Proceedings of the Edinburgh Mathematical Society (2006) 49, 145-172 ©
DOI:10.1017/S0013091504000446 Printed in the United Kingdom

LARGE-TIME BEHAVIOUR OF THE SOLUTIONS
FOR A MULTIDIMENSIONAL NON-ISENTROPIC
HYDRODYNAMIC MODEL FOR SEMICONDUCTORS

YEPING LI

Department of Mathematics, Xianning College, Xianning, People’s Republic of China,
and Department of Mathematics, Shanghai University, Shanghai,
People’s Republic of China (yepinglee197211@yahoo.com.cn)

(Received 4 June 2004)

Abstract  We investigate the multidimensional non-isentropic Euler—Poisson (or full hydrodynamic)
model for semiconductors, which contain an energy-conserved equation with non-zero thermal conduc-
tivity coefficient. We first discuss existence and uniqueness of the non-constant stationary solutions to
the corresponding drift-diffusion equations. Then we establish the global existence of smooth solutions
to the Cauchy problem with initial data, which are close to the stationary solutions. We find that these
smooth solutions tend to the stationary solutions exponentially fast as ¢t — +oo.
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1. Introduction

In recent years there has been an increasing interest in the use of hydrodynamic-type
models versus classical drift—diffusion models [22]. This is due to the need to model
ever smaller devices and therefore the analysis obtained by the classical drift—diffusion
models has previously been quite inaccurate. The relation between the drift—diffusion
model and the classical isentropic hydrodynamic model was then developed in [20] and
later investigated in [11]. However, the computational complexity of the hydrodynamic
models was still forcing the use of drift—diffusion type modelling, hence the investigation
of more realistic situations need to use a generalized version of the drift—diffusion models,
namely the so-called ‘energy transport’ models. These new models were derived from
extended thermodynamics in [4-6] and other references quoted therein. There was a
parallel analysis in [8,17] which deduced essentially the same energy transport models.
The paper by Ali et al. [2] presented the correct asymptotics to deduce the energy
transport from the full hydrodynamic models. In this paper, we are interested in a multi-
dimensional non-isentropic hydrodynamic model for semiconductors. After appropriate
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scaling, our model equations are given by

ng+ V- (nu) =0,
1 u
wi+ (u-Vjut —V(nT) = V& - —,
2 2 1 T -1 (1)
T, +u-VT 42TV u— —V - (kVT) = = Lju2 - =
3n 3T1To To
AP =n — b(x),

for (x,t) € R? x [0, +00), d = 2,3, here n, u, ® and T denote the electron density, the
electron velocity, the electrostatic potential and the carrier temperature, respectively. The
coefficients x, 7, and 7, are thermal conductivity coefficient, the momentum relaxation
time and energy relaxation time, respectively. In general, the physical constants may
depend on n and T'. In this paper, we only discuss the case when 71, 7 and k are constant.
The positive constant T(?) is the ambient device temperature. The function b(z) denotes
the prescribed density of positively charged background ions (doping profile). Often the
energy Equation (1.1)s is replaced by a pressure—density relation p(n) = kn", k > 0,
r > 1; the corresponding model is referred to as the unipolar isentropic hydrodynamic
model for semiconductors. Furthermore, if there are both electrons and holes present,
we regard the model as the bipolar isentropic (or non-isentropic) hydrodynamic model
for semiconductors. For more discussion on these models in physics and engineering,
and their derivation from kinetic transport models by the moment method, we refer the
reader to [17,22].

For simplicity, we can assume that the constants x, 71 and 7 are 1, but this does not
affect the subsequent analysis. Moreover, introducing the electric field e by e = V@, we
can rewrite (1.1) as

ny+ V- (nu) =0,

1
u + (u-Viu+-V(nT) =e—u,

”2 (1.2)
T,+u-VT+ 2TV -u— 5 (AT) = = (T - 1),

V-e=n-—b(x).

We consider the Cauchy problem of (1.2) in this paper, and supplement (1.2) with the
following initial data:

(n(z,0),u(z,0),T(x,0)) = (no(z), uo(x), To(z)), = cRY d=23. (1.3)

Using Green’s formulation, it follows from (1.2) and (1.3) that

e(2,t) = V& = VA~ (ng — b(z)) — VA1V - /O (nu)(z, ) ds. (1.4)
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Moreover, our assumptions on b(z) are

lim b(z) =b>0, b(x)>0, 0< inf b(z) < b(z) < sup b(z), (1.5)
|z|—o00 zER4 zERd
and
b(x) € C°(RY), Vbe H(RY), d=2,3. (1.6)

It is expected that the solutions of (1.2) and (1.3) tend to some stationary solutions
as t — +0o. Let us now turn our attention to considering the steady-state drift—diffusion
equation when the velocity u = 0 (the total thermodynamic equilibrium steady state).
We can investigate the stationary solution (N, E) of the system

