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RANDOM TRANSITION PROBABILITIES
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Abstract

Random transition probability matrices with stationary independent factors define “ white
noise” environment processes for Markov chains. Two examples are considered in detail.
Such environment processes can be used to construct several Markov chains which are
dependent, have the same transition probabilities and are jointly a Markov chain.
Transition rates for such processes are evaluated. These results have application to the
study of animal movements.

1. Introduction

Markov processes provide useful models for a wide variety of natural phenomena.
However, in the biological setting the systems being modelled are often subject to
parameter variation through time. Examples in animal movements are given by
Chesson [2, 3] and in population ecology by May [9]. When parameter variation is
modelled as a stochastic process, one obtains a Markov process in a random
environment (e.g., Keiding {7]). It is clear that several processes which are
independent in a constant environment will generally be dependent in a common
random environment, and this fact must be a frequent cause of dependence
between processes in nature. This paper provides a simple means of modelling
such dependent processes.

Here we consider continuous time finite Markov chains in a random environ-
ment. The environmental variation is described by a family of random transition
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probabilities which have the property of infinite divisibility. As a result, the
processes which are conditionally Markov processes with these transition proba-
bilities, are Markov processes unconditionally. Moreover, if several processes are
conditionally independent and identically distributed with these transition proba-
bilities, then, unconditionally these processes will be dependent. Marginally, each
process is a Markov process, and the joint vector process is also a Markov
process. Thus, an environment process of this kind leads to very simple results.
Such Markov processes have application to the study of animal movements.

2. Infinitely divisible transition probabilities

A transition matrix is a k X k non-negative matrix with rows summing to 1.

DEFINITION 1. A random transition matrix P will be called infinitely divisible if,
for every n, it can be expressed as a product P, - - - P, where P,,...,P, are i.i.d.
random transition matrices.

By a family of random transition matrices we mean a collection {P(s,1),
0<s<t<oo} such that P(s,t) is a random transition matrix, the Chapman-
Kolmogorov equations

P(r,s)P(s,t) = P(r, 1) (1)
are satisfied for each realization of the process, and { P(s, t)} satisfies the regularity
condition

limP(s,t) =1 (2)
tls
Jor every s.

DEFINITION 2. A family of random transition matrices {P(s, t)} is said to have
stationary independent factors if, for every nand 0 <t, <t, < --- <1, P(t,, 1,),
P(1,, t3),...,P(t,_\, t,) are mutually independent and the distribution of P(s,t)
depends only on t — s.

Clearly, if { P(s, t)} has stationary independent factors, then P(s, ¢) is infinitely
divisible for every s and ¢ (s < t).

For every family of random transition matrices { P(s, t)} there is a stochastic
process X = {X(#), t = 0} such that, given {P(s, )}, X is a nonhomogenecous
Markov chain with transition matrix {P(s, +)}. Transition matrices of a nonho-
mogeneous Markov chain are commonly constructed as solutions to Kolmogorov’s
forward equation (Goodman [5]):

8,P(s,t) = P(s,t)B(1) (3)
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subject to P(s, s) = I, where elements b, () of B(¢) are the transition rates which
satisfy b,(1) <0, ,;(1)=0, i #j, and Z;b, (1) = 0. The b, () are assumed
integrable in every finite interval. In the case k = 2 an explicit solution to (3) can
be found and to express this we define

(1) = -bu(1), B(0) = exp{ ['(b1() + by(w) du
and
pi(s, 6) = 1= [B(O]™" ['B(u)bi(w) du. “)
We then have

