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ALMOST ALL NORMAL SETS ARE STRICTLY NORMAL

ALEXANDER J. ZASLAVSKI

We consider the space 5n of all nonempty bounded closed normal subsets of the
cone .R" where R+ is the set of all vectors x e Rn with nonnegative coordinates.
We equip the space Sn with the Hausdorff metric and show that most elements of
Sn are, in fact, strictly normal. More precisely, we show that the complement of
the collection of all stricly normal elements of Sn is a a-porous subset of Sn.

INTRODUCTION

In this paper we consider the space Sn of all nonempty bounded closed normal
subsets of the cone i?" where R1 is the set of all vectors x € Rn with nonnegative
coordinates. The space Sn is an important class of sets which is used in mathematical
economics [6, 7, 8], abstract convexity [9], approximation theory [10, 12] and in mono-
tonic analysis [10, 12]. For instance, level sets of increasing functions are normal. We
equip the space Sn with the Hausdorff metric and show that a generic bounded closed
normal subset of i?" is strictly normal.

When we say that a certain property holds for a generic element of a complete
metric space Y we mean that the set of points which have this property contains
a Gg everywhere dense subset of Y. Such an approach, when a certain property is
investigated for the whole space Y and not just for a single point in Y, has already
been successfully applied in many areas of Analysis [1, 2, 3, 4, 5, 11, 12, 13]. The first
generic result in monotonic analysis was obtained in [11] where we showed that a generic
increasing function defined on an ordered Banach space has a point of minimum. In
[12] we showed that a generic increasing function is strictly increasing. We considered
a space of increasing functions equipped with a natural metric and showed that the
complement of the subset of all strictly increasing functions is not only of the first
category but also a a -porous set [12]. There exists a natural one-to-one correspondence
^ between the collection of all closed normal subsets of i?+ and the space of increasing
positively homogeneous functions [12, Propositions 1.4 and 1.5]. In [12, Section 5] we
showed that the set of all strictly normal subsets has a a -porous complement in an
important subspace of Sn equipped with a metric induced by the mapping \I>. In this
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paper we show that the complement of the set of all strictly normal elements of Sn is
a a -porous subset of Sn with respect to the Hausdorff distance.

We now recall the concept of porosity [4, 5, 12].

Let (Y, d) be a complete metric space. We denote by B(y,r) the closed ball of
centre y & Y and radius r > 0. A subset E c Y is called porous in (Y, d) if there
exist a € (0,1) and r0 > 0 such that for each r € (0, r0] and each y £Y there exists
2 € Y for which

B(z,ar)cB(y,r)\E.

A subset of the space Y is called a -porous in (Y, d) if it is a countable union of porous
subsets in (Y, d).

REMARK 1. It is known that in the above definition of porosity, the point y can be
assumed to belong to E.

Since porous sets are nowhere dense, all a -porous sets are of the first category. If
Y is a finite-dimensional Euclidean space, then a -porous sets are of Lebesgue measure
0. In fact, the class of a -porous sets in such a space is much smaller than the class of
sets which have measure 0 and are of the first category.

To point out the difference between porous and nowhere dense sets note that if
E C Y is nowhere dense, y € Y and r > 0, then there is a point z £Y and a number
s > 0 such that B(z, s) C B(y,r) \E. If, however, E is also porous, then for small
enough r we can choose s = ar, where a £ (0,1) is a constant which depends only on
E.

The paper is organised as follows. In the first section we show that the space Sn

equipped with the Hausdorff metric is complete and state our main result. The main
result is established in Section 2.

1. PRELIMINARIES AND THE MAIN RESULT

We consider the Euclidean space Rn with vectors x — (x\,... ,xn) e Rn and the

norm |x| = ( I > i 1 , x € « n . Set 1 = ( 1 , . . . , 1).

Denote by i?" the cone of positive elements:

R+ = {x= (x i , . . . ,x n ) £Rn:Xi^0, i = l , . . . , n } .

The following definition will be used in the sequel (see [6, 8, 9, 10]).
A set £ c .R" is called normal if x € E, y € i l" and y ̂  x imply that y € E.
A point x € E C i?" is called a boundary point of the set E if for each e > 0

there is y G i?" \ E such that |x - y| < e.

https://doi.org/10.1017/S0004972700034353 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034353


[3] Normal sets 153

The following definition was introduced in [12].

