J. Functional Programming 2 (4): 437473, October 1992 © 1992 Cambridge University Press 437

MetaMorph — a formal methods toolkit with
application to the design of digital hardware

P.J. BRUMFITT
Logica Cambridge Ltd., Betjeman House, 104 Hills Road, Cambridge, CB2 1LQ, UK

Abstract

MetaMorph is a software tool that supports transformation and proof for an equational non-
strict functional language. It was developed as a vehicle for research into the synthesis of digital
logic, but is equally suitable for reasoning about functional programs. The theorem prover may
be used for verifying new reusable transforms and to assist the search for transformation
sequences having a constrained goal. The paper provides an overview of all aspects of the
project, and a brief discussion of its application to hardware.

Capsule Review

Digital circuit design is a natural application area for functional programming and formal
methods, since debugging hardware is difficult and hardware errors are very costly to fix.
MetaMorph is an interactive tool that helps a designer to develop functional circuit
specifications and prove them correct.

MetaMorph contains a transformation tool and a theorem prover. The overall circuit
development and proof is controlled by the user, with mundane details handled automatically.
This approach seems more practical than ‘post hoc verification’, where a theorem prover
attempts to verify a completed circuit design.

One of the most interesting features is the meta language, based on Prolog, for controlling
the overall proof strategy. The user can paste the sequence of steps logged for a transformation
into the meta language script, or edit the script directly. This increases the level of interaction
between the user and the proof system.

Much of the paper is about transformation and proof techniques that are applicable to
general functional programming problems. The later sections discuss the Macintosh
implementation and experience with applying MetaMorph to circuit design.

1 Introduction

MetaMorph is a software tool for formal reasoning about functional programs, which
was developed to support research into the design of digital hardware by
transformation of specifications. However, the tool itself and many of the techniques
could equally well be applied to development of software. MetaMorph brings
together a number of techniques, such as transformation and theorem proving, in a
novel way under the control of a graphical user interface and meta-language. The

https://doi.org/10.1017/50956796800000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000502

438 P. J. Brumfitt

aim of this paper is to provide an overview of all aspects of the tools, including the
motivation, theory, implementation and user interface, to show how these techniques
have been combined. A brief discussion of hardware is included to illustrate the
current application and to provide a context for discussing the results of practical
work using the tool.

The work was motivated by an interest in finding better ways of applying formal
methods to hardware design, since current approaches are so difficult to apply that
their use is mainly confined to safety and security critical systems, where the cost can
be justified. If such methods could be made easier to use they would also be of great
benefit in commercial VLSI design.

One formal approach to hardware development is verification, which involves
proving that a given circuit satisfies its specification. Unfortunately, the complexity of
modern chips leads to proofs which are beyond the capabilities of current automatic
theorem provers. The Boyer—Moore theorem prover for recursive function
specifications (Boyer and Moore, 1979, 1988) has been used successfully for hardware
design, but requires an increasing amount of guidance as proofs become more
complex. Specification languages based on set theory (Spivey, 1988) and Higher-
Order Logic (Gordon, 1985, 1986) allow more abstract specifications, but make
automatic proof even more difficult; the proof tools typically support the user in
decomposing a large proof, but require extensive guidance.

There is clearly an advantage in using the computer as design tool, so that the
relationship between a circuit and its specification can be captured during the design
process, in a form that can be used to guide a proof. Each step in the design process
generates a proof obligation, rather than leaving one unmanageable proof until the
end. Proof then becomes an integral part of the design process, rather than a post hoc
attempt to verify a design once it has been completed.

In particular, a circuit may be derived from its specification, by a sequence of
meaning-preserved transformations. There is an implicit proof if each transform has
previously been verified and the transforms are applied by a tool which allows only
correct manipulations. Transformation moves the emphasis from verifying individual
designs to verifying the design process. Proofs are therefore about transforms, rather
than about individual designs; the proof need be carried out only once and the proven
transform can then be re-applied to other similar problems. Such transforms may
form the basis of a library of reusable synthesis tools, each of which solves a
particular class of problem.

Although transformation is a good approach to design, it is not ideal in situations
where the goal is constrained in some way. For example, it may be necessary to
express a circuit in terms of pre-defined building blocks, such as the components of
a gate-array library, or to use particular instruction codes or state assignments to
allow interfacing with other devices or to achieve upward compatibility with previous
designs. When the circuit is highly constrained, it becomes difficult to guide the
transformation towards the goal, because it is difficult to foresee all the implications
of earlier steps. In these situations, proof may be more appropriate.

Proof and transformation involve essentially the same mathematical steps, but
applied in a different order. For example, showing that two given expressions, A and

https://doi.org/10.1017/50956796800000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000502

MetaMorph — a formal methods toolkit 439

B, are equal involves a proof that A = B; on the other hand, if B is unknown, it may
be derived from A by a sequence of transformation steps. The distinction between
proof and transformation is therefore a little blurred; they may be thought of as the
two ends of a spectrum, corresponding to B being completely constrained or
completely unconstrained. Between these two extremes, there are interesting
possibilities for a hybrid strategy, in which the result is partially constrained. For
example, the user may guide the transformation process by specifying patterns which
the result must match.

This view of proof and transformation, as the ends of a spectrum, allows the overall
design process to follow a transformational style, whilst accommodating constraints
on the solution by using proof on particular sub-problems. The lesser complexity of
a sub-problem is often such that an automatic proof is entirely feasible.

MetaMorph is based on the philosophy outlined above. It supports a trans-
formational design style, complemented by a theorem prover which can verify new
transforms or tackle constrained sub-problems by proof. The use of partially-
constrained transformations is an area of continuing research, but even a prototype
implementation has led to a significant improvement in the ease and reusability of
transformations.

2 The specification language
2.1 Introduction

MetaMorph provides the user with two languages. The object language serves the
dual rdle of a specification language and a hardware description language. The meta
language is used to manipulate the object language by performing transformations
and proofs.

The object language is an equational polymorphically-typed functional language
with pattern matching. It has been based on an extended subset of Miranda' (Turner,
19854, b), so that the Miranda compiler can be used to execute specifications to allow
experimentation at an early stage in the design cycle. It is similar to the Miranda-like
language described by Bird and Wadler (1988) and enforces their constraint that
definitions with multiple equations may not have overlapping patterns. The main
extension to Miranda is to allow the definition of operators, so that a specification is
self-contained with an explicit definition of all functions (except equality).

Specifications consist of definitions of types and functions over those types. For
example, the type stack (of items of some generic type ‘ *’) and its operations pop and
top may be specified as:

stack x == Newstack | Push * (stack *),
pop (Push a x) = x;
top (Push a x) = a;

This constructive style of specification is more restricted than specification languages
based on set theory (Spivey, 1988) or predicate logic (Gordon, 1985, 1986). However,
this makes it possible to execute specifications, to assist with their validation, and

! Miranda is a trademark of Research Software Limited.

https://doi.org/10.1017/50956796800000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000502

440 P.J. Brumfitt

makes proof easier to automate. Since the overall aim is not simply to produce elegant
specifications, but to produce formally-proven designs from validated specifications,
functional languages are considered to be a good compromise between elegance and
practicality.

MetaMorph has a minimum of built-in types and functions. In particular, there are
no built-in operators or functions, except the definition of equality. This approach
results in specifications which are largely self-contained and make few assumptions
about the semantics of the language. Algebraic types are predefined for lists, tuples
and numbers solely so that special syntax can be used to represent them; other types
{even booleans) are user defined.

The equality function is built-in so that it can be overloaded for different types
(whereas user-defined functions may not) and so that the definition of equality can be
inferred automatically for new types. Rather than force the user to accept this built-
in definition, MetaMorph defines the function ‘if_equal’, which the user may
optionally use to define the ‘ =’ operator:

if_equal:* > % — x% > %% > x%;

(x=y)=if_equal x y True False;
The function if_equal returns its third or fourth argument, depending on the equality
of the first two arguments, rather than returning a boolean value. This avoids the

need to make bool a built-in type and allows the user to provide an alternative
definition of bool.

2.2 Defining functions
Functions are defined as sets of equations such as:

map f[1=1];
map [(x:xs)=f x:map [xs;
Operators are defined similarly:

True vx =True;

False v x=x;

True and False are constructors which are introduced by a type definition; they may
be thought of as constants which simply have no defining equations and therefore
never get unfolded.

The precedences and associativities of operators are currently predefined, but
include both Miranda and Bird-Wadler variants. For example, negation can be
denoted by ‘~’ or ‘=",

The original equations may be thought of as axioms, with all variables having
implicit outermost universal quantification over their inferred polymorphic types; the
logic has no existential quantification.

For example, the definition of ‘v’ is equivalent to the following axioms:

¥x=bool. True vx = True
¥x:bool. False vx=x.

https://doi.org/10.1017/50956796800000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000502

MetaMorph — a formal methods toolkit 441

The universal quantification is implemented by type checking. Each definition also
generates an additional axiom for the inferred polymorphic type of the function:

Vv =bool - bool— bool.