TOVN = NE,
(1.7)
V.-E =N —b(x),
under the assumption of
N —b(z) € H*(R?). (1.8)

Since Degond and Markowich started a mathematical analysis for the simplified
steady-state hydrodynamic model in [7], hydrodynamic models for semiconductors have
attracted a lot of attention because of their ability to model hot-electron effects that
are not accounted for in the classical drift—diffusion model. Some topics such as the
steady-state solutions [7,8,10,21], weak solutions [9,16,20,25,27], and the relaxation
relation between the hydrodynamic model and the drift—diffusion model [16, 20], have
been studied extensively. In particular, after Luo et al. [18] first investigated the global
solutions and the asymptotic behaviour of the smooth solution to the Cauchy problem
for the one-dimensional isentropic hydrodynamic model, Hsiao and Yang [14] discussed
the corresponding initial-boundary-value problem, Markowich et al. [15] investigated the
multidimensional isentropic hydrodynamic model case, and Guo [12] studied the multi-
dimensional isentropic irrotational case. Furthermore, Hsiao and Wang [13] discussed
the large-time behaviour of the solutions for the one-dimensional non-isentropic Euler—
Poisson equation for semiconductors, while Ali et al. [3] and Ani [1] investigated the one-
dimensional and the multidimensional non-isentropic cases with the zero-thermoductivity
coefficient. It is more interesting to study the multidimensional general hydrodynamic
system for semiconductors, but it is very difficult to establish the global existence of
weak or smooth solutions. This paper addresses the important question of the asymp-
totic stability of the steady states for the hydrodynamic models. This question is impor-
tant because the steady states of the full hydrodynamic models coincide with those of
the classical drift—diffusion model. Therefore, by proving the asymptotic stability, we
can conclude that the classical drift—diffusion model can replace the full hydrodynamic
model when the initial data are close to the steady regime. This is the purpose of the
present paper. This task is achieved by means of standard energy-type methods, but
with severe restrictions that are not completely reasonable from the point of view of
physics. For example, [|Vb(z)|| 5 (re) is sufficiently small that we can prove the existence
of a steady-state solution for (1.2) and (1.3) and establish the large-time behaviour of
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smooth solutions for (1.2) and (1.3). We now state our main results as follows. We shall
first prove the existence and uniqueness result for (1.7) and (1.8).

Theorem 1.1. Let b(x) satisfy equations (1.5) and (1.6). Moreover, we assume that
Vb(2) || g5 ey is sufficiently small. There then exists a unique pair (N, E), which is a
solution of (1.7) and (1.8).

We can then establish the global existence and the large-time behaviour of the global
smooth solution to the Cauchy problem for (1.2) and (1.3).

Theorem 1.2. Let (N, E) be the solution of (1.7) and (1.8). Assume that b(x) satis-
fies (1.5) and (1.6), and (ng — N,ug,eq — E) € H3(RY), Ty — T© € H*(R?). Then there
exists a positive number 6 such that if

[(no — N,uo,e0 — E)|| s raey + || To — T(O)”H4(Rd)
+ 1(re, we, €0, i) (2, 0) | g2 (mey + [IVO(2) | 5o may <6, (1.9)

then the Cauchy problem (1.2), (1.3) admits a unique smooth solution (n,u,e,T') for all
t > 0. Moreover,

(n—N,u,e - E)|3sgay+ T - T(O)Hiﬂ(Rd) + (e, e, e, T) |32 e
< C([(no — N, o, e0 = E) || s gay + [ To — T(O)H%H(Rd)
—|—||(nt,ut,et,Tt)(z,O)H?{Q(Rd))exp(—at), (1.10)

for some positive constants « and C, where (ng,us, e, Tt)(x,0) is defined through
(1.2)—(1.4).

Remark 1.3. In contrast to [13], we establish the non-constant stationary solutions;
consequently, we need to make more careful estimates in order to overcome more difficul-
ties caused by those terms arising from the non-constant steady-state solutions and by
the more general multi-dimensional case d = 2, 3. Meanwhile, we discuss the more general
hydrodynamic model for semiconductors than the model which is indeed a hyperbolic—
elliptic system with zero thermal conductivity coefficient in [1], because it is a hyperbolic—
elliptic—parabolic coupled system.

1.1. Notation

H*(R%), d € Z, denotes the usual Sobolev space of order s equipped with the norm

lgllsreay = Y 11954l

0<al<s

where || - || = || - [|p2(ray and 92 = 851952 --- 93¢ with S0 a; = a and 9; = 9,,. The
Euclidean norm and inner product for R? are denoted by |- | and a - b for a,b € R4,
respectively. For a vector-valued function f = (fi, fa,..., fx) and a normed space X,
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scalar functions with the norm ||| - ||| (f € X means that each component of f is in X),
we put

(AN == WA+ A+ Ll
and

Of = 0f = (0ifj)axr, OFf =0,(0F71f).