_ pi(s, 1) 1—p(s,1)
P(s”)‘[l—h(s,z) o) |

A family of random transition matrices can also be constructed using the
differential equation (3) starting with a matrix valued stochastic process { B(¢)}
satisfying a.s. the above conditions on transition rates. However no family of
random transition matrices with stationary independent factors can be found as a
solution of (3). To see this we note from Goodman [5] that a solution of (3) will
be continuous in s and ¢ and 0 < det P(s, ¢) < 1. Using the stationary indepen-
dent factor property, and equation (1), it is easy to see that —logdet P(s, ) =
Z(t) — Z(s) where {Z(t)} is a process with nonnegative stationary independent
increments. The process {Z(¢)} necessarily has jump discontinuities (Breiman [1])
which contradicts the continuity of P(s, ¢). Thus other methods must be found to
define a family with stationary independent factors. However in the examples
below we shall see that an equation very much like (3) is satisfied in a certain
sense,

ExaMPLE 1. An elementary example of a family with stationary independent
factors is given by

P(s, 1) = exp{Q[A(1) — A(s)]} (5)

where A is a right-continuous process with stationary independent non-negative
increments and @ is a matrix with non-negative off diagonals and zero row sums,
i.e., @ is a matrix of transition rates for a homogeneous Markov chain. A process
that is conditionally a Markov chain with transition probabilities (5) is uncondi-
tionally a homogeneous Markov chain and is called a subordinated process
(Feller {4]).
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EXAMPLE 2. A more interesting example of a family with stationary indepen-
dent factors can be given for k = 2 as follows:

Let q(t) = (q,(2), g,(¢))’, t =0, be a right-continuous non-negative bivariate
process with stationary independent increments. Define g(1) = Vq(¢), B(t) = €99

and
- B(1) — B(r—h)
*(¢t) = lim , 6
A1) rio q(2) —q(t —h) ©)
where the ratio is interpreted as e9“) if g(¢) = q(¢t — h). For i = 1,2 define
pis,)=1=[B]" [ prdg,. (7)
(S’,]
The integral in (7) is Lebesgue-Stieltjes and we define
, 1 1 - , 1
P(S, t) — pl(s ) pl(s ) (8)
1=py(s, 1) pas, 1)

LEMMA. The family {P(s,t)} defined by (8) is a family of random transition
matrices with stationary independent factors.

PROOF. Let %(s, t) be the o-field generated by {q(u) — q(v), u, v € (s, 1]},
then P(s, ¢) is F(s, t)-measurable. To see this note that

(B [ prda,= lim [BO]" [ Brdg, ©)
where

Br(u) = (e — e97) / (q(u*) — q(u)),
with u* = min(¢,[nu + 1]/n), u"= max(s,[nu — 1]/n) and [x] being the integer
part of x. The R.H.S. of (9) is certainly % (s, t)-measurable. The limit exists for
each sample path of the q process and equals the L.H.S. showing that P(s, t) is
%(s, t)-measurable. It follows that P(t,, t,),...,P(2,-,, t,) will be mutually inde-
pendent whenever0 < ¢, < ¢, < --- <{,.
Now

Brdq, + [ prdg,=[ Brdg=B(r) — B(s), (10)
(s,1] (s,t] (s,1]

which can be seen from the fact that 8* and ¢ have discontinuities at the same
points and the contribution to the integral from the discontinuity at a point u is
B(u) — lim, o B(u — h). Using (10) we see that 0 < p,(s,¢) <1 and therefore
P(s,t) is a random transition matrix. Equation (10) also implies the Chapman-
Kolmogorov equations (1), and the final requirement (2) is clear from the integral
representation.
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The striking resemblance between (4) and (7) suggests that (8) may be a
solution to the stochastic differential equation

dP(s,t) = P(s, t)dQ(t) (11)
subject to P(s, s) = I, with
_-a(t) ()
o() ‘[qzm —qz<r)]'

Indeed Example 2 can be interpreted as a solution of (11). To see this we note
that

1B*(u) — 1|< e’ —1 forO<u<h

and therefore

BOY|[ Brda = [ da] = (1 = o®)alh) = oa(h).

