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Abstract

Background: Response to the unprecedented coronavirus disease 2019 (COVID-19) outbreak
needs to be augmented in Texas, United States, where the first 5 cases were reported onMarch 6,
2020, and were rapidly followed by an exponential rise within the next few weeks. This study
aimed to determine the ongoing trend and upcoming infection status of COVID-19 in county
levels of Texas.
Methods: Data were extracted from the following sources: published literature, surveillance,
unpublished reports, and websites of Texas Department of State Health Services (DSHS),
Natality report of Texas, andWHOCoronavirus Disease (COVID-19) Dashboard. The 4-com-
partment Susceptible-Exposed-Infectious-Removal (SEIR) mathematical model was used to
estimate the current trend and future prediction of basic reproduction number and infection
cases in Texas. Because the basic reproduction number is not sufficient to predict the outbreak,
we applied the Continuous-Time Markov Chain (CTMC) model to calculate the probability of
the COVID-19 outbreak.
Results: The estimatedmean basic reproduction number of COVID-19 in Texas is predicted to
be 2.65 by January 31, 2021. Our model indicated that the third wave might occur at the begin-
ning of May 2021, which will peak at the end of June 2021. This prediction may come true if the
current spreading situation/level persists, i.e., no clinically effective vaccine is available, or this
vaccination program fails for some reason in this area.
Conclusion: Our analysis indicates an alarming ongoing and upcoming infection rate of
COVID-19 at county levels in Texas, thereby emphasizing the promotion of more coordi-
nated and disciplined actions by policy-makers and the population to contain its devastat-
ing impact.

Coronavirus disease 2019 (COVID-19) is a serious global health threat. On March 11, 2020, the
World Health Organization (WHO) declared COVID-19 a pandemic, as it spreads worldwide
rapidly following the logistic growth pattern.1 More than 103million cases were reported world-
wide by January 31, 2021, where the United States of America (USA) has over 26.5 million cases
alone. The virus that causes the COVID-19 disease is known as severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 is spreading very quickly in the human pop-
ulation. The main route of spreading this virus is close person-to-person contact, and the spread
is sustainable, as it goes from person-to-person without stopping. The ongoing COVID-19 pan-
demic is spreading more efficiently than influenza, but not as efficiently as highly contagious
measles.2 Another complicating factor is that asymptomatic patients are still able to spread
the virus. According to the Centers for Disease Control and Prevention (CDC), common symp-
toms include but are not limited to fever or chills, cough, shortness of breath or difficulty breath-
ing, sore throat, and many more.

As infected populations and the death tolls continue to rise rapidly, governments worldwide
are trying to control the pandemic by reducing people’s close contact, such as shutting down
public places, schools, colleges, universities, restaurants, playgrounds, and the list continues.
Due to the lack of proper viral medicine or vaccine, travel bans from highly infected areas, social
distancing, lock-down policy, isolation of an infected person, self-quarantine of exposed indi-
vidual, mandatory use of face masks or face coverings, and strictly following all social-conscious
and prevention strategies3 have been widely used strategies to contain the virus.

Infectious disease modeling is one of the most critical parts of understanding the current
pandemic’s ongoing scenario. Mathematical modeling techniques, particularly the compart-
mental modeling technique, can help us estimate crucial parameters, such as disease transmis-
sion dynamics, number of infected people, number of hospitalized people, and number of
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recovered/dead individuals. Consequently, it helps to forecast out-
break timelines and the overall dynamics of the disease. The
knowledge gained from mathematical modeling helps determine
strategies to mitigate the outbreak and determine whether the
interventions taken are useful or not.

The modeling community took the challenge to face the
COVID-19 pandemic together. It started modeling to understand
the dynamics of COVID-19 and help determine the intervention to
slow the spread of the virus. Most of the models related to COVID-
19 use population-based, Susceptible-Infected-Removal (SIR)
models with differential equations or stochastic differential equa-
tions4–7 or susceptible-Exposed-Infectious-Removal (SEIR) and
extended SEIR compartmental models.9–18 Some agent-based
models developed related to COVID-19 use structured networks
to connect individuals and model infection exchanges stochasti-
cally.19–23

Mathematical models often made redundant use of parame-
ters and equations. Our primary focus is to keep the model as
easy and straightforward as possible, so it will be understandable
to the nonmath major population for a broader perspective. In
this study, we develop a deterministic SIaIsR (modified SEIR)
model to deepen our understanding of COVID-19’s dynamic.
Theoretically, we analyze the model to show the existence
and positivity invariance of the system’s solutions and deter-
mine the Disease-Free Equilibrium (DFE) and Endemic Equilib-
rium (EE). We calculate the basic reproduction number, R0 by
using the next-generation matrix approach. We also analyze the
local stability of the DFE and EE fixed points. Finally, we esti-
mate the probability of an outbreak using the Continuous-time
Markov Chain (CTMC) model for better prediction to control
the disease outbreak.

We parameterize our model for Texas, United States, by using
the data from March 6, 2020, to January 31, 2021, available at
https://www.dshs.texas.gov/coronavirus/.24 Using numerical sim-
ulations and data analyses, we predict the daily confirmed case
and the cumulative case of Texas and compare the model predic-
tion with the existing data.25 We provide a sensitivity and elasticity
index analysis of R0 to understand better the most fluctuating
(sensitive) parameter of the model. Furthermore, in this study,
we developed the CTMC model. We estimate the probability of
a disease outbreak depending on the most critical parameter of
the model to determine better control measures of the diseases.
The main objectives of the study are: (a) We will work with
real-life available discrete data of Texas to understand the cases
and project the control of the infection; and (b) we expect that
the prediction of controlling measure of COVID-19 will be able
to validate the dynamics of the SIaIsR and CTMCmodels to obtain
more accurate results.