Function definitions may be curried, allowing application one argument at a time.
Constants are simply a special case of functions, with zero arguments.

When a function is defined by more than one equation, MetaMorph enforces Bird
and Wadler’s (1988) rule that the patterns must be non-overlapping. Each equation
defines a partial function; when these partial functions are disjoint, they may be
asserted as independent axioms. This allows individual equations to be used in
transformation and proof, without considering whether any other equation applies.

For example, the following is valid in Miranda, but not in MetaMorph because it
could be used to derive True= False:

nasty 0 = True;

nasty x = False;
Once a valid definition has been made, it is quite alright to transform it into
overlapping equations, since their meanings must be the same when they overlap.

A number of tests are performed to ensure that each new function definition forms

a conservative extension.? In particular, definitions must be well-formed (including
correct typing), define a new constant which is not already defined and all variables
in the right hand side must appear in parameters on the left hand side. For simplicity,
variables may not be repeated on the left-hand side of a function definition.

Consider the definition
X = X,

This is compiled into the following axioms:

x=bool

X = X

Such a definition may lead to non-convergence, but cannot introduce a contradiction.
In particular, the definition does not give rise to the axiom

Vx=bool.x=-x.

The identifier x in the definition simply has the value L

bool”

2.3 Defining types

MetaMorph supports algebraic type definitions, type synonyms and type speci-
fications. Algebraic type definitions take the form

stack * == Newstack | Push * (stack x);

2 A conservative extension is one in which every model! of the specification up to the point of extension
is also a model of the specification after the extension. This means that new definitions can be added,
but extra constraints may not be placed on existing definitions.

https://doi.org/10.1017/50956796800000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000502

442 P. J. Brumfitt

This is compiled into the following axioms:

Newstack = stack *

Push:=x — (stack %) — (stack *).

Tests are performed to ensure that the new type definition forms a conservative
extension. In particular, the type constructors and type name must not have been
defined previously and all the type variables in the type definition must appear as
arguments.

The polymorphic type checker is implemented as a theorem prover for a formal
system of type inference rules. Any correct typing, of the form X=1, is then a theorem
in that system. The theorem prover infers the type of each function (or constant)
defined, so that explicit type declarations are not needed.

The formal system, which is derived from that of Cardelli (1987), has a single axiom
schema:

XethXa1

and a set of type inference rules. For example, the rule for a function application is

Af:c>1 AbFx:=0o
Afx=t)

The theorem prover infers the most general type for each function as a theorem. For
the stack example given earlier we obtain

 top= (stack *) — *
 pop=(stack *) — (stack x).

The type of a function with multiple defining equations is obtained by unifying the
types inferred for the partial functions given by each individual equation.

Type specifications may be used to constrain the type of a function to an instance
of its inferred type. For example:

idn = num— num,

idn x = Xx;
This definition leads to the axiom
Vx=num . idn x = x

instead of the more general
Vxax , idn x = x.

This is clearly valid, because any proposition p, which is true for all elements of a type
t;, must also be true for any subset t, of that type:

Vx=t, . p(x) A t, St =Vx=t,-p(x).

The type system is restricted to shallow types, these being ones in which quantification
of the type variables occurs only at the outermost level. This restriction, which is

https://doi.org/10.1017/50956796800000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000502

MetaMorph — a formal methods toolkit 443

common in functional languages (Milner, 1978), does not seem to be a significant
practical limitation. However, there are certain definitions which cannot be typed,
such as

fx=xx

2.4 Numbers

MetaMorph has been designed to have a minimum of built-in types. However, some
types must be built-in because they involve special syntax. Numbers are a special case
which deserve further discussion.

Algebraic types in MetaMorph may be finite enumerated types or infinite recursive
types. This allows a uniform approach to proof, involving case analysis and structural
induction. An important consequence is that the natural numbers cannot be defined
as an enumerated type with an infinite number of constructors (ie: 0,1,2,3,...).

Natural numbers have a recursive type definition, which is equivalent to:?

num==Q0 | S num;

where ‘S’ is the successor function of Peano arithmetic.
MetaMorph converts between an external representation using numerals and an
internal representation using successors, so that this is invisible to the user.
Functions on numbers may be defined as follows:
even 0 = True;
even 1 = False;
even (n+2) = even n;
This notation is compatible with both Miranda and Bird—Wadler. The definition is

equivalent to:
even 0 = True,

even (S 0) = Faise;

even (S(S n)) = even n;

MetaMorph does not provide built-in definitions of even the most basic arithmetic
operators. Addition and multiplication are normally defined by the user as follows:

0 + n=n
(m+1) + n=(m+n) + 1;

0 x n=0;

(m+1) x n=mxn + n

The symbol ‘ +° is overloaded, being both the addition operator and the successor

3 Bold type is used as a reminder that ‘O’ and ‘S’ are not symbols of the concrete syntax.

https://doi.org/10.1017/50956796800000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000502

444 P. J. Brumfitt

constructor (when followed by a numeric constant). The definition of addition is
therefore equivalent to:
0 + n =n;

(Sm) + n =S8 (m+n)

A limitation of the successor representation is that it is only possible to use small
constants in specifications and that evaluation of arithmetic expressions is very slow.
A future enhancement could be to use integers internally, but to make them appear
to the theorem prover as if they used the successor function.

The use of Peano arithmetic also has some impact on the semantics of the language.
MetaMorph’s type num is the natural numbers, whereas for Miranda (and
Bird-Wadler) it is the integers. In particular, it is possible for MetaMorph to prove
theorems of the form:

Vn=num.p(n)

which are not true for negative numbers (i.c. under Miranda’s definition of num).
Consequently, it is important to realise that the semantics of a specification relate
to MetaMorph’s definition of num. If such specifications are run as Miranda
programs, they may terminate in situations where the specified value would be
undefined in MetaMorph.
Another semantic difference arises from the fact that num is not a flat domain. For
example, consider the following definition of the relational operator ‘ > :

0 >n = False;
(m+1) >0 = True,
m+1) > (n+1) =m > n

The expression ‘ L +1 > 0’ has the value True, whereas in Miranda it is undefined.*
Again, this is a minor point concerned with termination, but illustrates that the
MetaMorph semantics should be treated as definitive when interpreting a
specification.

Miranda’s type ‘num’ can represent integers and floating point numbers, whereas
MetaMorph is restricted to natural numbers. There would be a problem with the
semantics of equality if unwanted integer to floating-point type conversions could
occur when running MetaMorph programs under Miranda. However, floating-point
numbers can only be introduced in Miranda by using a floating-point constant or the
division operator ‘ /’. Since MetaMorph does not support either of these mechanisms,
the problem cannot arise.

3 Transformation
3.1 Introduction

MetaMorph is implemented on the Apple Macintosh computer and makes use of an
interactive style of working. A specification is initially entered in one or more source
windows and then compiled into a set of axioms as described above. The specification

4 1 is the undefined value, known as ‘bottom’ in denotational semantics.

https://doi.org/10.1017/50956796800000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000502

MetaMorph — a formal methods toolkit 445

may be extended by adding new definitions and compiling them, but the definitions
of existing functions cannot be changed, except by transformation.

A function is transformed by first opening a transform window, which displays the
type and defining equations for a single function; there may be any number of these
open at once. Transform windows cannot be edited directly by typing into them or
by cutting-and-pasting text. Transforms are applied by selecting an expression with
the mouse (where appropriate) and then choosing a transform from a menu.
Alternatively, the meta-language can be used to select expressions and apply
transforms.

MetaMorph provides a few primitive transforms, such as folding and unfolding
(Burstall and Darlington, 1977; Darlington, 1981), as built-in rules of inference. The
user may build more powerful transforms either by writing meta-language programs,
which invoke lower-level transforms, or by proving theorems which may be applied
as transforms.

3.2 Folding and unfolding

Referential transparency allows an application of a function to be unfolded by
replacing it with the body of the definition with the arguments substituted for the
formal parameters. Conversely, a function may be introduced into an expression by
folding the expression with the definition. In other words, a definition may be used as
a left-to-right or right-to-left rewrite rule.

When definitions involve multiple equations, any equation may be used in isolation
as a rewriting rule, because the equations must describe disjoint partial functions or
else have been derived in such a way that they are equal where they overlap.

Type checking is needed to ensure that folding does not lead to erroneous results.
For example, it is not permissible to fold the number ‘7’ with the definition of the
function ‘pop’ as follows:

pop (Push a x) = x; || original definitions
y=1

y = pop (Push a 7) | Invalid result of folding.

This example also illustrates another problem with folding; it may introduce a new
variable (in this case ‘a’). MetaMorph requires that such a variable is instantiated
with a value of the correct type. The type constraints on folding are necessary to
satisfy the quantifiers in the definition of ‘pop’

Va=*.VYx=stacks.pop(Push a x) = x.

Unfolding does not require type-checking, since the type rules ensure that all sub-
expressions of a correctly typed expression are also correctly typed. Also, unfolding
cannot introduce new variables, because the definition rule requires that all variables
in an equation must be introduced by its parameters.

