;

(ii) F(\)F(ji) = F(ji)F{\) = F(X) when A < w

(iii) A H-> F(X) is right-continuous, with left-hand limits, in the strong operator topology;

(iv) F(X) —»I as A —t oo, and F(X) —» 0 as A —> —oo, strongly; and

(v) there is a well-defined integral with respect to the family F(X) and a functional
calculus map, giving a bounded homomorphism

TO i-> m

/•OO

(A) = / TO(A)F(dA), (4.1)
J — OO

from the Banach algebra of functions of bounded variation on R into B(E). It
is shown in [2] that the functional calculus map is bounded M9(R) —¥ B(E), for
| l /2 - l /p | < 1/q and 1 < q < oo.

We can also use the functional calculus map to introduce closed (unbounded) and
densely defined operators such as

\A\* = Urn / + [ |A|*F(dA) (z e C); (4.2)= Urn / + [ |A|*F(dA) (z e C);

in this case we exploit the fact that the spectral projection for the null space of A is
F(0) - F(0—) = 0. The function A i-> A1U has 1-variation ^ 2|u| on each dyadic interval

j e z).

Lemma 4.1. The imaginary powers \A\lu form a Co-group of operators on E with
modular function of at most linear growth; that is,

\\\An\E^E^C(P,T)(l + \u\) ( « € R ) . (4.3)

Proof. This follows from the Marcinkiewicz multiplier theorem of spectral integration
(see [1] and [2, Theorem 1.2]), given our estimate on the MX(R) norm of Aiu. •

Theorem 4.2. Let 3/2 < a < 3. Then the family of operators

p~t\A\3 _ T
m(tl/3|j4|) = W w {t > 0) (4-4)
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on E is uniformly bounded, and the maximal function

f ^ 8Mp\m{t^3\A\)f\ ( / €£ ) (4.5)
t>o

defines a strongly bounded sublinear operator E —t LP(Q; n).

Proof. We now introduce

(4.6)

where g(X) extends to define an entire function; and we proceed to calculate the Fourier
transform of h(x) = m(ex). Let ipj(x) {j = 1,2) be smooth bump functions, supported
on [—1,1] and [1/2,oo) respectively, with 1 = tpi(x) + <P2(X) f°r x ^ 0. Then we have
absolutely convergent integrals

h(£) = / (pi(X)g(X)X2-a-iid\+ [ v? 2 (A)(e~ A 3 -^A^-^^dA. (4.7)
JO Jl/2

Integrating by parts, we show that, when a < 3, the first integral in (4.7) is

~l Tpr /1(^5)/"(A)A5-Q-i«dA; (4.8)
- " - K) Jo(3 - a - i

this expression is clearly O(l/|£|3) as |^| —> oo.
We also integrate the second integral in (4.7) by parts; the most threatening term so

arising is

1 y>2(A)(-3A2)3e-A A2-a-*dA, (4.9)

which is also O(l/|£|3) as |£| —» oo.
Hence we can write

AQ

an absolutely convergent integral; from whence we can write

(4.10)

(t > 0,/ 6 E). (4.11)

We deduce the key estimate

e-t\M
3 -I

sup
loo

(4.12)

where the latest integral converges on account of our estimates on (4.8), (4.9) and (4.3).

•
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5. Almost sure convergence for a cosine family

In this section we continue with the formalism of § 4 to obtain an almost sure convergence
theorem for solutions of an abstract second-order equation. The Cauchy problem

wtt = -\Afw(x,t), 1
w(x,0)=f(x), wt(x,0)=0J

is well posed for / € E in the domain of |J4|9. Indeed, the solution is given by w(x, t) -
(c.ost\A\^)f(x), as defined by the functional calculus of §4. Simple estimates on the
derivative of cos tA3 and properties of the functional calculus map imply that 1i—¥ w(.: t) G
E is twice continuously differentiate, with w(x, t) —> f(x) in the norm of E as t —> 0;
further, u>t(x, t) —> 0 in E norm as t —¥ 0. For a more general class of initial values, the
function 1i-» cost\A\3f is norm-continuous.