We organized this article as follows: Mathematical Model dis-
cussed elaborately with positivity and boundedness of solution in
the Mathematical Model and Existence of Solutions section. The
fixed points, auxiliary results are described in the Determination
of Fixed Points section. The local stability analysis, parameter
estimation, and sensitivity analysis described in the Stability
Analysis, Parameter Estimation, and Sensitivity section. The data
analysis compared with the model solution with further predic-
tion to control the epidemic, as a case study in Texas accom-
plished in the Numerical Simulation and Results section. The
probability of disease outbreak with CTMC analysis presented
in the Probability of a Disease Outbreak section. Finally, the
Concluding Remarks section outlines the summary and conclud-
ing remarks of the results.

Mathematical Model and Existence of Solutions

The classical SIRmodel predicts the dynamics of infectious disease.
We started with the following compartmental SIR model proposed
in Murray25:

S0ðtÞ ¼ L� β IS
N ;

I0ðtÞ ¼ β IS
N � �I � �I;

R0ðtÞ ¼ �I;

8<: (2.1)

for t 2 ð0;1Þ with initial conditions

Sð0Þ ¼ S0; Ið0Þ ¼ I0 and Rð0Þ ¼ R0: (2.2)

and for total population, NðtÞ ¼ SðtÞ þ IðtÞ þ RðtÞ:
Here SðtÞ; IðtÞ; RðtÞ are the number of individuals in the sus-

ceptible, infected and removed compartments, respectively at time
t with a day unit. The parameter β denotes the infection rate/dis-
ease transmission rate, and � and � are the removal and disease
induced mortality rate, respectively. The solution and detailed
analysis of Equation (2.1) are available in Murray.25

Compared with the SIR epidemic model, the next updated and
advanced model is SEIR, which is biologically more feasible in
many pandemics and infectious diseases. In this study, we consider
the following 4 compartments SIaIsRmathematical model; a modi-
fied version of the typical SEIR model:

dS
dt ¼ L� ðβ1Ia þ β2IsÞS� �1S; t � 0;

dIa
dt ¼ ðβ1Ia þ β2IsÞS� ðσ þ �1 þ �1ÞIa; t � 0;

dIs
dt ¼ σIa � ð�2 þ �1 þ �2ÞIs; t � 0;

dR
dt ¼ �1Ia þ �2Is � �1R; t � 0

8>>><>>>: (2.3)

with initial conditions

Sð0Þ ¼ S0; Iað0Þ ¼ Ia0; Isð0Þ ¼ Is0 and Rð0Þ ¼ R0 ; (2.4)

and

NðtÞ � SðtÞ þ IaðtÞ þ IsðtÞ þ RðtÞ ; (2.5)

Here, SðtÞ; IaðtÞ; IsðtÞ and RðtÞ are the number of individuals
in the susceptible, asymptomatically infected, symptomatically
infected (for simplicity, we will call the symptomatically
infected population as an infected population), and removed
compartments, respectively, at time t per day unit. L is the
recruitment number in the susceptible compartment. Natural
and disease induced deaths are denoted by �1 and �2, respec-
tively. β1 and β2 are the diseases transmission rates of suscep-
tible individuals with asymptomatically infected and infected
ones, respectively, which may cause the transmission of the
infection, σ is the transition rate from asymptomatically
infected to infected compartment and �i; i ¼ 1; 2 are the recov-
ery rates from asymptomatically infected and infected to
removal compartment, respectively. After transmission, a sus-
ceptible individual initially becomes asymptomatically infected.
As the disease progresses, asymptomatically infected individ-
uals may develop symptoms, and transition from Ia to Is at rate
σ or they may never develop symptoms and recover at rate �1.
Because the model monitors dynamics of population, it follows
that all its dependent variables and parameters, for example,
L; �i; βi; �i and σ must be non-negative along with �1 >0 as in
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the model Equations (2.3)-(2.5). The definition of all parameters
are elaborated in Table 1 and the flow diagram of the main
model Equation (2.3) is shown in Figure 1.

Remark 1. In this study, we consider the modified SEIR model for
SARS-CoV-2 dynamics to cover both infectious and exposed-
asymptomatic individuals compared to the classical SIR and
SEIR compartment models. The model has a combined compart-
ment for exposed and asymptomatic classes, which reduces the
number of parameters and eventually reduces the model’s
complexity.

The following result ensures the existence and positivity of sol-
utions of Equation (2.3).

Theorem 1. The closed region Ω ¼ fðs; Ia; Is;RÞ"R4þ : 0<N � L
�1
g

is positively invariant set for the system in Equation (2.3).
The proof of theorem 1 can be found in the Appendix.

Determination of Fixed Points

To find the equilibrium points ðeS; eIa; eIs; eRÞ of the system Equation
(2.3), we set the derivatives equal to zero. So, at equilibrium states,
we get

L� ðβ1eIa þ β2eIsÞ � �1 ¼ 0;
ðβ1eIa þ β2eIsÞeS� ðσ þ �1 þ �1ÞeIa ¼ 0;

σeIa � ð�2 þ �1 þ �2ÞeIs ¼ 0;
�1eIa þ �2eIs � �1 ¼ 0:

8>><>>: (3.1)

DFE Point

For the DFE, we replace the variables as

ðeS; eIa; eIs; eRÞ � ðS0; Ia0; Is0;R0Þ:
This gives,

L� ðβ1Is0 þ β2Is0ÞS0 � �1S0 ¼ 0;
ðβ1Ia0 þ β2Is0ÞS0 � ðσ þ �1 þ �1ÞIa0 ¼ 0;