C always stands for a generic constant, C'(-) means that C depends on ¢ -, and & denotes
an arbitrary positive constant which comes from the Young inequality. Repeated indices
mean summation from 1 to d. [ -dx always denotes [, - dz.

Moreover, we also give two useful inequalities which are used repeatedly in this note.

1.1.1. Young’s inequality
Let a, b, € be positive constants an pg, go = 1, 1/pg + 1/qo = 1. Then

£Po gPo heo

ab < .
Do efoqp

When pg + go = 2, we have the Cauchy—Schwartz inequality

b2
|ab] §€a2—|—£. (1.11)
1.1.2. Moser-type calculus [1]
If f,g € H* N L>, then we have
ID*(f)ll < CR)f o= ID gl + [lglzo= || D* £I)- (1.12)
1.1.3. Gagliardo—Nirenberg inequality [24]
lull o < C(d, q)[fu| V7= Dul|¥/2=1, (1.13)

for u € H'(RY), ¢ > 2 when d = 2 and g € [2,6] when d = 3, while for u € H*(R?)
lull e < O(d)ul| 4D/ D2 ¥4, (1.14)

This paper is arranged as follows. We first investigate the existence and uniqueness of
the stationary solutions in § 2. Section 3 is devoted to the global existence and large-time
behaviour of smooth solutions for the multidimensional non-isentropic hydrodynamic
model for semiconductors.

2. The stationary solution of the drift—diffusion equation

In this section, we shall prove Theorem 1.1. The proof is based on the crucial a priori
estimates given in the following lemma.
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Lemma 2.1. Let b(z) satisfy (1.5) and (1.6), and let (N, E) be a solution of (1.7)
and (1.8) given by Theorem 1.1. Moreover, assume that |[Vb(z)| gswe) is sufficiently
small. Then the following estimates hold:

inf b(z) < N(z) < sup b(x), (2.1)
z€R4 zERA
IVN25 ey < CUIVO(@) 75 ay)- (2.2)

Proof. The system (1.7) is equivalent to the nonlinear equation
TOAINN =N —b(z). (2.3)

Since lim|g|—o0 N(x) = lim|y| 00 b(x) = b, from the maximum principle we immediately

find that

0 < inf b(x) < N(x) < sup b(x).
z€R4 zERA

Now we derive the a priori estimate (2.2). We differentiate (2.3) with respect to = and
multiply the resultant equation by VIn N. Integration over R? leads to

/T<0>VA1an InNdz = /V(N —b(z))VIn N dz;
using the Cauchy—Schwartz inequality and integration by parts, we discover that
/(|v2 In N2 + [V(N = b(z))[2) dz < 0/ Vb(z) 2 da. (2.4)

Taking V2 in (2.3), multiplying the resultant equation by V2In N and integrating it over
R?, we see that

/T<°>v2A1an2 InNdz = /VQ(N— b(z))V?In N dz,
which yields
/(|v3 In N|? + |[V3(N — b(x))|?)dz < O/(|V2b(x)|2 + VN dz. (2.5)
Moreover, using (1.11)—(1.14), we get

VinN
N*de = [ |——
ot /\m,N

< C/|V1nN|4d:r,

4
dz

(8—d)/(4—d)
<6/|V31nN\2dx+C(e) </|V1nN|2dm)
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By inserting (2.6) into (2.5) we can deduce that

/ (V2 In N2+ V(N =b(2))[?) do < C(/ 'Vzbwdﬁ(/ lvade)(s_d)/H_(j)?).

We then turn our attention to the higher-derivative estimates. By substituting V? in (2.3),
multiplying the resultant equation by V?In N and integrating it over R, we find that

/T(O)V3AlnNV3 InNdz = /v3(N — b(z))V*In N da,
which implies
/(|v4 In N|? + |V3(N — b(x))|?) dz

C(/ V20(x)[* dz + /(IV(N = b()) + Vb(@)[* + [V(N = b(x))]|V*(N = b(x))*
+ V(N = ()| V?b(x)* + [Vb(2) *[VA(N = b(x))[”
+ [Vb(2) 2| V2b()|?) dx).

Now let us control the second integral term in the right-hand side of the above inequality.
Using (1.11)—(1.14), we can conclude that

/ V(N = b(z)) + Vb()|® da

C/|V1nN|6da: C sup \VlnN|4/|V1nN|2dx

z€ERY

C’</|Vzb(:c)|2 dx + (/Vb(m)Qdm) /(a— d)>d/2 </|Vb ) dx>(6d)/27

/ V(N — b)) 2IVAWV — ba)) P de

< sup |[V(N —b(x |2/|V2 z))|? dz
z€R4

(/V3 (N — b(x |2da:>d/4</|v N —b(z |2dx>(4_d)/4/|v2 x))]? dx
<s/\v3(N—b(x))|2dx
+ () / |Vb(x)|2dx< / V2b(x)[2 dz + < / |Vb(x)|2dx>(8d)/(4d))4/(4d).
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Analogously, we can also prove that
/(IV(N = b(@))*|V?0(2)* + [Vb(@) [ VA(N = b(x))[* + [Vb(2)[*|V?b(2)|?) dz

