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Abstract

Necessary and sufficient conditions for the existence of an orthogonal ∗-basis of symmetry classes of
tensors associated to nonabelian groups of order pq are provided by using vanishing sums of roots of
unity.
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1. Introduction

The study of symmetry classes of tensors is motivated by many branches of pure
and applied mathematics: combinatorial theory, matrix theory, operator theory, group
representation theory, differential geometry, partial differential equations, quantum
mechanics and other areas (see, for example, [11] and the references cited below).
In particular, finding examples of (higher) symmetry classes of tensors that possess an
orthogonal basis of decomposable symmetrised tensors (orthogonal ∗-basis or o-basis,
for short) is of considerable interest. This topic arose from the question by Wang
and Gong in [14], and the existence of an orthogonal ∗-basis of symmetry classes of
tensors has been studied for several classes of groups: for example, dihedral groups
in [8], dicyclic groups in [2], semi-dihedral groups in [9], some subgroups of full
symmetric groups and some types of p-groups in [6].

Nonabelian groups of order pq have applications in group theory and graph theory
(see, for example, [4]). Aspects of the symmetry classes of tensors associated to these
groups have been considered. In particular, Poursalavati computed some dimensions
of the symmetry classes of tensors associated with certain Frobenius groups in [13].
However, he did not investigate the condition for the existence of an o-basis. To do so,
we need to handle the complicated values in the character table. We carry this through
with the help of a result of Lam and Leung [10] on vanishing sums of roots of unity.
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2. Preliminaries

Let V be an n-dimensional complex inner product space and G a permutation group
on m elements. Let Γm

n be the set of all sequences α = (α1, . . . , αm), with 1 ≤ αi ≤ n.
Define the action of G on Γm

n by

ασ = (ασ−1(1), . . . , ασ−1(m)).

Let O(α) = {ασ | σ ∈ G} be the orbit of α. We write α ∼ β if α and β belong to the
same orbit in Γm

n . Let ∆ be a system of distinct representatives of the orbits and let Gα

be the stabiliser subgroup of α, that is, Gα = {σ ∈G | ασ = α}. Let χ be any irreducible
character of G.

For any σ ∈ G, define the operator Pσ : V⊗m −→ V⊗m on the m-fold tensor space
V⊗m :=

⊗m
1 V by

Pσ(v1 ⊗ · · · ⊗ vm) = (vσ−1(1) ⊗ · · · ⊗ vσ−1(m)).

The symmetry class of tensors associated with G and χ is the image in V⊗m of the
symmetry operator

T (G, χ) =
χ(1)
|G|

∑
σ∈G

χ(σ)Pσ,

and it is denoted by Vn
χ(G). We say that the tensor T (G, χ)(v1 ⊗ · · · ⊗ vm) is a

decomposable symmetrised tensor, and we denote it by v1 ∗ · · · ∗ vm. The dimension
of Vn

χ(G) is given by

dim(Vn
χ(G)) =

χ(1)
|G|

∑
σ∈G

χ(σ)nc(σ),

where c(σ) is the number of cycles, including cycles of length one, in the disjoint cycle
factorisation of σ (see [12]).

The inner product on V induces an inner product on Vχ(G) which satisfies

〈v1 ∗ · · · ∗ vm, u1 ∗ · · · ∗ um〉 =
χ(1)
|G|

∑
σ∈G

χ(σ)
m∏

i=1

〈vi, uσ(i)〉.

Let {e1, . . . , en} be an orthonormal basis of V . It is well known that {e⊗α | α ∈ Γm
n } forms

an orthogonal basis for V⊗m associated to the induced inner product. Here, e⊗α denotes
the m-fold tensor eα1 ⊗ eα2 ⊗ · · · ⊗ eαm and we also write e∗α = eα1 ∗ · · · ∗ eαm . We have

〈e∗α, e
∗
β〉 =


0 if α / β,
χ(1)
|G|

∑
σ∈Gβ

χ(σh−1) if α = βh. (2.1)

In particular, for σ1, σ2 ∈ G and α ∈ Γm
n ,

〈e∗ασ1
, e∗ασ2

〉 =
χ(1)
|G|

∑
x∈σ2Gασ

−1
1

χ(x). (2.2)
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Thus,

‖e∗α‖
2 =

χ(1)
|G|

∑
σ∈Gα

χ(σ).