A set E C i?" is called strictly normal if for each boundary point x £ E the

inequality x < y implies that y $• E.

Note that a subset E c fl" is strictly normal if and only if for each x,y £ E

satisfying x < y there is r > 0 such that

{zeR^: \x~z\ <r} C E.

For each x £ X and each A C X set

p(x, A) = inf{\x - y\ : y 6 A}.

Denote by S the family of all nonempty bounded closed subsets of i?!f.. For each
A, B € 5 define the Hausdorff distance

(1.1) H(A,B) = max|sup{/9(x, B) : x e A}, sup{p(y, A) : y € B}\.

It is known that the metric space (5, H) is complete. Denote by Sn the family of all •
normal sets A € S.

P R O P O S I T I O N 1 . 1 . 5 n is a closed subset of (S,H).

P R O O F : Let A s 5 , Ak e 5 n , k - 1,2, . . . and let H(Ak, A) -> 0 as k ->• oo. We

may assume without loss of generality that

(1.2) H(A,Ak)^l/k, k = l,2,...

Let 0 ̂  x < y and y 6 A. We shall show that x € A.

By (1.2) for each natural number k there exists yW — \y\ ',..., j/n ] G -̂ fc such

that

(1.3) \y

Let k ^ 1 be an integer. Define x^ = (x[k),..., x^) 6 Rn by

(1.4) x\k) = max{xi - 2/fc, 0}, i = 1 , . . . , n.

It follows from (1.3) and (1.4) that for i = 1 , . . . , n

\Vik) ~ Vi\ ^ 2/*, y\k) >Vi- 2/k >Xi- 2/k

and
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Since Ak is normal we obtain that x^ € Ak. On the other hand in view of (1.4)

| x j * ) - x < | < 2 / f c , i = l , . . . , n ,

|z<fc> - x| ^ 2n/k.

This implies that x € A. The proposition is proved. D

For each x € Rn and each r > 0 set

Bu(x,r) = {y e Rn : |y - arj ^ r } .

A set A S 5 n is called strictly normal in the strong sense if for each natural number
A; there exists jk > 0 such that for each x,y £ A satisfying

\x-y\^ l/fc, y> x

the following relation holds:

B||.||(a:,7*)nJZ£c A.

Clearly, each strictly normal in the strong sense set A 6 Sn is strictly normal.
We shall establish the following result.

THEOREM 1 . 1 . There exists a set 7 C Sn such that the complement Sn\J
: is

a-porous in (5n , H) and each A € T is strictly normal in the strong sense.

2. PROOF OF THEOREM 1.1

For each natural number k denote by Tk the set of all A e Sn which have the
following property:

(PI) There is jk > 0 such that for each x,y £ A satisfying

y>x, \y-x\

the relation B\\.\\(x,jk) H i?" C A holds.
Define

Clearly any element of T is strictly normal in the strong sense. Therefore in order to

prove the theorem it is sufficient to show that for each natural number k the set Sn\!Fk

is a -porous in (Sn,H).
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Fix a natural number k. For each natural number m set

(2.1) Em = {A G Sn : sup{||x|| : i ^ j ^

Since

m=l

in order to prove the theorem it is sufficient to show that for each natural number m

the set Em \ Tk is porous in (Sn, H).

Let m be a natural number. Choose a positive number

(2.2) a< (I63n3fcro)~\

Assume that

(2.3) A € Em \ Tk and r € (0,1/Jfc].

Denote by A the set of all z 6 .R" for which there exists y € A such that

" V [l (47TOT)-1(2.4) z ̂  y + (4n)"V [l - (47TOT)-1 ^ j J 1.

It is not difficult to see that A is bounded closed normal set and satisfies

(2.5) H{A,A)^r/A.

Assume that C e Sn and

(2.6) H(A,C)^ar.

We shall show that C € Tk with 7^ = or.

Assume that x,y € C,

(2.7) j / > x , | a r - y | ^ l / *

and that

(2.8) z e R+, \x-z\^ ar.