<s/\v3(N—b(x))|2dx

+C(6)</|Vb(“’”)|2dx</IVQb(m)|2dm>4/(4d)
+/|Vb($)|2d$</|v2b(x)|2 dz + </|Vb(:v)|2d:v>(8d)/(4d) dx)4/(4d)>

+C(e) / V3b(2) 2 da.
Therefore, noting that e is small enough, it follows that
/(|v4 InN|* + |[V3(N = b(z))|*) dz

< C’/\V?’b(x)|2dx

+C< / Vb(x)de< / |V2b(x)|2dx>4/(4_d)

+ (/(|Vb(ac)|2 + |V2b(f”)2)dx)‘”2 (/ Vb(a’;)|2dx)(6d)/2

+ / [Vb(x)|* dz (/(|Vb(x)|2 +|V2b(z)[?) dx>4/(4d)>(.2 8)

In a similar manner, we can find

/(\V5 I N[*+ VeI N+ [VHN = b(@))]? + V(N = b(@))[*) dz < C([Vb(@) ]| s a))-

(2.9)
Summing up (2.4) and (2.7)—(2.9), with the aid of (2.1), we can complete the proof
of (2.2). O

Proof of Theorem 1.1. Based on Lemma 2.1, the standard iteration technique and
fixed-point principle can be used to prove the existence of a stationary solution of (1.7)
and (1.8) as in [18] (we omit the details). For the uniqueness of the steady-state solution,
let us assume that both (N7, Ey) and (Na, E») satisfy (1.7), and Ny — b(z), No — b(z) €
H®(R%). Then, using Moser’s calculus, In(N1) —In(Ny) € H®(R?). It follows that, for any
0o = 0, there exists A > 0 such that

—d0 < In(Ny(x)) — In(N2(2)) < do, |z| = A. (2.10)
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We will prove by contradiction that the inequalities in (2.10) also hold for all |z| < A. In
fact, let us assume that

In(N1(Z)) — In(N2(Z)) = ‘Igllg)i‘(ln(]\fl () — In(Na(z))) > do. (2.11)

Then we find that
V(In(N1(Z)) — In(N2(Z))) = 0, A(In(N1(Z)) — In(N2(Z))) < 0. (2.12)
From (1.7), the two solutions, we find that

TOV(In(N1(2)) — In(Na(2)))s = Er(x) — E(x),
div(E;(x) — E2(x)) = Ni(x) — Na(x),

which implies that
Ni(Z) — No(z) = TO A(In(Ny (7)) — In(Na(Z))) < 0. (2.13)
Because N > 0, we find that d/dN1In N > 0. Further, we end up with
In(N1(z)) — In(N2(z)) <0,

which contradicts (2.11). Thus, the second inequality in (2.10) holds for all z € R%. In the
same way, we can prove that the first inequality in (2.10) is globally valid. In conclusion,
we have proved that

(N () — In(Na(2))] < 6o, « € RY.

It follows that In(N;) = In(Na). Therefore, Ny = No and E; = Es. This ends the
proof. O

3. Global existence and large-time behaviour of the solutions for the
non-isentropic hydrodynamic model

In this section we shall prove Theorem 1.2. We investigate the global existence and large-
time behaviour of the smooth solutions for (1.2) and (1.3). Let (N, E) be the solution to
(1.7) and (1.8), and introduce the following system:

n=N+m,
u = u,

T=TO 4y,
e=FE+¢.
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Then (m,u,y, ) satisfies
my+ V- (N+m)u) =0,

TO +y Ny —TOm

ot Vet Y N )

VN+Vy=¢—u,
(3.1)

yi+u-Vy+3(T0 + V. u-— Ay —uf +y =0,

2
3(N +m)

V- Y =m,
and we have the corresponding initial data for (m,w,y, ):
(m(az, 0)7 U((E, 0)7 y(l.v O)) = (nO - N7 uo, TO - T(O)) = (m07 uo, yO)v (3 2)
o(x,0) = e(z,0) — E = VA Y (ng —b) — E =: @p. '

Therefore, the global existence and asymptotic behaviour for the Cauchy problem (1.2),
(1.3) are reduced to the corresponding problem for (3.1), (3.2). Now, we can restate our
main result on (m,u,y, @) as follows.