Define
Ω =

{
α ∈ Γm

n

∣∣∣∣∣ ∑
σ∈Gα

χ(σ) , 0
}
,

and put ∆ = ∆ ∩Ω. Then e∗α , 0 if and only if α ∈ Ω.
For α ∈ ∆, V∗α := 〈e∗ασ : σ ∈ G〉 is called the orbital subspace of Vχ(G). By (2.1),

Vχ(G) =
⊕
α∈∆

V∗α

is an orthogonal direct sum. In [5], it is shown that

dim(V∗α) =
χ(1)
|Gα|

∑
σ∈Gα

χ(σ). (2.3)

Thus, we deduce that if χ is a linear character, then dim V∗α = 1 and, in this case, the
set {e∗α | α ∈ ∆} is an orthogonal basis of Vχ(G). An orthogonal basis which consists of
the decomposable symmetrised tensors e∗α is called an orthogonal ∗-basis or o-basis
for short. If χ is not linear, it is possible that Vχ(G) has no orthogonal ∗-basis.

The following facts will also be needed. The first follows from [7, Lemma 1.3].

Proposition 2.1. Let τ ∈ G. If B = {e∗ασ1
, e∗ασ2

, . . . , e∗ασt
} is an o-basis for V∗α, then so is

τB := {e∗
ασ1τ−1 , e∗ασ2τ−1 , . . . , e∗ασtτ−1}.

The second is the main result of Lam and Leung [10] on vanishing sums of roots of
unity. For a given natural number m, if there exist mth roots of unity ε1, ε2, . . . , εk ∈ C
such that ε1 + ε2 + · · · + εk = 0, then the equation is said to be a vanishing sum of mth
roots of unity of weight k. Let W(m) be the set of weights k for which there exists a
vanishing sum ε1 + ε2 + · · · + εk = 0, where each εi is an mth root of unity.

Theorem 2.2 [10]. Let m be a positive integer and write its prime factorisation as
m = pa1

1 pa2
2 · · · p

at
t . The weight set W(m) is exactly given by N0 p1 + · · · + N0 pt :=

{k1 p1 + · · · + kt pt | k1, . . . , kt ∈ N0}, where N0 is the set of all nonnegative integers.

3. Nonabelian groups of order pq

Let q be prime and p a positive integer such that p | q − 1. It is well known that
there is only one (up to isomorphism) nonabelian group G of order pq, namely, G is a
semidirect product of a cyclic group Cq = 〈a〉 of order q and a cyclic group Cp = 〈b〉
of order p. That is, G = Cq oφ Cp, where φ : Cp −→ Aut(Cq) is a homomorphism with
ord(φb(a)) = p. A presentation of G may be given by

G = 〈A, B | Aq = Bp = 1, BAB−1 = Ar〉,
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where r is a primitive root of the congruence zp ≡ 1 (mod q) and A = (a, 1), B = (1, b).
In particular, if p = 2, then G is the dihedral group of order 2q. An embedding of G
into the symmetric group Sq is also well known. Explicitly, from [1], A = (1 2 · · · q) as
an element of Sq, and B is the product of p disjoint cycles, where the cycle containing
i sends i to 1 + (i − 1)r.

Since G = Cq oφ Cp, we can view Cq as a Cp-set with action given by φb(a) = ar.
This action is induced as an action of Cp on the set of irreducible representations
Irr(Cq) := C∨q of Cq. Indeed,

b · x = xφb for each x ∈ C∨q .