Unfolding usually has a single solution, because function definitions must have

https://doi.org/10.1017/50956796800000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000502

446 P. J. Brumfitt

non-overlapping equations, whereas there are many ways of folding a given
expression. For example, any expression can be folded with the function

idx = x;

MetaMorph requires a pattern to be specified which is sufficient to uniquely
distinguish the solution. This is normally the name of the function followed by meta-
variables (denoted by B1, B2, ...) as its arguments. If more than one fold is possible,
the user is prompted with a dialogue which allows a choice among them.
Consequently, it is a good idea to ensure that only one fold is possible, when a fold
appears in a meta-language script, as this further dialogue will interrupt the script,
requiring user intervention.

An evaluate command is also provided, which causes a selected expression to be
evaluated, using either a lazy or eager reduction strategy. Evaluation is simply
equivalent to applying unfold repeatedly, until the expression can be evaluated no
further.

3.3 Instantiation and enumeration

Instantiating a variable in an equation produces a new equation, which is a special
instance of the original. The original equation is not deleted, since this would alter the
domain of the function.

A related operation is enumeration, which replaces an equation by a set of
equations with a specified variable replaced by terms built using each of the possible
constructors for the type of the variable. Thus there are as many equations as
constructors for the typc and a single equation is replaced by a set of partial functions
whose domains partition the original function domain.

For example, the definition

Jxy=y:x
may be enumerated with respect to x, as follows:

S y =Dl
f@lv2)y = y:vl:v2;

The cases are derived automatically from the algebraic type definition of the type of
the selected variable; in this case, x has the type [#]. New variables, such as v1 and
v2, are introduced automatically where a constructor requires arguments.

The inverse operation, called generalisation, combines a set of equations into one,
provided that the partial functions partition the domain of the new function and that
each of the equations is an instance of the new equation.

Enumeration and generalisation guarantee only partial correctness. In particular,
enumeration can introduce non-termination and generalisation can remove it. For
example

fTrue =10

fFalse =0

https://doi.org/10.1017/50956796800000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000502

MetaMorph - a formal methods toolkit 447

can be generalised to
fx=0

which is non-strict whereas the original definition is strict. To ensure total correctness,
the following additional equation would be required before generalising

f1L=0

where ‘ 1’ is the undefined value (bottom).

3.4 Transformation logging

Each step of a transformation or proof'is logged in a window known as the Proof Log,
if logging is turned on. The following example shows the log entries generated by the
definition of a new function ‘g’ and the subsequent transformation of an expression
involving ‘g’:

gl) ...gfxy=fxy

g(x)xy
=Xx Xy ...g(1)
=y X X ...comm_times

=g(x)yx ..g)

Each equation is identified by the function name followed by the equation number in
parentheses. Steps of the transformation are annotated with the name of the function
or theorem used for rewriting. The log does not state whether the step involves folding
or unfolding, as this is obvious by inspection.

Transformations and proofs are also logged in the Command Log window, in the
form of meta-language statements, which can be executed to repeat the operations.
This log is discussed further in the section on the meta-language.

3.5 Laws

The term /aw is used to refer to a theorem which states the equivalence of two
expressions. For example:

Bx + By =By + Bx ...comm_plus
Ba Bb) Be~Ba (Bb Bo) ...assoc_append
reverse (reverse Ba) ~ Ba ... reverse_reverse

map Bf (map Bg Bx) ~ map (Bf.Bg) Bx ...map_map

where the functions have their usual definitions (see appendix).
The symbol ‘ 22 denotes equivalence to avoid confusion with the equality operator
=", Each theorem is given a name, introduced by an ellipsis.

3

https://doi.org/10.1017/50956796800000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000502

448 P.J. Brumfitt

Variables which start with ‘B’ are called meta-variables. They have implicit
outermost universal quantification over their inferred polymorphic type. Thus the
theorem reverse_reverse is equivalent to:

Va=[*]. reverse(reverse a) = a.

Laws may be used as rewrite rules in a similar way to equations. This involves type
checking and instantiation of any new variables with an explicit value of the correct
type, to satisfy the quantifiers.

3.6 Joining

Laborious sequences of primitive fold and unfold operations can often be automated
by the use of the join transform. Join prompts for an expression with which to replace
the current selection in a transform window. MetaMorph attempts to show that the
expressions are equivalent using the theorem prover. At present, only proofs by
symbolic evaluation are attempted, although these may make use of theorems as well
as equations.

Joining allows proof to be used on sub-problems within an overall transformation.
It also supports transformation towards a partially-constrained target expression, by
using meta-variables within the expression.

A simple example of joining is illustrated using the following definitions:

twice x = X + Xx;
y = map twice [1,2,3];
It is possible to select the expression map twice [1, 2, 3] with the mouse in a transform

window and replace it, simply by typing the required expression |3, 2, 1]. This leads to
the following entry in the proof log:

map twice [1,2,3]

= map twice (1:2:[1 + [3]) (D
= map twice (1:[2] + [3]) e H 2
= map twice (1:([] + [2]) + [3]) w1
= map twice ((1:[] + [2]) + [3]) e H(2)
= map twice (1] +# [2]) #+ [3]) e H Q)
= map twice (([1 # (1) + (2D + [3]) o H (D)
= map twice (((reverse [] +# [1]) + [2]) # [3]) ... reverse(l)
= map twice ((reverse [1] + [2]) + [3]) ... reverse(2)
= map twice (reverse [2,1] +# [3]) ... reverse(2)
= map twice (reverse [3,2,1]) ... reverse(2)

This example would be quite laborious to do manually using just folds and unfolds.
A powerful feature of joining is that it is possible to use a target pattern with meta-
variables standing for arbitrary expressions. For example, the expression

[(1,2,3), (4,5,6)]

https://doi.org/10.1017/50956796800000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000502

MetaMorph — a formal methods toolkit 449

may be redefined using the template

reverse [B1,32]
instead of the full result
reverse [(4,5,6), (1,2,3)].

In a practical example, the sub-expressions represented by B1 and B2 might be very
large. The use of meta-variables not only saves a lot of typing, but also makes it
unnecessary to know the exact result of the transformation in advance.

The target expression must contain sufficient detail that it matches the selected
expression when both are symbolically evaluated. For example, the template

reverse B1

would not work, because there is no equation for reverse which allows ‘reverse 31’
to be unfolded so that it matches [1, 2, 3].

A further important advantage of using meta-variables is that the entry in the
command log makes the minimum commitment to the expression to which it can be
applied:

:- ‘Redefine’ (“‘reverse [81, B2]”).

This command can be re-run on any list of two elements, whereas a fully-instantiated
version would only be applicable for a specific problem.

4 Proof
4.1 Introduction

MetaMorph allows outermost universal quantification of variables, but no existential
quantification. Universally-quantified variables are denoted by symbols with the
prefix ‘B’, as discussed above. For example, the theorem

Vizx— % VX, y=[*].map f (x # y) = map fx + map fy
is written as
map Bf (Bx + By) ~ map Bf Bx + map Bf By.

Proofs are always carried out either by symbolic evaluation or by structural
induction. The principal decisions to be made in automating the proof are the lemmas
needed to support the proof, how to generalise the induction goal and the choice of
variable over which the induction is to be performed. Similar considerations have led
to the success of the well-known Boyer-Moore (1979, 1988) theorem prover, which
has been the source of many useful ideas. ’

4.2 Proof strategy
MetaMorph attempts to prove a theorem as follows:

(i) It checks whether the conjecture is an instance of any existing theorem and
therefore does not need proving. A useful outcome of this is that a meta-
language script for a sequence of proofs may be interrupted and then re-run;

https://doi.org/10.1017/50956796800000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000502

450 P. J. Brumfitt

the proofs which have already been carried out are skipped over quickly until
the first new theorem is reached.

(ii) If this fails, a proof by symbolic evaluation is attempted, by reducing both
sides to the same normal form. This reduction makes use of previously
proved theorems as well as function definitions.

(iii) If this fails, a proof by structural induction is attempted (Burstall, 1969),
using the type of the induction variable to determine the base case(s) and
induction step(s). Simple enumerated types, such as bool, are treated as trivial
cases of induction with multiple base cases and no induction step.

The theorem prover requires the user to prove a set of theorems in the right order,
so that any theorem is preceded by proofs of any supporting lemmas. Heuristics are
used to prevent application of previous theorems which may cause non-termination.
In particular, permutative theorems, such as commutativity, are only applied if they
improve the lexicographical ordering of terms. This follows the approach adopted by
Boyer and Moore. Automation of more complex proofs will require more complex
heuristics to limit the theorem prover’s attention to relevant theorems.

The user must also ensure that each conjecture is sufficiently general to allow proof
by induction. If the conjecture is too specific, the induction hypothesis may be too
weak to support the conclusion. This has the useful side-effect of forcing us to prove
theorems which are more likely to be reusable as transforms.