Theorem 3.1. Assume that all the conditions in Theorem 1.2 are met. There then
exists a unique smooth solution (m,w,y, ) to (3.1) and (3.2) for all t > 0. Moreover,
1,2, ) (- )3 zay + 19 ( 5 )32 may + [1(mes e, g, 00) ()3 oy

< C([l(mo, uo, 800)”%13(11@) + ”yO”%iZ(Rd) + H(mtvutvytawt)('aO)H%T?(Rd))eiat' (3.3)

It is clear that Theorem 3.1 is equivalent to Theorem 1.2, so we only need to prove
Theorem 3.1. Analogous to (1.4), we have

t
©=VA Y (mg) -VATIV. / (N +m)u(z,s)ds.
0

Since the non-local term VA~V - fOt(N + m)u(x, s) ds is the sum of the products of the
Riesz transform of fg(N +m)u(z,s)ds, we find, by the L? boundedness of the Riesz
transform [26], that

¢
HVA_lv-/ (N +m)u(z,s)ds
0

t
< H/ (N +m)u(z,s)ds ,
H3(R4) 0 H3(Rd)

for some constant C' > 0. Using this crucial fact, we can obtain the following local
existence lemma from the symmetric hyperbolic system [19,23].

Lemma 3.2. Assume that (mg, uo,¢o) € H3(RY),yo € H*(R?). There then exists a
unique smooth solution
(m, u, ) € C([0, Tmax), Hg(Rd))?) N Cl([OvaaX): H2(Rd))3» y € C([0, Tinax)),
H3 R N CH[0, Tmax), H2(R?)) N L2([0, Tmax), H*(R))
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of (3.1) and (3.2), defined on a maximal interval existence [0, Tynax). Moreover, if Thax <
oo, then

1m0, 2) 5 )y + N ) ey + 1w, 00,3 5Oy
t
Um0 0)C ) By 01,1 000 ) 0 00 a5 8 T
0

In order to prove Theorem 3.1, from the standard continuation arguments, we only need
an a priori estimate on (m,wu,y, ), which is presented in Lemma 3.3. From it, we can
extend the local solution in Lemma 3.2 to global existence. This method is a modification
of a method introduced in [23] for the compressible Navier—-Stokes equations (we omit
the details).

Lemma 3.3. Suppose that (m,w,y, ) satisfies the system (3.1), (3.2) for (z,t) €
R? x [0, Tinax)- Then there exist some positive constants 61, a and C depending only on
b(z) and N(x) such that, for any 0 < S < Tipax, if

sup, (.2, )l + 9l + s e 90 s ) + V() s ey < 61
(3.4)

then the estimate (3.3) holds for any t € (0, S].

In the following we thus focus on the proof of Lemma 3.3. Due to the friction term, u,
the diffusion term of y,, and the fact that N(z) > 0, we can prove Lemma 3.3 by the
elementary energy method. Obviously, using Lemma 2.1, the a priori assumption (3.4)
and Sobolev’s inequality, we have

sup |(ma azma mg, u, azuv U, ©, 896@) Pty Y, Yt azNa a:zNa ai’Na aiN”
TERY

Cllm,w, o) s @ay + 1(me; we, e, Y, Ye)ll 2 ray + VN | g5 (ray)
oo, (3.5)

<
<
furthermore, we can assume that d; is chosen to be so small that, for some by > 0,
o < N+m<2by, 27O <TO 44y <27,
Now we can rewrite (3.1)3 as

where
flz,t) =y +u-Vy+ %(T(O) +y)divu+y — §|ul’.

Then, using (3.5) and the standard L-theory of the elliptic operators, we have that
183yl < CUIFI* + [0 £11?) < C&F

and
Hy||§{4(]Rd) < Cdt,

https://doi.org/10.1017/50013091504000446 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091504000446

156 Y.-P. Li
which imply, by Sobolev’s inequality, that
10wy, 2y) || L < Cb1. (3.7)

On the other hand, by (3.1); and (3.5), it is easy to get

i+1
05ml| < C Y (l105ull + [95m]). (3-8)

k=0

Moreover, after taking 87, j = 1,2,3, on both sides of (3.1),, multiplying the resulting
equation by 9@ and then integrating it over R?, integration by parts gives

/ go('?] v+ E) dm—/@%flmag(cp—ﬁ—E)dx,

which yields

193] < Cllo3~ ml]. (3.9)
Analogously, we can deduce that
k
|05l < C Y (105wl + loym]), k=0,1,2. (3.10)
i=0

We will now prove Lemma 3.3 using the following three steps.
First, we take 9! (I = 0,1) on both sides of (3.1)2 to give

TO +y Ny—TOm

! 1 . -7 —
Opur + 0 ((u v)u)+at(N+m mn N(N +m)

VN+wO=d¢—du(mn

Then we multiply (3.11) by Nolu with [ = 0,1, and integrate the resulting equality
over RZ. We then see that

1,012 D
th/N\au\ dx+/N|8u| dz
TO) 4y Ny —TOm
! _ YL Mo\ Vo
/8<N+me N(N+m)v ) Oyudzx

+/5‘£Vy~N8§udx+/8ﬁ((u-V)u)N@ﬁudx—/@igpN@éudx:0. (3.12)

We will estimate the integrals in (3.12). First, using integration by parts and (1.11), it
follows that

T<0> TO +y Ny —TOm

N T(O) +y ) (Ny — TOm)VN
/ mdlvudm-i-/ N(N+m) - Nudz
N _ (7(0) N T
_/m( +m)Vy ( +y)V(N +m)  Nudz — mJVqudx
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dx — 051 ||(m, Vm, u, y)||2

/N ) mt+V(N+m)-u
N+m N+m

N T<0
/ “’ m? dz — C61||(m, Vim, u, y)|, (3.13)
Ty
with the help of (3.5) and (3.7).