Let O be an orbit of this action and (Cp)x the stabiliser of x in Cp. For each x ∈ O and
U ∈ Irr((Cp)x), it can be shown (see, for example, [3]) that

V(O,U) = VO,x,U = IndCp

(Cp)x
U = { f : Cp −→ U | f (hg) = h f (g), h ∈ (Cp)x},

is an irreducible representation of G and VO,x,U � VO,y,U for any x, y ∈ O. Furthermore,
if {O1,O2, . . . ,Ok} is the set of all disjoint orbits for the action of Cp on C∨q , then

{VOi,U | U ∈ Irr((Cp)xi ), i = 1, 2, . . . , k},

with xi ∈ Oi, forms a complete set of irreducible representations of G = Cq oφ Cp [3].
The character of V = V(O,U), such that x ∈ O, is given by the Mackey-type formula

χV (a, g) =


1

|(Cp)x|

∑
b∈Cp

xφb(a)χU(g) if g ∈ (Cp)x,

0 if g < (Cp)x.
(3.1)

Proposition 3.1. For the nonabelian group G of order pq, where p is a positive integer
and q is a prime such that p | q − 1, there are (q − 1)/p irreducible characters of degree
p and p irreducible characters of degree one.

Proof. By the above discussion, it is sufficient to find the orbits and stabilisers for the
action of Cp on C∨q . Since p is the smallest positive integer such that rp ≡ 1 (mod q),

[x] = {bt · x | t = 0, 1, 2, . . . , p − 1}

contains exactly p elements for each x ∈ C∨q − {1}. Thus, there are (q − 1)/p orbits of
size p and one orbit of size 1. Let {1, x1, x2, . . . , x(q−1)/p} be the set of representatives of
these orbits. By the orbit-stabiliser theorem, (Cp)xi = {1} for each i = 1,2, . . . , (q − 1)/p
and (Cp)1 = Cp. Now, Irr((Cp)xi ) = {̃0} and Irr((Cp)1) = {̃0, 1̃, 2̃, . . . , p̃ − 1}, where
k̃(t) = e2πkti/p for each k, t = 0, 1, 2, . . . , p − 1. Hence, V([xi],̃0) and V([1],̃k), for each
i = 1, 2, . . . , (q − 1)/p and k = 0, 1, . . . , p − 1, form a complete list of irreducible
representations of G = Cq oφ Cp. By the Mackey-type formula (3.1), we compute
dim(V([xi],̃0)) = p and dim(V([1],̃k)) = 1, which completes the proof. �
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4. Symmetry classes of tensors associated to G and nonlinear characters

Denote by Irrp(G) the set of degree-p irreducible characters of G = Cq oφ Cp. In the
proof of the Proposition 3.1, we have seen that

Irrp(G) = {χV([xi],̃0)
| i = 1, 2, . . . , (q − 1)/p}.

Suppose that V is a finite-dimensional inner product space, χV ∈ Irrp(G) and
α ∈ Γ

q
dim(V). Let e∗α := T (G, χV )(e⊗α).

Proposition 4.1. For α ∈ Γ
q
dim(V), e∗α = 0 if and only if α is a constant sequence.

Proof. It is clear that (as, 1) ∈ Gα if and only if as ∈ (Cq)α. Since (Cq)α is a subgroup
of Cq and |Cq| = q (which is prime),

(Cq)α =

{
{1} if a < (Cq)α,
Cq if a ∈ (Cq)α

(4.1)

=

{
{1} if α is not a constant sequence,
Cq if α is a constant sequence. (4.2)

By (3.1) and the fact that (Cp)xi = {1}, for each i = 1, 2, . . . , (q − 1)/p,

χV([xi],̃0)
(as, bl) =


0 if l , 0,
p−1∑
j=0

xiφb j (as) if l = 0. (4.3)

Thus, for χV = χV([xi],̃0)
,

∑
σ∈Gα

χV (σ) =
∑

(as,1)∈Gα

p−1∑
j=0

xiφb j (as)

=
∑

as∈(Cq)α

p−1∑
j=0

xiφb j (as)

=

p−1∑
j=0

∑
as∈(Cq)α

xiφb j (as).