It follows that
P(0, h) — I'=Q(h) + o(q(h));
and this result quite trivially extends to give

P(r,t+h)—1=Q(t+h)— Q1) + o(q(t + k) — q(1))
for ¢ = 0. Combining this with (1) we get

P(s,t+h) = P(s,1) = P(s,1)[Q(¢ + k) — Q(¢)] + o(q(r + h) — (1))
(12)
which is a possible interpretation of (11). It is not difficult to see that Example 1
also satisfies (12) with Q(¢) = QA(z). In both examples we see that dQ(¢) has the
interpretation as a matrix of transition rates. With this interpretation it seems

likely that Example 2 exhausts the useful examples that might arise in practice for
k = 2. Example 1, however, is highly specific.

3. The mean of a family with stationary independent factors

An infinitely divisible random transition matrix P has the property that
EP = (P,)" for some transition matrix P,, and every n. If EP is also non-singular,
it follows that (Kingman [8])

EP = exp(Q*)
where Q* has non-negative off diagonal elements and row sums 0. Applying the
bounded convergence theorem to (2), we have EP(s,t) » I as t]s, and hence
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that EP(s, t) is non-singular for ¢ sufficiently close to s. Thus, if {P(s, t)} has
stationary independent factors, we have

EP(s, t) = exp(Q*(1 — 5)) (13)
with
0* = lim EP(0,1) — r
£10 4

In Example 1, Q* can be calculated using the fact that the Laplace transform
of the process A can be written

e—Ax

log Ee™™M® = ¢ dp(x) (14)

[0,00) X
where the measure p satisfies [{o {1 + x)™' du(x) < oo (Feller [4]). The matrix
Q* can now be given as

Ox _
o* :'{o'w)e . Idp,(x). (15)

This result is proved by Nelson [10] as can be seen by noting that e, t = 0, is a
contraction semigroup in R*.
For Example 2 we evaluate Q* in the case when q is a generalized Poisson
process, i.e.,
N(1)
q(r) = E]U,, (16)
/=

where N(z) is a standard Poisson point process on [0, c0) with intensity g,
U,,U,,... is a non-negative i.i.d. bivariate process independent of the process N.

Writing
-q7 45

* = 17
¢ [q; —q;] (7)

and letting (U, U,)" have the same distribution as U,, we obtain the formula

U.
qF = pE(l — " “T) ———=. (18)
U+ 0,)

(Here the integrand is interpreted as zero for U, + U, = 0.) To see this we let 7,
be the nth point ¢ in (0, o0) for which N(¢) has a jump and let J, be the jump in
B(t) at 7,. We see that

1—-p,0,1)=E 3 J[B(1)UA]"'U, (19)
= E‘]l(jil[ﬁ(t)U;l]_l1(1-,<1<1'2) + g(1). (20)
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Now |g(1)|< EN(1)1(, <y = pt(1 — e7#) = O(t*). Thus, lim,_o t™'(1 — p,(0, 1))
= lim,_q t'EJU,[ B(1)U1] 1 1,< <.,y and since B(1) = eY! on {7, <t <1}
and U, is independent of 7, and ,, this leads to (18). A useful special case arises
when ¢, and ¢, are independent univariate generalized Poisson processes. The
bivariate process q is then generalized Poisson and (18) reduces to

¢ = p,(1 -~ Ee™?) 1)

where p, is the intensity of the process ¢, and U is the random variable giving the
jump size in q,.

4. Dependent Markov chains

Let {P(s,t)} have stationary independent factors. Each realization of the
process {P(s, t)} constitutes a family of regular transition probabilities for a
nonhomogeneous Markov chain X on (1,2,...,k}. It is not difficult to see that
there are processes X, ..., X, such that, given { P(s, 1)}, X|,..., X, are condition-
ally independent and each X; is conditionally a nonhomogeneous Markov chain
with transition matrix P(s, t). The initial distributions of these processes can be
chosen arbitrarily.

THEOREM. 1. Unconditionally, each X, is a homogeneous Markov chain with
transition rates Q*,1 = 1,...,n.