Note that in (3.13) we apply the formulation of divu, i.e.

me+ V(N +m)-u

divu = —
1vu N—|—m

to estimate the nonlinear pressure term. Moreover,

mye + div(mu)VN - u
N

divu = —

will also be employed to deal with the electric field term below. The two relations above
will be repeatedly used in the subsequent analysis, and their advantages will be reflected
in establishing higher-order energy estimates. Similarly, we have

T(0) Ny — T)
/at< Y m 4 Y mVN>  Nowuda

N+m N(N +m)
_ wmt div(No,u) de
/mt (N +m)Vy (]\([ J:O,)J y)V(N +m) Nosude
+/8t<m>Vm-N@tudx+/3t<W>VN-Natudx
2dt/NT(O ) mi dx — C61|(my, Vim, we, ye) |- (3.14)

On the other hand, direct computation and (1.11), (3.5) and (3.7) lead to
/al w)Noludz > —C6, /(\a§u|2 + |Vul?)dz, 1=0,1, (3.15)
and

/N(Vy-u—i—Vyt cOu) da = —/(yVN-u—l—Nydivu—i—ytVN-ut + Ny; div ) dz

—/N(y divu 4y divu,) do — 061||(u7ut7y,yt)\|2.
(3.16)
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By (3.1)1, (3.1)4 and (1.11), it can be shown that
—/(p-Nud:c = —/@(divapt —|—div(mu))da:+/ENudx
= /w(% +m1L)dx+/E(<pt + (m + N)u) dz

> 55 [10P do - ool )l? (317)

and

/got O (Nu) dz /8,5@5@ (div ¢ + div mu) dz
- / Dup(Opr + Ou(mu)) da

> 5 [ Ve do = Cailun ool (315)
where we have used the fact that
/a;Ea;(cpt +(N4+m)u)=0, i=0,1,2,3. (3.19)
Indeed, from (3.1); and (3.1)4, we get
9, div(pe + (N +m)u) = 0.

Multiplying the above equality by 0.~ (T(“ VN/N) and integrating the resultant equality
in R?, we immediately obtain (3.19), with the help of integration by parts and the relation

L TOYN )
Y3 — lEl
@(N ) 5

Thus, (3.12), together with (3.13)—(3.18), implies that

1d N(TO 4
st (N0 )+ S o ) 4 2 4 o) o+ ) P

< Cél"(ma my, vm) V’LL, PPty Y, yt)HQ + /N(y divu + Yt div ut) dx. (320)

Let us take 0!(l =0,1) on both sides of (3.1)3, multiply the resulting equation by
NOly, and integrate it over R%. Then we obtain

12 N L 12
2dt/N|8ty\ dx—i—/ |0yy|* da

0 Lol 1 2 ! Ay !
+%T( )/Naf,yatdlvudx 5/6 (N+m>Natydx

+ /(’“)é(u Vy+ 2ydive — Lul?)Nojydz =0, 1=0,1. (3.21)
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It is easy to verify that
/6§(u Vy+ 2ydive — LHul?)Nojyda > —C61]|(w, ue, y, 4, Vy, Vy) >, (3.22)

For the fourth integral on the left-hand side of (3.21), using (3.5), (3.7) and (1.11), we
can approximate as follows:

2 1 2 (N +m)V(Ny) — NyV(N +m)
s =3 9 CET .

ON
> | sty Vel de - ? 2
/3(N+m)‘vy‘ dz = Call(y, Vy)| (3.23)

/[“)t<N+mAy>N8tyda:— 3/ N 1 m)? Nowydx

2N
> AN L) 2 - 2. .
//3(N+m)\Vytl da — Coy || (ma, ye, Vo) |2 (3.24)

Inequalities (3.21)—(3.24) show that

1d
53 | NP+ ) do Ol Vo V) P

4 270 /N(ydivu oy divag) de < C8[|(me, w2 (3.25)
Combining (3.20) and (3.25), we discover that

1d 2 o NTO 44y 2
2dt/<N(|u| + |uel®) + N T2 (m* 4+ m7)

3
2 2
+ |90| + |S0t‘ + 27(0)

N

0 +37) da
+ CH(’U') Ut, Y, Yt, vya Vyt)H2 g C’51 ||(ma mg, vm’ VU)HQ
(3.26)

We take div on both sides of (3.1)2, multiply the resulting equation by divu and then
integrate it over R, Integration by parts leads to