σIa0 � ð�2 þ �1 þ �2ÞIs0 ¼ 0;
�1Ia0 þ �2Is0 � �1R0 ¼ 0:

8>><>>:
Therefore, the DFE point can easily be found as

S0; Ia0; Is0;R0ð Þ � L
�1
; 0; 0; 0

� �
: (3.2)

EE Point

For the EE, we replace the variables as ðeS; eIa; eIs; eRÞ � ðS�; I�a ; I�s ;R�Þ;
where, I�s >0. And we have the following system

L� ðβ1I�a þ β2I�s ÞS� � �1S� ¼ 0;
ðβ1I�a þ β2I�s ÞS� � ðσ þ �1 þ �1ÞI�a ¼ 0;

σI�a � ð�2 þ �1 þ �2ÞI�s ¼ 0;
�1I�a þ �2I�s � �1R� ¼ 0:

8>><>>: (3.3)

Then the third equation of the system Equation (3.3) gives,

I�s ¼ σI�a
�2þ�1þ�2:

(3.4)

Similarly, the fourth equation yields

R� ¼ ½�1ð�2þ�1þ�2Þþ�2σ�
�1ð�2þ�1þ�2Þ I�a : (3.5)

Next, the first equation of Equation (3.3) yields

S� ¼ Lð�1þ�2þ�2Þ
σβ2I�a�ð�1�β1I�a Þð�1þ�2þ�2Þ : (3.6)

Finally, the second equation of Equation (3.3) gives

I�a ¼ a1
a2

(3.7)

where,

a2 ¼ ðσ þ �1 þ �1Þðσβ2 þ �1β1 þ �2β1 þ �2β1Þ

a1 ¼ σ�2
1 þ �2

1�2 þ �2
1�1 þ �2

1�2 þ �3
1 þ Lσβ2 þ L�1β1

þ L�2β1 þ L�2β1 þ σ�1�2 þ σ�1�2 þ �1�2�1 þ �1�1�2

Hence the endemic steady state is completely depending on I�a .

Basic Reproduction Number Using Next-Generation Matrix

In this section, we calculated the basic reproduction number,
which is a crucial threshold in analyzing infectious disease model-
ing. It regulates whether the disease will die out or persist in the
population.26,27 The basic reproduction number, denoted R0,

Table 1. Model parameters and their descriptions

Notation Definition Notation Definition

� Transition rate from Ia to
Is class

λ Recruitment rate
in S class

�1 Transmission rate from
contact with Ia

�1 Recovery rate of
Ia class

�2 Transmission rate from
contact with Is

�2 Recovery rate of
Is class

�2 Disease induced death
rate

�1 Natural death
rate

Figure 1. Compartmental diagram for model.
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“the expected number of secondary cases produced, in a com-
pletely susceptible population, by a typical infective individual”.28

IfR0 >1, the DFE is unstable, whichmeans 1 primary infection can
produce more than 1 secondary infection and epidemic breaks out.
If R0 <1, the DFE is locally asymptotically stable, the disease can-
not persist in the population, and the situation is sustainable.

In this manuscript, we have used the next generation matrix
method8 to find basic reproduction number of the system
Equation (2.3). We obtain 2 following matrix from the system
Equation (2.3), which are F and V, they are given below

F ¼ β1S0 β2S0
0 0

� �
and

V ¼ σ þ �1 þ �1 0
�σ �2 þ �1 þ �2

� �
:

Therefore, the V�1 matrix is

V�1 ¼
1

σþ�1þ�1
0

σ
ðσþ�1þ�1Þð�1þ�2þ�2Þ

1
�2þ�1þ�2

 !

Thus, the next-generation matrix FV�1 is

FV�1 ¼
β1ð�2þ�1þ�2ÞS0þβ2σS0
ðσþ�1þ�1Þð�2þ�1þ�2Þ

β2S0
�2þ�1þ�2

0 0

� �
:

Hence, the basic reproduction number R0 is

R0 ¼ �ðFV�1Þ ¼ β1ð�2þ�1þ�2ÞS0þβ2σS0
ðσþ�1þ�1Þð�2þ�1þ�2Þ ;

¼ β1L
�1ðσþ�1þ�1Þ þ

β2σL
�1ðσþ�1þ�1Þð�2þ�1þ�2Þ : (3.8)

We also have determined the Jacobian matrix of the system
Equation (2.3) at any equilibrium point ðeS; eIa; eIs; eRÞ which will
be used for further analysis. which will be used for further analysis.
The Jacobian matrix of the system Equation (2.3) is given by

J ¼
�ðβ1eIa þ β2eIsÞ � �1 �β1 �β2 0

β1eIa þ β2eIs β1 � ðσ þ �1 þ �1Þ β2 0
0 σ �ð�2 þ �1 þ �2Þ 0
0 �1 �2 ��1

0BB@
1CCA:

(3.9)

Stability Analysis, Parameter Estimation, and Sensitivity

Initiallly, we have studied the stability analysis at the DFE
point and the EE point and the statement of the results are
as follows.

Theorem 2. The DFE ðS0; Ia0; Is0;R0Þ of Equation (2.3) is locally
stable if R0 <1 and unstable if R0 >1.

The proof of theorem 2 can be found in the Appendix.

Theorem 3. The EE ðS�; I�a ; I�s ;R�Þ of the system Equation (2.3) is
locally stable if R0 >1.

The proof of theorem 3 is available in the Appendix.