Theorem 5.1. Suppose that 9/2 < 6 < 6 and that f e E is in the domain of \A\S.
Then a (weak) solution w = cos(i|A|3)/ to (5.1) exists, and satisfies

w(x, t) -¥ f(x) fi-almost everywhere as t —> 0 + . (5.2)

Proof. Arguing as in the proof of Theorem 1.1, we can show that

(' > 0) (5-3)

defines a uniformly bounded family of linear operators on E, and that the maximal
function

H I l (/€£) (5.4)
t>o

defines a strongly bounded sublinear operator E ->• Lp(J?;/n). (The value of 5 may be
chosen larger than in Theorems 1.1, 3.3 and 4.2, since here we have a cosine family rather
than a (semi)-group. We appear to need this enlarged exponent to cope with the growth
of the modular function in (4.3).)

Suppose that / is in the domain of |J4|^ and take e > 0. Then a solution w(x,t) =
cos(t\A\3)f of (5.1) exists; on account of (1.4) and (5.3), we may define w(x,t) =

+ / . This weak solution satisfies, for 0 < t < e,

Ih H ) ( ) | | | g ( ; M ) = ll(C0S«|i4|3 -

)\\LZLr (5-5)

by functional calculus. Now the properties of the maximal function ensure that this is

<C(p,6)es/3\\\A\sf\\E. (5.6)

Hence u(x, i) -* f(x) almost everywhere as t -> 0. D

https://doi.org/10.1017/S0013091500020691 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020691


68 G. Blower

Our next result concerns functions / : M. —> X, where X is a complex Banach space
with the unconditional martingale difference property.

Definition. A Banach space X is said to be a UMD space, provided there is a uniform
unconditionality constant Cx such that, for all L2-martingale difference sequences (dn)
with values in X,

N

Yj±d
n = l

AT

I
"n=\

for all choices of signs ±. By results of Bourgain and Burkholder, summarized in [3,
Theorem 2.7], this is equivalent to requiring that the Hilbert transform operator

(/ € L2(K; X)) (5.7)
x

be bounded from L2(R;X) to itself.
Many of the reflexive spaces of functions which arise in classical analysis have the UMD

property; Hilbert space is an obvious example, the Lebesgue spaces Lp (1 < p < oo) and
the von Neumann—Schatten ideals cp (1 < p < oo) are examples presented in [3]. It
is helpful to note that LP(R;X) is a UMD space whenever X is a UMD space and
1 < p < oo.

Theorem 5.2. Let X be a UMD space, 9/2 < S < 6, 1 < p < oo and let A be
the Laplace operator in LP(M.;X). Then there is a uniformly bounded family of linear
operators on LP(R;X)

p ^ / 2 / (t > 0), (5.8)

for which the maximal function

f H+ sup \\m(t^3VE)f\\x (f € LP(R; X)) (5.9)
t>o

defines a strongly bounded sublinear operator L^IRjX) -> 1/(11$).

Proof. By the Marcinkiewicz multiplier theorem for vector-valued functions, Am

defines a Co-group on ^ ( R j X ) with

||Ai"||LP(R;X)^LP(K;X) ^ Cp(X)(l + \U\) (U € R). (5.10)

Indeed, the functional calculus map (4.1) is bounded MX(R) -> B{L"(R;X)) (see
[1, Theorem 1.2], [6, Theorem 4] and [16, Theorem 6]). Now we can repeat the proof of
Theorem 1.1 to achieve the desired result. •
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6. Concluding remarks

Problem 6.1. It is reasonable to hope that Theorem 5.2 should extend to the Laplace
operator in Lp(M.d;X) with d > 1, possibly for a restricted range of p. The known esti-
mates on the modular function of Am are not good enough to achieve this by our method.
Note that (3.3) is only known to be valid when X is isomorphic (linearly homeomorphic)
to a Hilbert space. In [17, p. 57], Stein obtains an estimate on the modular function of
Uu whenever (—L) is the generator of a symmetric diffusion semigroup. His estimate is
independent of dimension, but it grows exponentially in \u\.