4.3 An example

This example illustrates the use of the theorem prover in proving the equivalence of
two definitions of the factorial function.
The object of this example is to show that

Sfactorial Bx =~ fac Bx 1
given the following definitions

factorial 0 =1
factorial (n+1) = (n+ 1) x factorial n;

fac 0k = k;

Jac (n+ 1)k = facn((n+1)xk);
The first definition is the standard recursive definition, whilst the second is a tail-
recursive version using an accumulating parameter. Elimination of non-tail recursion
is a common problem in hardware synthesis, since tail-recursion (i.e. iteration) is used
to describe feedback loops in circuits.

The following lemma may be proved by induction and then used to derive the

required result trivially:

Jac Bx Bn ~ Bn x (factorial Bx).

This lemma is a generalisation of the original conjecture, with the constant ‘1’
replaced by a variable. This is necessary to allow a proof by induction to succeed.

https://doi.org/10.1017/50956796800000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000502

MetaMorph — a formal methods toolkit 451

This lemma is simply typed into a dialogue box, together with a name for the
theorem, such as fac_lemma. The lemma is proved automatically and the following
entry generated in the proof log:

Proof of fac_lemma : fac Bl B2 ~ B2 x factorial Bl

Jac 0 ©1

= Ol . Jac (1)
=01 +0 ...plus_zero
=01+ 01 x 0 ... times_zero
=0l x 1 ... times_succ
= &1 x factorial 0 ...factorial(1)

Induction case proved

fac (O1+1) O2

= fac O1 (C1+1) x O2) ... fac(2)

= (Ol+1) x ©2 x factorial O1 ...assumption
= factorial &1 x ((O1+41) x O2) ...comm_times
= (O1+1) x (factorial &1 x O2) ...comm_times2
= O1 x (factorial O1 x O2) + factorial &1 x 02 ... x(2)

= Ol x (O2 x factorial O1) + factorial O1 x O2 ... comm_times
= O1 x (02 x factorial O1) + O2 x factorial O1 ...comm_times

= O2 x factorial O1 + O1 x (O2 x factorial &1) ... comm_plus
= 2 x factorial O1 + &2 x (O1 x factorial &S1) .. comm_times?2

= 02 x (Ol x factorial SG1) + O2 x factorial OV ...comm_plus

= 2 x (©1 x factorial O1 + factorial O1) ...dist_times_plus
= 02 x ((O1+1) x factorial O1) o x(2)

= O2 x factorial (O1+1) ...factorial(2)

Induction case proved

Proof by induction successful.
The proof is by structural induction and involves a base case:
fac 0 &1 = O1 x factorial 0

and an induction step:

fac ©1 O2 = O2 x factorial &1
fac(O1+1) O2x &2 x factorial (O1+1)

where the symbols &1, ©2, ...denote constants.
The theorem prover determines the cases automatically from the algebraic type
definition for ‘num’.

17 FPR 2

https://doi.org/10.1017/50956796800000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000502

452 P. J. Brumfitt

Having proved the lemma, it is trivial to prove the required result:
factorial Bl ~ fac B1 1.
The resulting proof is logged as follows:

Proof of fac_equivalence : factorial Bl = fac B1 1
factorial &1
= factorial &S1 + 0 ...plus_zero
= factorial &1 + 0 x factorial O1 ... x (1)
= 0 x factorial Ol + factorial O1 ...comm_plus
=1 x factorial &1 ... X(2)
= fac O11 ...fac_lemma
Proof by symbolic evaluation successful.
This proof is by symbolic evaluation, rather than structural induction. It involves
instantiating Ba with 1, in the lemma, and simplifying both sides. Note that the proof
log presents proofs in a transformational style, transforming the left-hand-side into
the right-hand-side, rather than reducing both to a common form.

Once the theorem has been proved, it may be applied as a transform, to rewrite
expressions. For example
Sactorial (x+y)
may be transformed into
Jac (x+y) 1.

The above proofs make use of the following theorems from the MetaMorph standard
theorems library:

plus_zero Bx+0 =~ Bx

comm_plus Bx+By ~ By + Bx

times_zero Bxx0=0

dist_times_plus Bx x (By +Bz) ~ (Bx x By) + (Bx x Bz)

times_succ Bxx(By+1)~ Bx+Bxx By

comm_times BxxBy = By x Bx

comm_times2 Bx x(By xBz) ~ By x (Bx x Bz)

The meta-language start-up script typically loads a set of standard functions and
proves a number of useful theorems such as these.

5 Validation
5.1 Introduction

The discussion has so far focused on deriving implementations from a specification,
which is assumed to be a correct statement of requirements. However, in the overall
justification of the safety or security of a system, it is just as important to be able to
validate the specification. Unfortunately, although formal specifications should be
unambiguous, they may still be quite complex and difficult to understand. The

https://doi.org/10.1017/50956796800000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000502

MetaMorph — a formal methods toolkit 453

specification of a complex chip, such as a microprocessor, typically requires about ten
pages of equations.

An important feature of the current approach is that the specifications are
executable as Miranda programs, allowing the behaviour of the intended system to
be observed. Conventional digital circuit simulation is unable to test more than a
small fraction of the behaviour of a typical system. However, the transformation
tools support symbolic reasoning, which may be used to explore the meaning of a
specification at a much higher level of abstraction. In particular, it is possible to use
the theorem prover to reason about the properties of a specification and to use the
theorem prover to reason about the properties of a specification and to use the
symbolic rewriting engine to animate specifications. These features are not yet fully
implemented in MetaMorph, but are sufficiently developed to warrant discussion.

5.2 Symbolic animation

The term animation refers to an abstract form of simulation, which allows the
operation of a system to be explored at a symbolic level, with a mixture of symbols
and concrete values. It overcomes the combinatorial explosion problem of
conventional simulation, by limiting the options to be considered at any one time.

Animation is achieved by partial evaluation, in which specified identifiers are
declared as symbolic constants which are not to be evaluated. The animation proceeds
to evaluate everything else, leaving the constants as symbols.

Another way of looking at this, is to regard certain identifiers as pseudo-
constructors, since constructors are simply identifiers which cannot be unfolded
further (because they have no definition). For partial evaluation we simply choose not
to evaluate an identifier, by ignoring its definition.

As an example of animation, consider a hardware block with four boolean control
inputs and a fifth numeric input “x’:

1 ——p
0 —»
1 —P f e x x X
0 —»
X ——p

Traditional simulation would require enumerating all the possible input cases, for
example 2% if ‘x’ is a 32-bit number. Symbolic evaluation allows the numeric input
to be left as a symbolic constant ‘x’. The output of the animation is a symbolic
expression involving ‘ x’, such as ‘ x x x°, which can be inspected for each of the values
of the four control lines. Animation operates at a higher level of abstraction than
conventional simulation, avoiding the need to enumerate cases which often makes
exhaustive simulation infeasible.
17-2

https://doi.org/10.1017/50956796800000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000502

454 P.J. Brumfitt

Another example of symbolic animation involves animating the operation of a
microprocessor, with the arithmetic operations such as ‘add’ treated as symbolic
constants. The processor may be animated adding 2 and 2 together, leaving ‘add 2 2°,
in the destination register. If the result were simply ‘4’, it would not be known
whether it was obtained by adding the numbers, multiplying them or doubling one of
them (see Fig. 1).

Registers
2 —P
2 P
-1 ALU
add 22
T add T
Control
Fig. 1.

With this approach, the data movement and control mechanism may be tested in
isolation, before starting to consider detailed operation of the instructions.

Symbolic animation is also of interest because it allows simulation of incomplete
specifications. A high-level specification may be written without initially defining all
of the low-level functions. Such a specification can still be animated if the undefined
functions are applied symbolically. Symbolic animation may be applied top-down by
progressively enabling successive layers of functionality, starting with a very abstract
(and efficient) simulation and ending with a very detailed concrete simulation of the
hardware.

MetaMorph allows an expression to be entered and evaluated in the environment
defined by the specification, although the performance of the rewriting engine is at
present only adequate to animate simple examples. Functions which are not to be
evaluated are replaced by type specifications as place-holders. A better approach
would be to associate a flag with each identifier to say whether it should be evaluated,
so that functions could be enabled and disabled without recompiling the specification.

5.3 Validation by proof

The ability to prove properties of specifications can be a considerable help in
validation. Such proofs can be used to show that a specification has certain expected
properties; for example, that there is no state of a system such that it does not respond

https://doi.org/10.1017/50956796800000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000502

MetaMorph - a formal methods toolkit 455

to a reset input. Such properties are typically propositions about the system, rather
than specifications of its functionality.

A good illustration of this idea can be found in the specification of security-critical
hardware such as encryption devices. The security properties to be satisfied are
typically propositions about the system, rather than functionality which can be
specified in an executable equational style. The specification of the system deals with
its functionality, i.e. what it does. The security properties, on the other hand, are
typically concerned with what it does not do.

Our constructive style of specification is well suited for specifying the functional
properties of a computational system. It is still possible to specify non-constructive
properties, albeit in a rather round-about way, using the techniques described by
Boyer and Moore (1979, 1988). It may be argued that ease of specifying these
properties is of secondary importance, since they are typically much shorter than the
specification itself.