Parameter Estimation

We used the Texas data from March 6, 2020, to January 31, 2021
(available at https://www.dshs.texas.gov/coronavirus/)24 to esti-
mate the parametric values. The transmission rates β1 and β2
are estimated as piece-wise function values according to the
mutation behavior of COVID-19 virus using the source data in
https://www.dshs.texas.gov/coronavirus/24 and https://www.
usapopulation.org/texas-population,29 given as a possible interval
in Table 2, initially making an assumption on the asymptomat-
ically infected class population. The recruitment rate in S class,
daily natural deaths, and the total population of Texas are col-
lected from https://www.usapopulation.org/texas-population.29

We used the average incubation period, - to -d interval, to esti-
mate the disease transition from Ia to Is class, σ. The recovery
rates �1 and �2 from Ia and Is compartments are calculated using
the S; Ia; and Is class source data (available in https://www.dshs.
texas.gov/coronavirus/24 and https://www.usapopulation.org/
texas-population29), with total recovery and total cases. The dis-
ease induced death rate is estimated following the formula
of WHO.30

Sensitivity and Elasticity Index of R0

Because R0 provides qualitative information of an infectious dis-
ease modeling, the sensitivity and elasticity of R0 can play an
important role in determining a disease’s control strategy. The sen-
sitivity index of R0 with respect to any parameter, u is defined by
@R0@u. The elasticity index, also known as the normalized sensi-
tivity index ofR0, measures the relative change ofR0 with respect
to a parameter. The elasticity index of R0 with respect to any
parameter, u is defined by

UR0
u ¼ @R0

@u � u
R0

:

R0 increases with the positive sign of the elasticity index of the
parameter and decreases with the negative sign. The magnitude of
the elasticity index tells us the importance of the parameter. These
measures used to determine the control of the parameters of an
epidemic model. More examples can be found in Van den Dries-
sche.31 The numerical elasticity index ofR0 for the baseline param-
eter values is provided in Table 2.

We observe that the models’most critical parameters are the β1
and �1 with the average value of 0:8985 and �0:771 (see sensitivity
index in Table 2), respectively. An effective way to control the out-
break could be controlling the parameters β1 and �1. As β1 repre-
sents the transmission rate from S to Ia class with the contact of
Ia, the reduction of contact between the asymptomatic individual
to the general population can play an important role. One of the
proven measures is to use a face mask uniformly for all popula-
tions,32 significantly reducing the contact between the classes and
reducing disease transmission. If doctors can find some effective
viral medicine to improve the recovery rate, it could be an effective
way to control the disease.

Numerical Simulation and Results

To reach the first 100,000 cases, Texas took 105 d, the second hun-
dred thousand cases confirmed withing the next 18 d, but third,
fourth, and fifth hundred thousand cases took only 11, 12, and
13 d, respectively. It is noticeable that in the month of January
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2021, Texas reported over a half million confirmed cases of
COVID-19 and approximately 4000 deaths.24

The exact data also show that the second wave came almost after
day 90 of the first infection wave, and during the second wave, the
peak of daily case confirmation reached up to 14,916 on day 134 of
pandemic. Again, the third wave had hit the locals approximately
at day 250, with a peak of 28,020 on day 299. We assumed 2 major
and highly effective mutations of the malign virus all-around Texas,
and so imposed 3 impulsed values for the transmission rates β1
and β2.

Current Epidemic Situation of COVID-19 at Texas State

In this subsection, we provide the numerical results of our pro-
posed model and compare the results with the data of Texas.24

Figure 2 presents the current epidemic situation of COVID-19
in Texas. The highest number of daily new confirmed cases of
COVID-19 reported during December 29, 2020, and January
26, 2021 (Figure 2a). Our model predicted the same number
of daily new cases compared with the daily new cases reported
by https://www.dshs.texas.gov/coronavirus/.24 As of January
31, 2021, Texas has a total of 2,059,143 cases, and our model
predicted 2,081,753 total cases for the same date (Figure 2b).

Projecting the Epidemic Situation of COVID-19

The proposedmodel predicts another wave (third wave) to happen at
the beginning of May 2021, as depicted in Figure 3a, which will have
its peak at the end of June 2021. This prediction may come true if the
current situation persists, ie, no clinically effective vaccine is available.
But the hope is, vaccination has been started in Texas at the beginning
of this Spring 2021.32Moreover, if this vaccination program fails, there
will be 3,439,804 cases of infection after July 2021 (Figure 3b).

When σ ¼ 0:2083, we observe the predicted peak of daily new
cases is 19; 197 on January 03, 2021, day 303 of the pandemic. If
we increase σ by 10% to 0:2292; then the peak for the daily new cases
moved to December 05, 2020, as 13,757 which also makes the third
wave happen earlier.Whenwe decrease σ by 10% to 0:1875; then the
peak for the daily new cases moved to January 14, 2021, as 27,149.
This σ reduction also delays the next wave as depicted in Figure 4a.
We see similar dynamics for the cumulative cases (Figure 4b). So σ
plays a vital role in the dynamics of the epidemics.

It forecasts that on the baseline value σ ¼ 0:2083 by the end of
July 2021, Texas may have 3,439,804 million infected cases of
COVID-19. If we increase σ by 10% to 0:2292; then the total
infected cases increases from 3:44 to approximately 3:51 million
(3,509,384). If we decrease the value of σ by 10%; then it reduces
to 3:30 million (3,304,451) infections (see Figure 4b).