T(0)

Ny —T1©
div]? + [[divul? = —/div(NJr—;;yVm—&—Vy—i— Y o

1d Ny —T7m
N(N +m)

N di
5 Vv )dlvudx

+ /divgodivudac - /div((u -V)u) divu dz.
(3.27)
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Using (3.1)1, (1.11), (3.5), (3.7) and integration by parts, we have

T(0) Ny — T
- /div< Y4 vy + ymwv) div u dz

N+m N(N +m)
/ N +yVde1vudx—/Ayd1vudx /le(WVN) divudx
?;Ol;yva<mt+Yéi;m)'“) dx—/div(WVN) divu do
—/M(yt+u-Vy+§ydivu+y—%|u|2+%T(0)divu)divudx

(0)
< —%/HWmF dz — 7O /(N—km)|divu|2 dz
+ el Val? + Co1|(m, Vim, u, Vau, y, Vy)|I* + C(e) | (y, yo) I, (3.28)

where ¢ is a small positive number; it will appear repeatedly below. Analogously to (3.15)
and (3.17), we have

—/div((u-V)u) divude = —/8i(uj8jui)8kuk dz

—/aiujajuidivuda:+/%(divu)3dx

s 051/|vu\2 (3.29)
and
N -
/le(pdlvudx__ (mt+d1v mu)dz + V u)
1d 1 ,
) 53/ ' dz+ Corl[(m, Vi, w)?. (3.30)
Therefore, (3.27)—(3.30) lead to
T(0) +y 1/2 2
1/2,, . )
2dtH<dwu v <(N+m)2> Vm) +Cdivul|

< C61[(m, Vi, u, Vau,y, Vy)|* + [ Vaul* + C(e) | (y, y:) 7. (3.31)

Analogous to (3.27), we take curl on the two sides of (3.1)2 and multiply the resulting
equation by curlu in L2(R%) to get

1d T Ny —TO
Sd — [|curl w||* + [Jcurl u||* = /curl( N++myVm+ ]\;J(N_i_mT)nVN) curlu dx

- /curl((u -V)u) curl u dz. (3.32)
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Direct computation gives

7(0) Ny — 700
— /cuﬂ( N ++ yVm) curludx — /curl(MVN) curlu dx

7O 1+ )

Ny T(O)m Ny—TOm i k

0(51||(m Vm Vu, y,Vy)H2 (3.33)

and
- /curl((u -V)u) curludz
— -} [ @wou) - i o) @1 ~ ) do
= *% /(akujajui — 07! 9;u) (Opu’ — Ou) da — é/ujaj ((curlu)z) da
< CH1||Vul (3.34)

Therefore, Equation (3.32), together with (3.33) and (3.34), implies that

1d

5 lewrlul + el wl* < 3y, m, m, T, V) (3.35)

Combining (3.31) and (3.35), we have

1d
2 dt

1 TO +y
2 2 2 2
<|Vu| +ym N+ m)? 51 Vm| )dx+C’|Vu

< Co1[(m, Vim,u, y, Vy)|I> + C(e)||(y, yo)I*. (3.36)
On the other hand, we multiply (3.1)2 by Vm in L?(R%) to get

T(O)+y
—J\vml*d
N+m| m|* dx

Ny —TOm
—/(g&— (m—l—u—l—Vy—&-(u-V)u—&-]\M

< =lml? + Cll(w, we, Vy) I + el Vm||* + Cé1 || (m, Vim, Vu, y)|?,

VN)) -Vmdax

which yields
[(m, Vm)||* < Ol (uw, us, Vo) |2 + Co1 || (Vs ) || (3.37)
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Combining (3.26), (3.36), (3.37) and (3.8) with ¢ = 0 and (3.10) with k = 0, we obtain

d 2 2, TO+y oy, Lo 2 2
i (2?2 4 02) 4 0 + o)

1 7 +y

+ g 0 +18) ) da

+ CH (m7 mg, Vm, u, U, vua Pty Y, Yt V% vyt) ||2 < 0) (338)

for some proper positive constants 7;, depending only on N(x).
By (3.1)2, we have

T(0) Ny — 10
ty J YN+ Vy +u,

et lu Vud eV N N )

which implies that
”90”2 < C”(mvvm7mt7u7utvvuayvv?J)”z' (339)

Analogous to (3.18), we have

—/amcpax(Nu) dz = —/&cﬁpﬁz div ¢ dx

- /3142581, div(mu) do + /(%Eaz(mu + Nu)dz,

which implies

e / (a2 d < C||(Vm, Vs, Vo) . (3.40)

Hence, (3.38), together with (3.39), (3.40) and (3.9) with j = 1, leads to

d

TO 4y 1
5 (ul2 +lwil® + S5 (7 4+ me) + (el + lerl) + Ml Vel

(N +m)?