The chief problem arises through the lack of existential quantification. For
example, it is difficult to state properties such as:

vV d=documents. Ju=users. can Access(u,d).

In some cases, the existential quantifier may be avoided simply by exhibiting a
suitable value. Where this cannot be done, it can be eliminated by Skolemisation.

Another difficulty with this form of logic is the notion of infinity. For example, it
is difficult to state the proposition that there are infinitely many messages. A
constructive solution, based on induction, is to state the existence of at least one
message and that for any given message there is a longer message:

- is_message [] A Vm=message.(3 (longer m) > #m)

where a message is simply a list of characters and the function # returns the length
of a list.

Notice that the statement of the proposition does not depend on providing a valid
definition of the function longer. If we subsequently provide an invalid definition, we
will simply not be able to prove the theorem.

In this example, we require a function which maps any message onto a longer
message:

longer m = ‘a’ : m;
The transformational design process preserves the meaning of specifications. It is
therefore important to consider whether transformation can violate any of the
properties of a specification.

One way in which refinement may introduce problems is if the specification is a
partial function. Any real implementation must clearly have some behaviour for all
possible inputs and must be described as a total function. A specification, on the other
hand, may be a partial function which says only what the system is supposed to do
in normal operation. Refining such a specification involves extending the domain of
a partial function; this introduces new behaviour which may violate the required
properties.

https://doi.org/10.1017/50956796800000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000502

456 P.J. Brumfitt

The same problem can also arise through data refinement, even when the
specification involves total functions. Data refinement can widen the source (type) of
a function and make a total function into a partial one.

For example, the source may be an enumerated type, such as

colour == Red| Green| Blue,

whereas, in a hardware implementation, the corresponding concrete data type would
typically be two bits, allowing four possible values. Data refinement operations
should therefore generate total functions which take any required properties into
account.

The MetaMorph theorem prover requires some extension to allow the proof of
more general propositions than transforms, before validation by proof can be
properly exploited.

6 Meta-language

The meta-language is the command language used for controlling MetaMorph. It
may be used to issue simple commands, such as setting the default font, or to write
complete programs for performing transformations and proofs, to extend the
functionality of the system.

The meta-language is a special dialect of Prolog, which has been customised for this
application. Prolog was chosen because it is well-suited for complex transformation
strategies involving heuristic search. The language provides a basic set of standard
Prolog predicates and a set of special Prolog predicates for controlling MetaMorph.
Strings are treated in a special way, so they can be used to embed object language
within the meta-language.

The following trivial example illustrates the use of the meta-language:

:- “Prove’ (comm_plus, “Bx+By = By+Bx").
- ‘Prove’ (comm_times, “Bx x By = By xBx").

- ‘Prove’ (comm_or, “‘BxvBy = ByvBx”).

‘Prove’ (comm_and, “BxaBy = ByaBx™).

commute - ‘Use theorem’ (comm_plus).
commute - ‘Use theorem’ (comm_times).
commute - ‘Use theorem’ (comm_or).

commute - ‘Use theorem’ (comm_and).

:- ‘Extend menu’ (‘Special’, commute,).

This script proves four commutativity theorems and then defines a command
‘commute’ which will try each of these theorems in turn until one is applicable.
Finally, the command is added to a menu called ‘special’. The user may then select
an expression with the mouse and then use the menu command commute on it.
MetaMorph is itself written in Prolog, with the meta-language implemented by an
interpreter. The underlying Prolog implementation of the tools is hidden from the

https://doi.org/10.1017/50956796800000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000502

MetaMorph — a formal methods toolkit 457

user, so that it is only possible to access the equations and theorems of the system
through the rules of inference made available as primitive predicates in the meta-
language. As a result, meta-language programs cannot introduce errors into a
transformation or proof, even if they contain errors.

The MetaMorph interactive user interface is implemented as a front-end to the
meta-language; menus and their associated dialogues generate meta-language
commands, rather than carrying out their actions directly.® As a result, all commands,
whether issued interactively with the mouse or textually as meta-language, can be
logged in a common format, which can be replayed as meta-language script.

The Command Log window records each top-level meta-language goal which is
executed. Nested goals are not logged, since they are automatically executed when the
top-level goal is replayed; logging all the goals would result in nested geals being
executed more than once. Commands can be cut-and-pasted from the log into a new
meta-language window and subsequently run as a script to repeat the transformation.
It is often useful to edit scripts, which have resulted from an interactive session, to
introduce a hierarchical structure built from reusable Prolog predicates. These
predicates may also be parameterised to increase their generality.

It is normal to define a start-up script, as a meta-language file, which customises the
user interface, reads in the specification and proves useful theorems.

7 User interface

The user interface follows the usual Apple Macintosh* conventions for menus and
dialogues.

The meta-language provides predicates for customising the user interface. The user
may add new menus and assign command-key aliases to menu items; each menu item
invokes a meta-language predicate having the same name. A dialogue builder allows
the user to define dialogues which are invoked by a menu. The responses to the
dialogue are passed to the meta-language predicate as arguments. The dialogue
builder allows the user to define default values for the dialogue responses. These
facilities make it simple to add an interactive user interface to any meta-language
program.

Only a few basic menus are installed when MetaMorph is started. The rewriting
rules are provided as meta-language predicates, but do not initially appear on the
menus. This gives the user freedom to customise the user interface to suit individual
requirements.

Because the menu interface operates via the meta-language, it is possible to log all
commands to the system, including menu and dialogue selections. The log is simply
a meta-language program which can be executed by the tools to replay an entire
sequence of definitions, transformations and proofs. Logging mouse selections is
more difficult, since simply logging the actual text selected is likely to be too context
sensitive to make the log reusable. We have therefore developed an algorithm which

® This does not apply to certain commands, such as ‘Cut’ and ‘Paste’, which are only used interactively.
* ‘Apple’ and ‘Macintosh’ are trademarks of Apple Computer Inc.

https://doi.org/10.1017/50956796800000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000502

458 P.J. Brumfitt

is able to log mouse selections as patterns, in which arbitrary details are replaced by
meta-variables. This is discussed below.

8 Tool implementation

The implementation of the tools is an important issue, because errors in the tools
could lead to errors in the designs produced by the tools. The philosophy which we
have adopted is to implement the tools as a declarative statement of the syntax,
semantics and type rules of the language, expressed in Prolog. This has been
reasonably successful, although pragmatic constraints, such as providing good error
messages, have sometimes required a compromise between elegance and practicality.

8.1 Type checker

The polymorphic type checker is implemented as a theorem prover for a formal
system of type inference rules. This leads to an elegant implementation in Prolog.
Consider for example, the rule for a function application which was introduced

above:
Af:6>1 Al x:=0
Afx=t '
This is encoded in Prolog as follows:
A /- F°X=T -
A /- F:=U,
A /- X=S,

unifies(U,S - T).

where /-, °, = and —» are defined as Prolog infix operators.

The principal difference between these two versions of the rule is that the Prolog
has explicit unification by the predicate unifies, which includes an ‘occurs’ check and
provides error handling.

8.2 Parser

The object-language parser is also implemented in a declarative style, using a Definite
Clause Grammar. Some transformation of the basic grammar was necessary to:

e generate the abstract syntax tree
e handle left recursion

e provide error handling

e reduce backtracking to allow better error messages
e include context-sensitive checks.

For example, the following fragment is taken from the grammar in the MetaMorph
manual:
construct— “(“construct™)” { argtype }

| constructor { argtype }.

https://doi.org/10.1017/50956796800000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000502

MetaMorph — a formal methods toolkit 459

This is implemented in Prolog as follows:

construct(T) —

res(‘("),construct(X),res(Yy),argtype_list(X,T).
construct(T) > constructor(X),argtype_list(X,T).

construct(_)— parse_error(‘Type construct expected).

argtype_list(F,C) — argtype(A),argtype_list(F° A,C).
argtype_list(F,F)—~> ‘",

9 Reusable transforms
9.1 Introduction

The advantages of transformation over verification become most apparent when
transforms are sufficiently general-purpose to be applied to a range of different
problems. Such transforms play the réle of synthesis tools, rather than problem-
specific proofs. As well as accommodating different problems, reusable transforms
make the design process more robust by being able to cope with changes to an
individual specification. In particular, changes to a specification should require only
minimal modifications to the transformation script.

Achieving this ideal of reusability depends upon guiding the transformation
process in a sufficiently abstract way to avoid unnecessary references to the features
of a particular problem. For example, meta-language scripts are not easily reusable
if they make reference to variable names and expressions which are arbitrary details
of a problem. One approach is to use a variable-free functional language, such as FP
(Backus, 1978; Sheeran, 1984).

The situation becomes more complicated when interactive working is considered.
An interactive transformation of a particular problem is likely to lead to a command
log which is highly-specific to that problem. Whilst it is possible to edit such logs
retrospectively, to improve their generality, it would clearly be better if the system
could generate a generalised log automatically. MetaMorph incorporates such a
mechanism, which is discussed below.