We shall show that z € C. By (2.6) there are

(2.9) x,y€A
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such that

(2.10) \y-y\t\x-x\^ar.

It follows from (2.7), (2.10), (2.3) and (2.2) that

\z-y\>\x-y\-\x-x\-\y-y\2 l/k - 2ar > (2k)-1,

(2.H) \x-y\

y ̂  y — arl > x — arl ~£x — 2arl,

(2.12) y>x-2arl.

By (2.9) and the definition of A (see (2.4)) there exists u e A such that

(2.13) y < u + (4n)-1r [l - (4mn)"1 ^ J 1.

In view of (2.11) there exists an integer j 0 € {1 , . . . , n} such that

(2.14) \xjo-yjo\^(2kny1.

It follows from (2.12), (2.2) and (2.3) that

%o -Vio ^2or< (2kn)~\

Combined with (2.14) this inequality implies that

(2.15) yJO-xjo>(2kn)-\

By (2.13), (2.3) and (2.15),

uio > Via ~ Gin*;)"1 > xjo + (2nk)~1 - (inky1

and

(2.16) ujo > xjo + (4nk)-\

Define u = (u i , . . . , un) e fl" by

(2.17) Ui = Ui, i € {1 , . . . ,n} \ jo, ujo = ujo - (Unk)'1.

Clearly ueRl,

(2.18) u ̂  u and u € A
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Define u = (u\,..., un) € Rn by

(2.19) u = u + (4n)"V [l - (4rnn)"x ̂  ut] 1.

By the definition,

(2.20) u £ A.

The equations (2.19) and (2.17) imply that

[ n -i

1 - (4mn)"1 (J2 m - (lGnit)"1) 1.

It follows from (2.21) and (2.17) that for all i € {1 , . . . ,n} \ {j0}

l - ( 4 m n ) " 1 ^ u J +(4n)~V(16nfc)~1(4mn)~1,

(2.23)

[
n 1

1 - ( 4 m n ) " 1 ^ u i + ( 4 n ) ~ V ( 1 6 n f c ) ~ 1 1

i=i -I
(2.22) and (2.13) imply that for all i e { 1 , . . . , n} \ {j0}

(2.24) Ui^yi + r(l62n3mk)~l.

In view of (2.23) and (2.13)

(2.25) ujo ^ yjo - (\§nk)~x + r(l62n3mifc)~1.

(2.8) and (2.10) imply that

\z — x\ ^ \z — x\ + \x — x\ ^ ar + ar

and

(2.26) x> z- 2arl.

By (2.12) and (2.26),

(2.27) y > x - 2arl > z - 4arl.
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It follows from (2.20) and (2.6) that there is v € R^ such that

(2.28) v € C, \v - u\ ^ ar.

(2.28) implies that

(2.29) v^u-arl.

(2.29), (2.24), (2.27) and (2.2) imply that for all i e {1, . . . ,n} \ {j0}

Vi^Ui — ar^ yi + r(l62n3km) — ar

^ r(l62n3fem)~1 - ar + Zi - 4ar

= Zi + r[(l62n3km)~1 - 5a] > z{

and

(2.30) Vi > Zi.

It follows from (2.29), (2.25), (2.15), (2.26) and (2.2) that

Vj0 ^ Uj0 — ar > —ar + yJO — (16nfc)~ + r(l62n3mfc)

^ xjo + (2kn)~l -ar- (lenfc)"1 + ^(leVmfc)"1

^ (2fcn)~x - ar - (lenfc)"1 + r(l62n3mjfc)~1 + zJQ - 2ar > zjo

and

(2.31) Vj0>
zh-

By (2.30), (2.31) and (2.28), z e C. Thus we have shown that for each x,y G C

satisfying (2.7) and each z e Rn satisfying (2.8) the inclusion z € C holds. Therefore
C £ Tk- We have shown that

{CGSn:

By (2.5) and (2.2),

{C 6 Sn : H(A, C) ^ ar} C {C £ Sn : tf (A C) ^ r}.

Therefore the set Em \ Tk is porous in (Sn,H). This completes the proof of the

theorem. D
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