Table 2. Model parameters values and sensitivity index

Notation Definition Value Source Numerical Elasticity

� Transition rate from Ia to Is 0:2083 day�1 Estimated �0:119;�0:138

L Recruitment rate in S class 1:0373� 103 day�1 [30] 1:000

�1 Transmission rate from contact with Ia ½2:8361� 10�8; 5:8315� 10�8� day�1 Estimated 0:889; 0:908

�2 Transmission rate from contact with Is ½1:6722� 10�8; 2:7868� 10�8� day�1 Estimated 0:111; 0:092

�1 Recovery rate of Ia 0:70 day�1 [25] �0:771

�2 Recovery rate of Is 0:9681 day�1 [25] �0:108;�0:09

�1 Natural death rate 1:8152� 10�5 day�1 [30] �1:000

�2 Disease induced death rate 1:97� 10�2 day �1 [25] �0:002

N Total Population in Texas 29:9� 106 [30] 0:000

Figure 2. Comparative solutions between data and model prediction of Equation (2.3) for (a) daily cases vs model, and (b) cumulative vs model.
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By simulating the transmission rate from the susceptible indi-
viduals to the asymptomatic individuals, β1, we notice a little bit of
change of β1 plays a vital role in the forecast of the entire epidemic.
For example, an increase in β1 by only 1% delays the next third
wave for almost 20 d, but costs more lives than the base value
of β1. The base line shows 122,492 more cases than the base line
solution outcomes. On the other hand, deduction of 1% in β1 from
the base value predicts predicts 135,103 fewer cases in total than
when β1 ¼ 2:8361� 10�8 (see Figure 5b). Again, it is clear that
these changes in β cannot resist the third wave at any cost; the com-
parison is proved in Figure 5a. Hence, because at the time of this
writing, the COVID-19 vaccine has yet to distributed to a signifi-
cant number of people, the most effective way to prevent the virus
is to maintain social distancing and to use a face mask (recom-
mended by the Eikenberry et al.33).

Similarly, decreasing β2 by 10% will shorten the interval
between the concurrent waves. However, the total number of cases
does not change significantly because of the difference between the
wave heads and bottom-lands. It shows fewer cases (159,450) than

the base model fitting simulation (see Figure 6b). Again, a 10%
raise at β2 ¼ 1:8395� 10�8 makes the waves a little bit out-lying
than the other values in Figure 6a and makes the peaks sharper. It
predicts 127,946 more cases in total until July 2021 (Figure 6b).

From above, it is now clear that, to get a similar type of epidemic
change, we needed to change β2 almost 10 times compared to β1.
The contact between S to Ia class is random instead of S to Is class.

Figure 7 presents the daily and cumulative death rate in Texas
with the best data fitting results. On the peak day, themodel solution
predicted the maximum daily death count was people on the last
week of December 2020 (see Figure 7a). The total number of dead
was approximately 41,000 by February 2021 (Figure 7b), and pre-
dicted to be by July 2021 if the spread is not under control already.

Probability of a Disease Outbreak

CTMC Model
To derive a continuous-time Markov chain model assumed 4 ran-
dom variables for 4 states ðS; Ia; Is;RÞ of the deterministic SIaIsR

Figure 3. Comparative solutions between data and model prediction of Equation (2.3) for (a) daily cases vs model solution, and (b) cumulative data vs. model solution.

Figure 4. Forecasting due to the effect of using model solution of Equation (2.3) for (a) daily and (b) cumulative cases.
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Figure 6. Forecasting due to the 10% changing effect of using model solution of Equation (2.3) for (a) daily cases, and (b) cumulative cases.

Figure 7. Numerical solutions and data fitting for (a) daily deaths, and (b) cumulative deaths.

Figure 5. Forecasting due to the only 1% changing effect of using model solution of Equation (2.3) for (a) daily cases, and(b) cumulative cases.
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mathematical epidemic model. The variables are discrete-valued
and time is continuous, t 2 ½0;1Þ,

SðtÞ; IaðtÞ; IsðtÞ;RðtÞ 2 f0; 1; 2; 3; . . . ;Ng:

For the simplification of the notations, we use the same
notations as we used in the mathematical model to define
the infinitesimal transition probabilities, given in Table 3.
Let Dt >0 be sufficiently small so that at most one event occurs
during the Dt time interval. Let ~XðtÞ ¼ ðSðtÞ; IaðtÞ; IsðtÞ;RðtÞÞ
and D~XðtÞ ¼ ðDSðtÞ;DIaðtÞ;DIsðtÞ;DRðtÞÞ, where
DIsðtÞ ¼ Isðt þ DtÞ � IsðtÞ, etc.

For example, event 2 is a new infection and the probability of a
new infection in time Dt is,

PfDXðtÞ ¼ ð�1; 1; 0; 0ÞjXðtÞg ¼ ðβ1Iaþβ2IsÞSDt þ oðDtÞ:

To estimate the probability of a disease outbreak from the
CTMC model, the effect of transmission rates from S to Ia and
from S to Is, which is β1 and β2 are considered. To approximate
the probability of an outbreak, 5000 sample paths are simulated
for 1 initial infected individuals, and the simulation will stop if
either Ia þ Is ¼ 0 or Ia þ Is ¼ 100 is reached. If the total asymp-
tomatically infected and infected population reaches 100, it is
counted as an outbreak. When it reaches zero, it is assumed that
there is a probability of extinction. The calculated probability of
extinction is a proportion of 5000 sample paths as P=5000. Then
the probability of an outbreak will be 1� ðP=5000Þ. Parameter val-
ues are shown in Table 2. The value of R0 is computed from the
expression of Equation (3.8).