9.2 Generalising the problem

A common technique in solving mathematical problems is to replace the given data
by variables, solve the problem and then instantiate the solution with the data. The
simplest way to generalise a transformation is to replace, by a variable, any arbitrary
constant, function or sub-expression, which plays no direct réle in the transformation.
When the problem has been generalised in this way, what should remain is a skeleton
problem, with no irrelevant details. For a transform to be applicable, it is usually the
case that the expression to be transformed must have a particular structure. Within
that structure, there are arbitrary sub-expressions which play no réle at all in the
transformation.

https://doi.org/10.1017/50956796800000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000502

460 P. J. Brumfitt

The application of a transform usually involves selecting a particular expression
and then applying a transform to it. If the selection is logged literally, say as ‘x+ 4,
it is unlikely that the log can be replayed to transform other similar problems, since
the variable names may not match and arbitrary expressions may be different. We
have therefore developed a mechanism for logging patterns which records the
structural position of a selection, without reference to context-sensitive details.
Arbitrary sub-expressions are replaced by meta-variables; the pattern identifies the
selection by its structure, rather than its textual content.

For example, selecting the expression in bold roman type in

Jactorial 0 = 1,
factorial (n+1) = (n+1) x factorial n;

causes the following log entry, where B1,82, ... are meta-variables used to stand for
arbitrary expressions:

select(“n+17, “Bl = B2 B3 B4, “B37)

This means that an expression was selected in the position B3 when the pattern ‘Bl
= 32 B3 B4’ was matched against the equation. The position is B3, rather than B2,
because infix operators such as ‘ x’ are treated as (prefix) functions. The first
argument ‘n+ 1’ ensures that the right equation is selected, should the other patterns
match more than one equation of the definition.

The approach is further refined so that subsequent selections on the same equation
are logged as patterns relative to the last selection, using the predicate relative instead
of select.

This selection mechanism allows the user to operate on a particular problem, but
logs a generalised version of the transformation process. Whilst this is very helpful,
it is not perfect. In particular, the generalisation is carried out on a step-by-step basis
and is therefore too local. No generalisation is made between successive steps in a
transformation; this would be difficult because the system does not know why a
particular item has been selected. For example, it could be because it is the second
sub-expression, or because it contains a specific function, or for some more complex
reason. Logging the structural position of items works well in many situations, but
it is not always general enough. The mechanism must therefore be complemented by
other forms of generalisation.

9.3 Generalisation in proof

Definitions in MetaMorph are expressed by recursive functions. Proofs of laws
therefore usually involve the use of structural induction. It is an interesting fact that
proofs by induction are more likely to succeed if the conjecture to be proved is made
more general. If the conjecture is too specific, the induction hypothesis is often too
weak to support the conclusion. Generalising such a conjecture is very similar to the
problem of generalising transformations for the purposes of logging.

For example, we may wish to prove the following theorem:

#(reverse x [a]) =~ 3 (reverse x) + #[a)].

https://doi.org/10.1017/50956796800000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000502

MetaMorph — a formal methods toolkit 461

LHS RHS

reverse &3

Y : & 1

Fig. 2.

In this case, it is easier (and more useful) to prove the more general result:
#(x y) & #Fx 4+ #y

It is not necessary to instantiate this to produce the theorem originally required, since
the more general result can always be used as a transform, in its place.

Looking at this problem, it is easy to guess that ‘reverse x’ and [a] are arbitrary
expressions, because they occur on both sides of the equality and none of their
constituent variables (e.g. ‘x” and ‘a’) are referred to in any other expression. Viewed
as a directed graph (see figure 2 above), the arbitrary expressions are sub-graphs
which are only connected to the main graph by their root nodes.

It is sometimes possible to over-generalise using this algorithm, in which case the
sub-expressions can be progressively re-instantiated until a solution can be found.
For example

reverse [a] = [4]
cannot be generalised to
reverse X = X,

because it relies on the fact the length of the list is one.

This algorithm is similar to the generalisation method used for logging
transformations. It has not yet been applied to generalising goals for the MetaMorph
theorem prover.

9.4 Generalisation by joining

The Join transform has proved to be particularly useful in generalising transformation
scripts. A transformation is specified by giving a target pattern which makes the
minimum commitment necessary and is therefore applicable to many similar problems.

Furthermore, only one entry is needed in the command log for what might be a
variable number of steps in the proof log. In the example of joining, given earlier, the
number of fold and unfold steps generated depended on the length of the list used.
Carrying out these low-level operations by hand would lead to a fixed-length

https://doi.org/10.1017/50956796800000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000502

462 P.J. Brumfitt

sequence in the command log, which could only be applied to a list of the same length.
Generalising such a sequence requires re-expressing it as a recursive transform
definition in the meta-language, with some termination condition. This problem is
avoided using joining.

9.5 Avoiding recursion

Recursive definitions are difficult to manipulate by transformation, because the
transformation needs to be equivalent to a proof by induction. This is typically
carried out by using the enumeration transform to break a definition into cases, then
transforming the cases individually into the same form and finally using the
generalisation transform to recombine them.

Fortunately, explicit recursion can always be avoided through the use of higher-
order functions, by recognising that the possible patterns of recursions depend only
on the data types. These patterns may be abstracted as a set of higher-order functions
for each algebraic type, leading to an elegant style of specification which is concise
and which makes functions and associated theorems reusable.

For example, the higher-order function map provides 2 means of defining iterative
operations on lists:

map [[1 =1[}
map f (x:xs) = fx: map f xs;

Standard theorems can be proved about these higher-order functions, such as:

(map f) - (map g) =~ map (f*g).

Iterative functions on lists can be defined using map and subsequently transformed by
applying such theorems as transforms. Because the definition is not recursive there is
no need to use a problem-specific proof by induction, or the equivalent enumerate-
generalise transform. The theorem embodies a reusable proof, which may be applied
to many similar problems.

Functions on a particular type may be defined in terms of a small number of higher-
order functions. Theorems about such functions describe general properties of the
type, which are bound to be reusable.

When a specification contains many explicit recursions, it is possible to carry out
a preliminary transformation phase, by folding the recursions with higher-order
functions to hide the recursions.

9.6 Future directions

The join transform allows a transformation to be specified by partially-constraining
the target expression with a pattern. Another possibility which could be explored is
to partially-constrain the sequence of transforms applied. These two approaches
could be used to complement one another, so that both constraints could be weaker
than if either approach were used alone. Proof then corresponds to the situation where
the target is fully constrained, whereas transformation corresponds to the situation
where the steps are fully constrained.

https://doi.org/10.1017/50956796800000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000502

MetaMorph — a formal methods toolkit 463

Transformation patterns would constrain the search space, by controlling which
transforms could be ‘plugged in”’ to a sequence and by restricting the number of steps.
To illustrate this idea with a simple example, consider the following composition of
transforms:

F'-GF

This is a very common pattern, in which some transformation G is sandwiched
between an unfold and fold with the same function F. There are usually only a few
possible choices of F for unfolding, but an exceedingly large number of possible
functions for folding. With pattern matching, instantiating F in the initial unfold
could constrain the subsequent fold to use the same function, thereby limiting the
total search space drastically. This would allow an exploratory search to be
performed, by backtracking in the meta-language.

Another technique which would be worth considering is Explanation Based
Generalisation (EBG) (van Harmelen and Bundy, 1988). This attempts to find a
generalised solution to a problem from one or more specific examples. One
implementation of EBG involves a special Prolog interpreter which is given two
copies of a goal to be solved. One copy is instantiated with the problem and drives
the Prolog goal reduction in the normal way. The other copy contains variables to
which identical operations are applied symbolically. The resulting solution is a new
Prolog program which can solve problems of which the given problem was an
instance. It would be interesting to investigate how this might be applied to extending
the MetaMorph Prolog meta-language interpreter so that it could solve particular
problems and yet log generalised Prolog code. EBG might also be considered for
proving a generalised theorem, given a particular instance as an example.

10 Application to hardware
10.1 Introduction

The equational notation is used both as a specification language and as a hardware
description language. The aim of the transformation process is to turn an abstract
hardware specification into a concrete circuit description. The resulting set of
equations has dual interpretations, both as a functional program and as a digital
circuit. Hardware concepts, such as components and signals, become increasingly
apparent as the specification is refined towards a realisable circuit, but they may also
exist in the original specification, particularly in connection with interfaces to the
outside world.

The initial specification may contain abstractions, such as higher-order functions
or non-tail recursions, which have no direct interpretation as a circuit. This is a
different situation from transformation of functional programs (Burstall and
Darlington, 1977; Darlington, 1981), where the aim is simply to optimise a
specification which is already an executable (albeit inefficient) program.

Our design approach ensures that the resulting circuit is logically correct viewed as
an ideal synchronous system, but omits parametric timing effects such as propagation
delays. Similarly, it does not address analogue electrical issues, such as loading

https://doi.org/10.1017/50956796800000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000502

464 P. J. Brumfitt

(fanout) and noise. It is assumed that conventional CAD tools are used to address
these issues after the formal design process is complete.