Remark 6.2. We mention some previously known results on the almost everywhere
convergence of solutions of the Cauchy problem iwt = Aw, w(x,0) = f(x) for the
Schrodinger equation in free Euclidean space. Carleson has shown that, for / 6 L2(R)
with A 1 / 8 / 6 L2(R), the Cauchy problem is well posed, and w(x,t) —> f(x) almost
everywhere as t —> 0 [7]. The Sobolev exponent of / € flrl/'4(R) is optimal when d = 1.
In higher space dimensions the optimal value of the index does not appear to be known;
but Bourgain has achieved an almost sure convergence result for compactly supported
initial data / in HP(R2), for some p < 1/2 [5]. The proofs of these results involve
delicate estimates on the kernels of the operator TT* on Hp, where Tf{x) = e'*(a:)a*/(a:)
is the maximal function. Standard results described in [19] show that almost everywhere
convergence is equivalent to weak (p, q) bounds on a suitable maximal function. The
TT* method may be used to yield almost everywhere convergence results for KdV-type
equations. Nevertheless, it does not seem appropriate for vector-valued functions taking
values in Banach spaces, other than Hilbert space [18, pp. 278, 317].

Our final result gives a characterization of those Lebesgue spaces which are isomorphic
to Hilbert space, and it suggests that there are limits to what can be achieved using
transference arguments for bounded groups of operators. See also [11, 1.5].

Proposition 6.3. Let E be an infinite-dimensional and separable complex Banach
space isomorphic to Lp(/j.). Then p equals 2 if and only if, for each K ^ 1, there is
C{E, K) < oo such that

Ee

for all finite sequences (fj) C E, and all bounded discrete (semi)-groups of operators on
(linear subspaces of) E with \\T*\\E^yE < K for all j .

Proof. By Kahane's inequality [15, 9.2], when E is isomorphic to Hilbert space there
are positive constants c(E) and C{E) with

1 / 2 1 / 2

E j 2 ) ((fj)cE), (6.2)
II j E \ j /

from whence (6.1) follows.
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Our proof of the converse establishes rather more than the statement. Kwapien has
shown that (6.2) characterizes those Banach spaces which are isomorphic to Hilbert
space [14, Theorem l.l(c)]. We suppose, with a view to obtaining a contradiction, that
the maximal type of E is p = sup{p | E has type p} < 2. Since E ~ Lp, this supremum
is attained. Then by the Maurey-Pisier Theorem [15, 13.2, 13.16], IP is finitely repre-
sentable in E. For each n, we take En to be a subspace of E, 2-isomorphic to £P(n) and
/^-complemented in E. Now we let (TJ')j€z be the cyclic group of linear operators on En

associated with T-7 : e[r] *-> e^+r], where [r] the equivalence class of r modulo n, and ej
the standard unit basis of HP(n). Since En is if-complemented in E, (TJ)j€z extends to
a bounded Co-group on E with ||TJ'||£_+£ < 6K. We take fj = e\ (1 < j < n); then one
calculates

whereas

(6.3)

But (6.1) cannot then be valid for all n ^ 1 with p < 2.
Further, if the minimal cotype of E is q = inf {q \ E has cotype rj) > 2, then copies

of tq (n) embed uniformly in E. We use TJ as above, but this time we take fj = ej for
1 ^ j ^ n and use Khintchine's inequality to show [15, 5.5]

(6.4)

whereas || Y^=i £jfj\\ti = nxlq\ so for (6.1) to persist for all n, we need q < 2.
Hence p = q = 2, and so (6.2) holds; consequently, by Kwapien's Theorem, E is

isomorphic to the Hilbert space L2(fi). D
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