Table 4 records the basic reproduction numbers and the prob-
ability of an outbreak for a set of values of β1 and β2. The outbreak
value increases when the transmission rate from the susceptible to
asymptomatically infected class and from the susceptible to
infected class increases. It is obvious that, when the transmission
from susceptible to infected populations increase, the risk of out-
break will increase. But for the transmission from the susceptible
class to the asymptomatically infected class, there is a threshold

value for β1, not for β2. Here, β1 ¼ 6:7357� 10�8 serves as a
threshold parameter value for the disease outbreak of the ordinary
differential equation system Equation (2.3) when all other param-
eter are fixed. Also, the probability of an outbreak depends on the
initial number of infected populations.34 For our model parameter
values, the basic reproduction number is R0 ¼ 2:0087 and the
probability of an outbreak is Poutbreak ¼ 0:4094.

Discussion

Now we are in a world where interdisciplinary research is the most
critical mechanism to live a healthy and standard life for all of
humankind. Over the decades, mathematical prediction modeling
used to be one of the essential tools to study and understand any
epidemics’ behavior. It helps the policy-maker to make a crucial
decision and get prepared for the coming days. This study’s aim
was to develop a mathematical model with real-time data24 and
predict the dynamics of the COVID-19 in the state of Texas.

We used the SIaIsR (modified SEIR) modeling framework to
design our model. We estimated the model parameters using the
data from Texas24 from March 6, 2020, to January 31, 2021. The
average basic reproduction number, R0, calculated as 2:65 for
the system Equation (2.3). A study by Liu et al. 202035 calculates
the median of R0 is 2:79 with a range from 1:4 to 6:49.

Our model predicted that the net peak of daily new cases
occurred at the first week of January, 2021, with new infections
on the peak day (see Figure 2b). The epidemic will have another

Table 3. Infinitesimal transition probabilities for the SIaIsRmathematical model

Event i Description D~XðtÞ Probabilities pi

1 Natural birth ð1; 0; 0; 0Þ LDt þ oðDtÞ
2 Transmission

from S to Ia
ð�1; 1; 0; 0Þ ð�1Ia þ �2IsÞSDt þ oðDtÞ

3 Natural death ð�1; 0; 0; 0Þ �1SDt þ oðDtÞ
4 Asymptomatic

exposed infec-
tion

ð0;�1; 1; 0Þ �IaDt þ oðDtÞ

5 Asymptomatic
natural death

ð0;�1; 0; 0Þ �1IaDt þ oðDtÞ

6 Asymptomatic
recovery

ð0;�1; 0; 1Þ �1IaDt þ oðDtÞ

7 Recovery ð0; 0;�1; 1Þ �2IsDt þ oðDtÞ
8 Natural and

disease related
death

ð0; 0;�1; 0Þ ð�1 þ �2ÞIsDt þ oðDtÞ

9 Recovered
death

ð0; 0; 0;�1Þ �1RDt þ oðDtÞ

10 No changes ð0; 0; 0; 0Þ 1�P9
i¼1 pi

Table 4. Basic reproduction number and the probability of an outbreak are
computed from the CTMC model for different value of �1 and �2. Initial number
of infected and asymptomatically infected populations are Isð0Þ ¼ 1 and
Iað0Þ ¼ 0

�1 �2 R0

Only �1 varies

1:7357� 10�8 1:6722� 10�8 1.3875 0.2758

2:7357� 10�8 1:6722� 10�8 2.0087 0.4094

3:7357� 10�8 1:6722� 10�8 2.6297 0.4704

4:7357� 10�8 1:6722� 10�8 3.2509 0.4998

5:7357� 10�8 1:6722� 10�8 3.8720 0.5146

6:7357� 10�8 1:6722� 10�8 4.4931 0.5380

7:7357� 10�8 1:6722� 10�8 5.1143 0.5476

8:7357� 10�8 1:6722� 10�8 5.7354 0.5630

9:7357� 10�8 1:6722� 10�8 6.3565 0.5644

10:7357� 10�8 1:6722� 10�8 6.9777 0.5464

Baseline of �1 and �2

1:6722� 10�8 1:6722� 10�8 1.3480 0.2640

2:7357� 10�8 2:7357� 10�8 2.2054 0.5530

Only �2 varies

2:7357� 10�8 1:7357� 10�8 2.0204 0.4418

2:7357� 10�8 3:7357� 10�8 2.3904 0.6434

2:7357� 10�8 4:7357� 10�8 2.5754 0.6910

2:7357� 10�8 5:7357� 10�8 2.7604 0.7390

2:7357� 10�8 6:7357� 10�8 2.9454 0.7786

2:7357� 10�8 7:7357� 10�8 3.1304 0.7980

2:7357� 10�8 8:7357� 10�8 3.3154 0.8182

2:7357� 10�8 9:7357� 10�8 3.5004 0.8280

2:7357� 10�8 10:7357� 10�8 3.6854 0.8414

Note: Parameter values are given in Table 2.
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wave after April of 2021 infecting people in total during this period
(Figure 3b).

According to the CDC, the incubation period of the COVID-19
is 2-14 d.2 Lauer et al.36 estimated the COVID-19 mean incubation
period as 5:1 days.We considered the baseline incubation period of
4:8 d in our model. The incubation period may be different for the
nature of the population or the individual patient. A 10% larger
incubation period forces the peak epidemic size bigger and
earlier with an R0 of 2:6835 and a 10% smaller incubation period
delayed peak epidemic in a smaller size with R0 of 2:6178
(see Figure 4).

Scientists worldwide are trying to find the proper control mea-
sures to slow the spread of the COVID-19 virus; social distancing,
quarantine of the exposed individuals, isolation of infected per-
sons, and wearing face masks are widely used strategies. The main
target for containing the virus is to reduce the contact between sus-
ceptible and exposed/infected persons, which eventually will
reduce the transmission rate from the susceptible class (S) to the
infected classes (Ia Is). Texas closed schools, colleges, nonessential
businesses during March 2020 and finally put the stay-at-home
order at the beginning of April until the end of April 2020. This
restriction delayed the earlier predicted peak on June 15 by Cooper
et al.5 We concluded that it is more important to control the
asymptomatically exposed individual’s contact with the popula-
tion than the symptomatic infected person, as the symptomatic
infected person already develops some symptoms. Hence, they
know that they are contagious and restricted them from mixing
with others. The asymptomatically exposed individual who does
not have any symptoms may spread the virus even without know-
ing that they are contagious.