Circuits may be described down to the gate level, but not the transistor (switch)
level, because components are represented as functions rather than predicates.
However, this avoids a problem that occurs in using predicate logic to describe
circuits, namely that inputs and outputs are indistinguishable, allowing incorrect
circuits to be expressed. A few circuit constructs, such as tri-state buses, take a little
ingenuity to describe functionally, but can be managed if necessary; for example in
that case the trick is to treat a bus as a component with multiple inputs and outputs.

Transforms may have a number of roles. Early in the design process, we need
transforms which are architectural synthesis tools; these typically take a specification
and decompose it into subsystems. This leads to a piece of abstract hardware, which
is decomposed into blocks, but still operating on abstract data, say numbers instead
of bits. We must then introduce concrete representations for the data, usually as
vectors of booleans. It is also necessary to transform arbitrary recursions into tail
recursions, which have a hardware equivalent as a feedback loop. Finally, we may
apply transforms which optimise a circuit or re-express it in terms of particular library
components.

10.2 Time

Unlike imperative languages, functional languages have no concept of sequential
execution. This gives them a simple semantics, which greatly simplifies proof or
transformation. Use of a functional language to describe a sequential machine
requires that the concept of time be introduced explicitly. The simplest approach is
to limit attention to synchronous clocked systems with a discrete representation of
time. This is a safer design style than asynchronous logic and therefore good practice
for safety-critical systems.

There are several ways of representing discrete time within the functional language,
which correspond to different interpretations of the equational specifications as
circuits. MetaMorph is not restricted to any one, although the interpretation must
clearly be consistent for a particular problem.

One approach is to define signals as explicit sequences and components as functions
from signals to signals. The sequences can be represented as functions from time to
value (Gordon, 1986). For example:

time == num,
signal * == time—> *;
high t = True;

inverter x = - . X
and_gate x yt = (x) A (y 1);

register x (n+1) = x n;
Alternatively, sequences can be represented as lists. For example:

signal * == [+];

https://doi.org/10.1017/50956796800000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000502

MetaMorph — a formal methods toolkit 465

high = True : high,
inverter = map (-);
and_gate = map2 (A);

register x = undef : x;
In both cases, the signals and components have the following types:

high = signal bool,
inverter = signal bool — signal bool,
and_gate = signal bool — signal bool — signal bool,

register = signal * — signal *;

In principle, the two approaches could be combined, by defining an abstract data type
for sequences, implemented either as a function or as a list. However, this is an
unnecessary complication and prevents the use of pattern matching and the concise
syntax for lists. In practice, we normally use lists to represent signals.

Discrete time may also be described implicitly by the depth of a recursion. In fact,
specifications typically contain recursive definitions with no explicit reference to time.
The depth of a recursion may be interpreted as either time or space (hardware
complexity). For example, consider the specification of factorial:

factorial 0 = 1;
factorial (n+1) = (n+1) x factorial n,

This function involves a data-dependent number of multiplications. It therefore
cannot be implemented directly in hardware, since a circuit must have a fixed number
of multipliers. Interpreting the depth of recursion as time allows the computation to
occupy a variable number of clock cycles on a fixed amount of hardware. This is a
simple example of the more general problem of scheduling operations. Many
hardware design problems can be tackled by starting with a recursive specification, at
a level of abstraction where there is no concept of time, and then implementing it in
hardware using some form of sequencer (finite state machine) to control the
scheduling of operations on a datapath.

10.3 Processes

The non-strict semantics of the language allows the use of infinite sequences to
describe signals. For example:

data = True : False : False : data;

This is useful because synchronous digital circuits run indefinitely, rather than
stopping with a result after a finite number of cycles. If the circuit appears to stop,
it is because a finite-state-machine sticks in one state and not because the clock has
been stopped.

The use of infinite sequences to represent signals leads naturally to a circuit model
based on process networks (Wadge and Ashcroft, 1985). Each component is a process

https://doi.org/10.1017/50956796800000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000502

466 P. J. Brumfitt

and the signals joining them are streams (infinite sequences). This approach enables
us to handle concurrency and communications, which are essential features of any
real hardware system.

The lazy evaluation of a non-strict language ensures that the functional program
is demand driven. That is, each process generates a new element of its output sequence
only when it is required by some consumer process. This automatically ensures proper
scheduling of the computation. Eager evaluation, on the other hand, would lead to
the computation being driven by the availability of data, resulting in non-termination
in many cases.

The initial specification of a device typically describes a single process with a
number of inputs and outputs. Refining the specification into a circuit decomposes
this process into a set of communicating processes. In doing so, the global state is
broken down into local components of state, for each of the processes.

10.4 Components

Processes networks are created by lifting constants to make signals and lifting
component functions to make processes (Johnson, 1983). For example, the constant
True becomes an infinite sequence of True’s:

high = repeat True;
Component functions, such as ‘-’ are turned into component processes by mapping
them over their input sequences. For example:

inverter = lift ();
where /ift = map.
Components with more than one input may be handled similarly, by defining

functions /ift2, lift3, lift4, etc:

and_gate = lift2 (A);
There are a number of different ways in which the function /ift2 may be defined. One

possibility is to define it such that and_gate is a curried function, which may be
partially applied to its inputs:

and_gate = signal bool — signal bool — signal bool;

2 f (1 ys =11
life2 f (x:xs) [1 = [];
lift2 f (x:xs) viys) = fx y: lift2 f xs ys;
The disadvantage of this approach is that multiple inputs and multiple outputs

cannot be treated in a consistent way, since currying is only applicable to inputs. This
may be overcome by grouping multiple signals as a tuple:

and_gate = (signal bool, signal bool) - signal bool,
wefrq, y) =1k
life2 f (exs, [=[]
lift2 f (x:xs, y:ys) = fx y: lift2 f (xs,ys);

https://doi.org/10.1017/50956796800000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000502

MetaMorph — a formal methods toolkit 467

A further complication arises with circuits with multiple outputs. Applying the
tupling version of /ift2 to the function addsub below, results in a component whose
output is a sequence of pairs, rather than a pair of sequences:

addsub = (signal num, signal num) — signal (num, num);

addsub (x,y) = (x+y, x—y);
This can be converted into a pair of sequences by transposition:

addsub’ = (signal num, signal num) — (signal num, signal num);
addsub’ = transpose2 - (lift2" addsub)

where transpose2 converts a sequence of pairs into a pair of sequences.

The use of tuples makes it necessary to have many versions of /ift and transpose,
for different numbers of signals. This leads to the added complication that multiple
versions of theorems about these functions are needed for transforming them.

One way of overcoming these problems is to group signals as lists, which can be
manipulated by polymorphic versions of /ift and transpose, which work for any
number of signals: ’

and_gate = [signal bool] — signal bool,
lift f = (map f) - transpose;
Multiple outputs can then be transposed as follows:
lift” f = transpose - (map f) - transpose;
addsub’ = lift"" addsub;
However, there are two disadvantages to the use of lists. Firstly, all the signals in a
group must have the same type. Secondly, the type checking is weaker since it cannot

check that the bus width matches the component. We are currently using tuples,
rather than lists, for our work.

10.5 Circuits

Components are cascaded by function composition, either using an argument to
denote the signal, as in:

nandgate in = inverter (andgate in);
or using the composition operator:
nandgate = inverter - andgate;

A component consisting of the composition of two functions can be converted into
two cascaded processes using the theorem:

map (Bf - Bg) Bs =~ map Bf (map Bg Bs),

The composition operator can be thought of as a higher-order function for the serial
connection of two blocks. Similar higher-order functions may be used to build
arbitrarily complex circuit structures. The arguments to the HOF are the components

https://doi.org/10.1017/50956796800000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000502

468 P. J. Brumfitt

to be substituted into the block. Such HOFs are extremely important, as they enable
us to separate the structure of a circuit from the details; standard methods can then
be developed for transforming common structures.

Feedback can be expressed by recursion, using either a recursive signal definition:

out = dtype (nandgate (in, out));
or a recursive component definition:
circuit in = dtype (nandgate (in, circuit in)),

circuit

in -

nand dtype » out

Fig. 3.

Explicit recursion can be avoided by using a higher-order function loop to describe the
feedback loop: loop (cct, in) = cct in (loop (cct, in));

circuit in = loop (dtype.nandgate, in),

10.6 Experience

The original prototype of MetaMorph was a simple fold-unfold transformation
system, with pre-defined algebraic laws and no theorem prover. The first experiment
with hardware design involved the design of a trivial processor with just two
instructions, with the following specification:

instruction == Factorial | Square;

Jac n;

simple Squaren = n x n;

]

simple Factorial

fac 0 = 1;
fac(n+1) = (n+1) x fac n;

Despite its simplicity, this problem has a number of features characteristic of more
complex hardware specifications:

e It uses natural numbers which must be refined into binary representations.
e It involves a recursive function definition, which must be made tail-recursive
before it can be expressed as a hardware feedback loop.

https://doi.org/10.1017/50956796800000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000502

MetaMorph — a formal methods toolkit 469

e The factorial calculation involves a data-dependent number of multiplications.
This cannot be implemented directly as a variable number of hardware multipliers
and therefore requires the introduction of time cycles.

e If the processor is to be implemented using an ALU with multiply and subtract
operations, these two operations must be scheduled, so that they are carried out
alternately using the same ALU.