2. The vector process X = (X,,...,X,) is a homogeneous Markov chain.

3. If Q* is irreducible, then X,,...,X, are dependent processes unless P(s,t) =

exp(Q*(t — 5)) a.s.

PROOF. Let P(s, t) = (p;,(s, 1)), EP(s, 1) = (P, (s, 1)).
Now

P(X,(1) =jI X(u), u<s)
= E[P(X,(t) = j1X(u),u<s,P(0,7),0 <0 <7< o0)| X(u),u<s]
= E[Px,(:),(s, )X (u),u< S]
= Py, (85 1)

because P(s, t) and { X,(u), u < s} are independent. This proves 1.
Given {P(s, t)} it is clear that X is a nonhomogeneous Markov chain with
transition matrix

(s, )= P(s,t) ® --- ®P(s, 1) = P(s, )"\ (22)

https://doi.org/10.1017/50334270000004215 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000004215

470 Peter L. Chesson (8l

It follows that {II(s, #)} has stationary independent factors. Hence, part 2 of the
theorem is a special case of part 1.
To prove 3 we note that

P(X,(1) = X, (1) =j1 X,(s) = X,(s) = i) = Ep%(s, 1) (23)

and since this cannot equal ( p, (s, 1))? for all ij, unless P(s, t) is non-random, X,
and X, are dependent. (The irreducibility condition ensures that X, and X, are
not restricted to disjoint subsets of the state space.)

For the examples of P(s, t) discussed previously, the transition rates for the
Markov chain X are quite simply calculated.

Consider Example 1 and for simplicity assume that Q is diagonalizable
(Q = GAG™', A = diag(A,,...,A,)). Then

P(0, I)["] = G["](eAA('))["](G-l)["]

and it follows that the transition rates for the Markov chain are given by the
matrix

G[n]I‘n(G—l )["]
where T, is the diagonal matrix with diagonal elements of the form

exp(()\,I A, +)\,n)x) — 1
f[o,oo) X

dp(x). (29)
For the second example, the considerations in Section 2 show that

n
limeE T[ [1 = p, (0
lim¢ jIzll [1-p,01)]

n
= lim 'EJP[ B()UN] " [T U, 15 <ramy
=1
n

= wE((1 - exp(-U, = 0))/(U + )Y T U, (@9)

i.e., the transition rate for (X, =i ) - (X, #1{),j=1,...,n, is given by expres-
sion (25). All other transition rates can be deduced easily from (25).

5. Applications

Consider n animals moving through k discrete areas and let X,(¢) be the area
occupied by individual / at time ¢. Given the environment, the animals’ move-
ments are ideally mutually independent (assuming there are no interactions
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between individuals) and are governed by the same probability laws because the
animals respond in the same way to environmental stimuli. Random fluctuations
in the environment cause random fluctuations in P(s, ¢). Examples 1 and 2 have
natural interpretations in this setting.

In Example 1, d4(t) is essentially a rate of movement of animals among all
areas; it represents uniform changes in the rate of movement for all areas and
may be interpreted as coming from variation in the environment of the animals
that affects all areas equally. In Example 2, dg,(¢) represents variation in the rate
of leaving area i. Since ¢,(¢) and g,(¢) can be arbitrarily related, the environmen-
tal variation represented by dg,(¢) and dg,(t) can affect different areas differ-
ently. For example it may promote congregation of animals in one area, during
one period of time, and in the other area during another period of time. Nothing
like this is possible in Example 1.

In a more general setting, the processes Xj,...,X, simply describe the move-
ments of n particles among k compartments which are subjected to environmental
randomness (Saunders [11,12]). Heuristically, the environment described by
P(s, t) can be said to be “independent at every instant,” and it is therefore a
“white noise” environment process. This is not to be confused with Gaussian
white noise (e.g. Hida [6]) that generates the Wiener process model of Brownian
motion. However both white noise processes have the property of “independence
at every instant.”
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