Our model suggests that the sensitivity of the transmission rate
due to contact between susceptible and asymptomatically infected
persons is 5 times greater than the transmission rate caused by the
contact between susceptible to infected individuals. A 1% increase
of the transmission rate from the susceptible population to the
asymptomatically exposed population increases the R0 from
2:65 to 2:6736, and 1% decrease the R0 to 2:6262 (see Figure 5
for epidemic size and the total number of infection). To get a sim-
ilar change on R0, we had to increase/decrease the transmission
rate from susceptible person to infected person, β2 by 10% (see also
Figure 6 for change in epidemic size and total infection). Due to the
unavailability of the data, this article did not track the dynamics of
the asymptomatic carrier. Tracking asymptomatic infection could
provide additional insight into the dynamics of the disease.

A total of 250 of 254 counties reported SARS-CoV-2 infections,
with nearly 2 million cases in all of Texas by January 31, 2021.
Fifty-eight counties reported more than 1000 cases, 22 counties
reported more than 5000 cases, and 11 counties reported more
than 10,000 cases. In contrast, 89 counties reported less than
100 confirmed cases of coronavirus. It is noticeable that the top
6 infected counties (Harris, Dallas, Bexar, Tarrant, Travis) reported
more than 50% of the total number of infections in Texas.24

County-wise daily case analysis for the top 15 (70% of Texas)
infected counties (see Supplementary Tables A1, A2, A3, A4)
shows that some counties (Harris, Dallas, Tarrant, Bexar, El
Paso Travis) may pass their second epidemic peak. However, other
counties (such as Montgomery, Williamson) still have an uptrend
in daily new infections. Proper implementation of the health
expert’s suggestions, such as using face coverings, maintaining
social distance, and frequent hand washing, could play an impor-
tant role in epidemic dynamics.

Additionally, the under-reporting of numerous daily deaths due
cuased by coronavirus in different counties within the state again
goes in line with the results of our SIaIsR model. According to this
simple yet effective exploratory prediction model, the early relaxa-
tion of lockdown (in April) within the state (overall in the United
States) has potentially contributed to the exponential rise in
COVID-19 cases. If the uptrend continues, the government and pol-
icy-makers have to rigorously prepare at a highly rapid pace for a
large nationwide surge in patients presenting to intensive care units,
also anticipating the daily rate at which front-line workers (both
medical and law enforcement professionals) may succumb to death
while serving the nation. The Texas governormay need to introduce
draconianmeasures such as stay-at-home order andmassive fines to
limit population mobility and gatherings immediately.

The mathematical model has some limitations; our model has
some as well. Texas has a different kind of epidemic scenario for
different cities and counties; for instance, at a particular time, some
cities and counties have stay-at-home order, other does not have
the same restriction. The diversity of the population changes the
contact behavior between population and changes the dynamics.
Texas has has a mandatory mask policy since July 2, 2020.37 We
did not consider those variations in our modeling approach.
The next iteration of the modeling approach could implement
the discussed idea to reveal additional insights into disease dynam-
ics. Furthermore, SARS-CoV-2 is a novel coronavirus, and scien-
tists all over the world discovered new information every day,
which could lead to a new understanding of the disease dynamics.

Conclusions

In conclusion, our SIaIsR prediction model has successfully exhib-
ited findings in line with the current practical situation regarding
the ongoing and forthcoming COVID-19 epidemic transmission
in Texas, USA. The state is already in an extremely critical situa-
tion, and the peak time near the door or passing. Learning from the
experiences of other high-index countries with robust health sys-
tems, the government and policy-makers of Texas need to be extra
vigilant and look for alternate, effective and aggressive measures
for limiting the catastrophic impacts of the contagion and protect-
ing the front-line workers. They risk their lives to provide essential
services.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/dmp.2021.151
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Appendix

All the supportive and supplementary results are presented in this
section.

Proof of Theorem 1

Proof. Equation (2.5) gives

dN
dt

¼ dS
dt

þ dIa
dt

þ dIs
dt

þ dR
dt

¼ L� �1ðSþ Ia þ Is þ RÞ � �2Is
¼ L� �1N � �2Is:

This implies

dN
dt � L� �1N: (A.1)

Hence, dNdt <0 whenever

L
�1

� Γ<NðtÞ:

Hence, this inequality claims that dN
dt is bounded by Γ.

Now, integrating the inequality in (A.1) and using the initial
condition, we get

NðtÞ � Nð0Þe��1t þ ð1� e��1tÞΓ: (A.2)

Now, when t ! 1, we obtain NðtÞ � Γ asymptotically.
Thus it has been established that, all components of the solution

of Equation (2.3) are positive and bounded in the closed region.