Note that xiφb j (1) = 1 for each j, because xiφb j ∈ Irr(Cq). Thus, e∗α = 0 if and only if∑p−1
j=0

∑
as∈(Cq)α xiφb j (as) = 0, which happens if and only if (Cq)α , {1} (by (4.1) and the

second orthogonality relation for irreducible characters). The proof is now completed
by (4.2). �

To obtain the condition for the existence of an o-basis, it is necessary to calculate
the dimension of the orbital subspace V∗α. This is a direct consequence of Freese’s
theorem, which we stated at (2.3).
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Proposition 4.2. For α ∈ Γ
q
dim(V),

dim(V∗α) =


0 if α is a constant sequence,
p2

|Gα|
otherwise.

Proof. By Proposition 4.1, if α is constant, then dim(V∗α) = 0. Suppose that α is not a
constant sequence. Then (Cq)α = {1}. By (4.3) and Freese’s theorem, (2.3),

dim(V∗α) =
χ(1)
|Gα|

∑
σ∈Gα

χ(σ)

=
p
|Gα|

∑
ã∈(Cq)α

χ((ã, 1))

=
p2

|Gα|
,

which completes the proof. �

Theorem 4.3. Suppose that p is a positive integer and q is a prime with p | q − 1, G is
a nonabelian group of order pq and χ is an irreducible character of G.

(1) If dimV = 1 or χ is linear, then Vχ(G) always admits an o-basis.
(2) If dimV > 1 and χ is nonlinear, then Vχ(G) does not admit an o-basis.

Proof. It is well known that if χ is linear, then Vχ(G) always admits an o-basis. If
dim V = 1, then dim(V⊗m) = 1 for any positive integer m. Thus, dim(Vχ(G)) ≤ 1 (for
any irreducible character χ) and hence Vχ(G) admits an o-basis.

For the nonlinear case with dim V > 1, it is enough to consider the condition on
each orbital subspace V∗α. Let α = (1, 2, 1, 1, . . . , 1). Since dim V > 1, α ∈ Γ

q
dim V . By

the embedding of G in Sq, where q is prime, it is easy to see that Gα = {1}. Now,
by Proposition 4.2, dim(V∗α) = p2. Assume that V∗α has B = {e∗ασ1

, e∗ασ2
, . . . , e∗ασp2

}

as an o-basis. Then, by the pigeonhole principle, there must exist 1 ≤ l ≤ p and
i1, i2, . . . , ip ∈ {1, 2, . . . , p2} such that {σi1 , σi2 , . . . , σip} ⊆ {(a, b

l), (a2, bl), . . . , (aq, bl)}.
Moreover, by Proposition 2.1, B◦ := σi1 B is an o-basis for V∗α as well. Thus, B◦

contains
S = {e∗α, e

∗

α(at1 ,1)
, e∗
α(at2 ,1)

, . . . , e∗
α(atp−1 ,1)

}

for some t1, t2, . . . , tp−1 ∈ {1, 2, . . . , q}. Since elements in S are pairwise orthogonal, by
(2.2), for each k = 1, 2, . . . , p − 1,

0 = 〈e∗α, e
∗

α(atk ,1)〉 =
χ(1)
|G|

∑
σ∈(atk ,1)Gα

χ(σ) =
1
q
χ((atk , 1)) =

1
q

p−1∑
j=0

xφb j (atk ).

Hence,
∑p−1

j=0 xφb j (atk ) = 0, which is a vanishing sum of qth roots of unity (because xφb j

is an irreducible character of Cq and q is prime). The weight of the sum, that is, the
number of terms, is p. This contradicts Theorem 2.2, which asserts that the weight is
in N0q. �
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