The specification was first transformed into a sequencer, which schedules operations,
and a datapath, which applies the operations. This transformation involved the
introduction of registers, an instruction decoder and a finite-state machine for the
sequencer. Auxiliary functions were defined for these components and then folded
into the specification. The next stage of the transformation refined the datapath into
a block-level circuit using the ALU and multiplexers. The final stage was to refine the
operations on abstract data into functions operating on concrete binary rep-
resentations, using lists of booleans for words. However, no tool support was
available for this last step.

This example highlighted a number of problems with the early prototype of
MetaMorph. In particular, transformation involved many low-level steps and the
resulting transformation scripts were not sufficiently general to be re-applied to other
similar problems. Also, it was found that extensive use was made of algebraic laws,
which involved the introduction of many unproven laws as axioms. Based on
feedback from this work, a number of enhancements were made to the tools,
principally the introduction of the theorem prover and improvements to the logging
mechanism.

The next application to be attempted was the design of a 32-bit microprocessor,
with many instructions and addressing modes. As an indication of the complexity of
this problem, the specification occupied 7 pages of Miranda, plus 9 pages of auxiliary
functions and 3 pages of standard library functions. The transformation took about
10 man-months, not including writing the specification, tool enhancements and other
investigations.

To make the task more manageable, the processor was specified in terms of a next-
state function, which mapped the current state of the processor and memory onto the
next state. The processor was successfully animated running a program, by executing
the specification as a Miranda program. The specification was subsequently refined
to the level of electronic blocks, such as registers and ALU, operating on abstract
(non-binary) data and instructions.

MetaMorph continued to evolve during the early part of this work, driven by
feedback from the design problem. The theorem prover turned out to be much more
useful than originally anticipated and the emphasis moved away from a trans-
formation system, with a theorem prover to verify new laws, towards a hybrid
transformation and proof system. Once the microprocessor design was well underway,
it was necessary to avoid changes to the tools which would require repeating earlier
work. At the end of the exercise, the MetaMorph tools had reached the state
described in this paper and many useful ideas had arisen for further development. The
processor design was completed apart from some minor details.

https://doi.org/10.1017/50956796800000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000502

470 P.J. Brumfitt

It was challenging, but useful, to apply MetaMorph to a problem of such
complexity. One of the key issues in software (or hardware) engineering is how to
manage the complexity of large design problems; approaches which work well for
small problems often prove totally inadequate when scaled up to real-world
problems. Experience from the processor design showed the feasibility of the
approach, but highlighted the need to further raise the level of abstraction of the
transformation process and improve the reusability of transforms. Some suggestions
for achieving these objectives are given in section 9.6.

11 Summary and conclusions

In summary, we have developed a formal methods tool which supports trans-
formation of polymorphically-typed equational specifications. The tool incorporates
a theorem prover which can be used to verify new transforms or to perform proofs
about specific sub-problems within the overall transformational framework. The join
transform allows the automation of transform sequences leading to a goal which is
partially-constrained by a pattern containing meta-variables.

The tool has a meta-language, which can be used to write transformation and proof
programs (cf. tactics). The customisable user interface allows meta-language programs
to be invoked using user-defined menus. The use of Prolog for the meta-language
allows pattern matching and backtracking, which are useful in developing new
generic transforms.

An important feature of the system is that all commands are logged as meta-
language statements, even if they are given interactively using mouse selections and
menu commands. This proof log not only provides a record of a transformation
session, but can be cut-and-pasted to form new meta-language commands, which may
be parameterised to make them more generic. Mouse selections are logged using
patterns, rather than specific instances, so that the command log is applicable to a
class of similar problems having the same structure but different details.

In addition to the machine-readable meta-language command log, there is also a
proof log, which records transformations and proofs at a step-by-step level.

The tools have some capability for validating specifications, either by symbolic
animation using partial evaluation or by proof of properties that a specification is
expected to satisfy. These are areas identified for further development.

MetaMorph was developed as a tool for investigating the transformational design
of digital hardware from functional language specifications. The approach has been
applied successfully to the design of a 32-bit microprocessor. Feedback from this
work has led to a number of recommendations for further development of the tools.

In conclusion, MetaMorph makes proof into an integral part of the design process,
rather than leaving it as a post hoc verification problem. We believe that this plays an
important part in managing the complexity of large proofs. The constructive nature
of the logic is more limited than approaches based on set theory or higher-order logic,
but leads to two important advantages. Firstly, specifications may be executed to
assist with validation and, secondly, it becomes easier to automate proof. Since the
overall aim is to produce formally-proven designs from validated specifications,

https://doi.org/10.1017/50956796800000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000502

MetaMorph — a formal methods toolkit 471

rather than just to produce elegant specifications, we believe that this is a good
compromise.

Acknowledgement

This work has been sponsored in part by the Defence Research Agency, Electronics
Division (formerly RSRE), Malvern, under contract SLS42c/856.

I should especially like to thank David Brazier who assisted with the development
of MetaMorph. Thanks are also due to Tony Boswell and David Brazier, who used
the tools to carry out the design of a microprocessor, and to Susan Stepney and Dave
Whitley for their useful comments on a draft of this paper.

Appendix
The following definitions are used in the examples in this paper:

|| Booleans
bool == False | True;

- True = Fualse;

- False = True;

True v x = True;

False v x = x;

True A x = x;

False A x = False;

map [[] = [];

map [(x:xs) = f x : map [xs,
map2 [} ys =1
map f (x:xs) [] =[]

map?2 f (x:xs) (yiys) = fxy: map2 f xs ys;

| Numbers
0 + n = n;
m+1) + n = (m+n + 1;
0 X n =0

(m+1) x n = mxn + n

https://doi.org/10.1017/50956796800000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000502

472 P.J. Brumfitt

0 > n = False;
(m+1) >0 = True;
m+1) > (n+1) = m > n

[| Lists

[] ys = ys;

(x:xs) pys=x:(xs s}

reverse |[]

[);

reverse (x:xs) = reverse xs [x];
repeat x = X : repeat x;

map [[] =[]
map f (x:xs) = fx : map [xs,

[] = 0;
(x:xs) = x5 + 1

| Functions
(S8 x=S(gx);
II Stacks
stack * == Newstack | Push * (stack *);

pop (Push a x) = x;
top (Push a x) = a;

References

Backus, J. Can programming be liberated from the von Neumann style? Comm. ACM, 21
(8): 613-41.

Bird, R. and Wadler, P. 1988. Introduction to functional programming. Prentice Hall.

Boyer, R. S. and Moore, J. S. 1979. 4 computational logic. Academic Press.

Boyer, R. S. and Moore, J. S. 1988. 4 computational logic handbook. Academic Press.

Burstall, R. M. 1969. Proving properties of programs by structural induction. The Computer
J., 12 (1): 41-8.

Burstall, R. M. and Darlington, J. 1977. A transformation system for developing recursive
programs. JACM, 24 (1): 44-67.

Cardelli, L. 1987. Basic polymorphic type checking. Sci. of Computer Programming, 8 (2):
147-72.

Darlington, J. 1981. An experimental program transformation and synthesis system. Artificial
Intelligence, 16: 1-46.

https://doi.org/10.1017/50956796800000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000502

MetaMorph — a formal methods toolkit 473

Gordon, M. 1985. 4 Machine Oriented Formulation of Higher Order Logic. Computer
Laboratory, University of Cambridge, Technical Report 68.

Gordon, M. 1986. Why higher-order logic is a good formalism for specifying and verifying
hardware. In: Formal aspects of VLSI design, G. J. Milne and P. A. Subrahmanyam (eds).
Elsevier.

van Harmelen, F. and Bundy, A. 1988. Explanation-based generalisation = partial evalu-
ation. Artificial Intelligence, 36: 401-12.

Johnson, S. D. 1983. Synthesis of digital designs from recursion equations. PhD Thesis, Indiana
University.

Milner, R. 1978. A theory of type polymorphism in programming. J. Computer and System
Sci., 17 (3): 348-75.

Sheeran, M. 1984. muFP, a language for VLSI design. In: 1984 ACM Symposium on LISP and
Functional Programming, Austin, Texas, 104-12.

Spivey, J. M. 1988. Understanding Z. Cambridge University Press.

Turner, D. A. 19854. Functional programs as executable specifications. In: Mathematical
Logic and Programming Languages, C. A. R. Hoare and J. C. Shepherdson (eds). Prentice
Hall.

Turner, D. A. 19855b. Miranda: A non-strict functional language with polymorphic types. In:
Proc IFIP International Conference on Functional Programming Languages and Computer
Architecture, Nancy, France. (Springer Lecture Notes in Computer Science, vol 201).

Wadge, W. W. and Ashcroft, E. A. 1985. LUCID, the dataflow programming language.
Academic Press.

https://doi.org/10.1017/50956796800000502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000502