Proof of Theorem 2

Proof. The Jacobian matrix of the system Equation (2.3) at the DFE
point is

J0 ¼
��1 �β1S0 �β2S0 0
0 β1S0 � ðσ þ �1 þ �1Þ β2S0 0
0 σ �ð�2 þ �1 þ �2Þ 0
0 �1 �2 ��1

0BB@
1CCA:

Then the characteristic equation gives the eigenvalues as

�1 ¼ ��1 ; �2 ¼ ��1 ;

and the other two eigenvalues are the roots of the following quad-
ratic equation

Cð�3Þ � �2
3 þ A�3 þ B ¼ 0;

where,

A ¼ ðσ þ �1 þ �1Þ þ ð�2 þ �1 þ �2Þ � β1S0

B ¼ ðσ þ �1 þ �1Þð�2 þ �1 þ �2Þ � β1ð�2 þ �1 þ �2ÞS0 � β2σS0

¼ ðσ þ �1 þ �1Þð�2 þ �1 þ �2Þ 1� β1ð�2 þ �1 þ �2ÞS0 þ β2σS0
ðσ þ �1 þ �1Þð�2 þ �1 þ �2Þ

� �
¼ ðσ þ �1 þ �1Þð�2 þ �1 þ �2Þ 1�R0ð Þ

Here, two possible scenarios can happen:
1. If R0 <1, then B obviously positive. Again R0 <1 indicates that

R0 <1

) β1ð�2 þ �1 þ �2ÞS0 þ β2σS0
ðσ þ �1 þ �1Þð�2 þ �1 þ �2Þ

<1

) β1S0
σ þ �1 þ �1

þ β2σS0
ðσ þ �1 þ �1Þð�2 þ �1 þ �2Þ

<1

) β1S0 þ
β2σS0

�2 þ �1 þ �2
<σ þ �1 þ �1

) β2σS0
�2 þ �1 þ �2

<ðσ þ �1 þ �1Þ � β1S0

) β2σS0
�2 þ �1 þ �2

þ ð�2 þ �1 þ �2Þ<ðσ þ �1 þ �1Þ
þ ð�2 þ �1 þ �2Þ � β1S0 � A

) 0<
β2σS0

�2 þ �1 þ �2
þ ð�2 þ �1 þ �2Þ<A:

Thus, A;B>0. Then Routh-Hurwitz criterion for polynomials
implies that DFE is stable.

2. IfR0 >1, then B obviously negative. Thus, Cð0Þ ¼ B<0. Again,
Cð�3Þ ! 1 as �3 ! 1. SinceCð�3Þ is a continuous function of
�3, hence by Bolzano’s theorem on continuous function we have
Cð�iÞ ¼ 0 for some �i >0. Therefore, at least one eigenvalue of the
Jacobian matrix is positive. Hence, DFE point is unstable equilib-
rium point.

This completes the proof.

Proof of Theorem 3

Proof. The characteristic equation of the Jacobian matrix (3.9) at
the EE is

jJ� � �I j ¼ 0

where, I is an 4� 4 identity matrix; which gives,

ð��1 � �Þj�3 þ A�2 þ B�þ Cj ¼ 0

where,

A ¼ σ þ �1 þ �2 þ 3�1 þ �2 þ β1I�a þ β2I�s � β1S�

B ¼ σ�2 þ �1�2 þ 2σ�1 þ σ�2 þ 2�1�1 þ �1�2 þ 2�2�1

þ 2�1�2 þ 3�2
1 þ σβ1I�a þ σβ2I�s

þ �1β1I�a þ �2β1I�a þ �1β2I�s þ �2β2I�s
þ 2�1β1I

�
a þ �2β1I

�
a � σβ2S

� þ 2�1β2I
�
s

þ �2β2I�s � �2β1S� � 2�1β1S� � �2β1S�

¼ 2�1Aþ σ�2 þ �1�2 þ σ�2 þ �1�2 þ σβ1I�a
þ σβ2I�s þ �1β1I�a þ �2β1I�a þ �1β2I�s
þ �2β2I�s þ �2β1I�a � σβ2S� þ �2β2I�s
� 3�2

1 � �2β1S� � �2β1S�
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C ¼ σ�2
1 þ �1�

2
1 þ �2�

2
1 þ �2

1�2 þ �3
1 þ σ�2�1

þ �1�2�1 þ σ�1�2 þ �1�1�2 þ �2
1β1I

�
a

þ �2
1β2I

�
s � �2

1β1S
� � �1�2β1S� þ σ�2β1I�a

þ σ�2β2I�s þ �1�2β1I�a þ σ�1β1I�a
þ σ�2β1I�a þ �1�2β2I�s þ σ�1β2I�s þ σ�2β2I�s
þ �1�1β1I�a þ �1�2β1I�a þ �2�1β1I�a
þ �1�1β2I� þ �1�2β2I�s þ �2�1β2I�s þ �1�2β1I�a
� σ�1β2S� þ �1�2β2I�s � �2�1β1S�

¼ �2
1Aþ σ�2�1 þ �1�2�1 þ σ�1�2 þ �1�1�2

þ σ�2β1I�a þ σ�2β2I�s þ �1�2β1I�a
þ σ�1β1I

�
a þ σ�2β1I

�
a þ �1�2β2I

�
s þ σ�1β2I

�
s

þ σ�2β2I�s þ �1�1β1I�a þ �1�2β1I�a
þ �2�1β1I�a þ �1�1β2I�s þ �1�2β2I�s þ �2�1β2I�s
þ �1�2β1I

�
a þ �1�2β2I

�
s � 2�3

1

� �1�2β1S� � σ�1β2S� � �2�1β1S� :

Here, the first eigenvalue is negative, then the system will be
locally asymptotically stable if other 3 eigenvalues are all negative
or their real parts are negative. The other 3 eigenvalues will be neg-
ative or will have negative real parts if the Routh-Hurwitz criterion
is satisfied.

From Routh-Hurwitz criterion, we can say that the EE point is
stable if A>0; C >0 and AB>C. Therefore the EE of Equation (3),
which exists if R0 >1 is locally asymptotically stable.

12 MN Hassan et al.
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