1 TO) 1y
o (19 o+ G V) Sl ) ) da

+ OH (m7 me, Vm7 U, ut, vua @, Pt, VSO, Y, Yt, V% v?/t) ||2 g 0) (341)

for some appropriate positive constant A;, only depends on N(z).
Next, we establish the estimates for the second-order derivatives. Applying a method
similar to that for (3.36), (3.37) and (3.38) to

/623128§(Nu /aat:’)l) 0:0;(Nu)dxr and /6 (3.1), 0, Vmdz,
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respectively, by using (3.5), (3.7) and (1.11). Thus, we have

d

dt/<|82 1> dx + — (8 NO2udju + - + ud2Notu)

TO) ¢
82 2 82 2> d
ol + kel ) ar
4 C/N(N + )|V divuf? dz + 022

( )||(Vy7v:yt)“2 +C§1H(mt;a mtautaa ut7ytaaryta :EQD)HQ

+ COL (| (m, )72 gy + lutllp gy,
(3.42)

1d

N(T©
P /(N(?T’U/tF + 26£Nazutut + ﬂ

(N +m)?

5 q |0z mt\ + |00t >d:r

+ Cl(Bzur, Ouipr)|1?
< C’H(m,u)Hf{l(Rd) + /N@mytam divu; dz
+ C81||(my, Opmiy, O2m, g, 02w, 04, yt, Yu, Vg ) |12, (3.43)
1(0zm, D2m)|1* < Cl[(92w, Buue, O2y)II* + Co1 ]| (m, w, Oy, y, Ozy) |, (3.44)
Meanwhile, taking into account
/ (0,(3.1), Nowy + 0,0,(3.1), N, 0py) da
we get
/N 029> + 1024 |*) da + C||(D2y, Dy, Dzys, Duye) > + 5T /Ni'?zyt@ divu, da

< O[O, O3u, Do) | + C(e) | Opu]|*.
(3.45)

Therefore, combining (3.42), (3.43)—(3.45) and (3.8) with ¢ = 1 and (3.9) with j = 2,
we conclude

2dt

d 70O 4
n {772 <|82u|2 | 2ol? + m|32 m|? + (81-N8ju8§u+ T +u8§N6§u)>
7O +

+ |8xut|2 + N@Nut(?xut + ﬁk‘? mt\Q
1
+l0ue P + s (0.0 + 10| o

+C’||((9 mt,a m, 8 ut,é‘ u Gmgotﬁztp, axy,amytvaxya )”2

C1(m, w, @) 171 ay + [19117) + Corll (me, we, 1. yo) |12,
(3.46)

for some positive constant 72 depending only on N(z).
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Finally, let us turn to the estimates of the third derivatives. Note that in obtaining the
estimates on the first and the second derivatives we have used the smallness of

|(m7 Opxmi, u, 0w, 0, 0p0, Y, Oy, agy)‘ and |(mta Ut, Yi, th)|v

which are guaranteed by (3.5), (3.7) and the smallness of §. However, the above argu-
ments do not work for the third derivatives because we cannot obtain the smallness
of |(8%m, 02w, 02, d3y)| and |(Opmy, Opur, Oppr, Oryr)|. Hence, to get the estimates for
the third derivative, we must apply some technique inequalities (1.13)—(1.14) and give a
detailed discussion. Let us differentiate (3.1)y with respective to 3, multiply by 92(Nu)
and integrate the resulting equation over R?. We have

/8gut(‘9i’(]\7u) dm—i—/@iu&g(Nu) dz

TO) 1y Ny —TOm
3 3
/5‘ ( e Vm + N +m) VN + Vy)@x(]\fu)dx

/83 )03 (Nu) dx+/ 2002 (Nu) dz
= I + I+ I5. (3.47)
We will estimate all integral terms in (3.47). First, a direct computation leads to
/8§ut82(Nu) dz + /8§u6§(Nu) dz
= /(N@gutagu + ahaiNajuagut 4o ahNaiajuai’ut + o+ udPNOPuy) de
+ /82u(N8§u + O NOOju+ -+ O NOu+ - +ud>N)dx

d
> —

IN|Zul® + 0O NOjudiu + - - + O, NO;0judiu + - - - + ud2 NoZu) da
dt J x T x

+ /N|8§u|2 dz — CO1||(w, Opw, ws, Opug, 02w, O2uys, O2u)||2. (3.48)

By using (3.1)1, (3.5), (3.7) and the Moser-type calculus (1.12), we have
TO 1y Ny —TOm
_ 3 - " AVE! 3(Nu)d
L /((‘%( N Vm + NN T m) VN) +0, (2(N+m)f)>6z( u)dz

TO) 4y TO 4y
< — - I 0 - I
< /<N+mahazajvm+ah(N+ )aavm

TO 4y T( ) 4y ;

—7© /N(N+m)|8deivu|2dx+sH(8§u,8§u)H2 +C(6)||(8§yt,8§y)||2

+ C51(||(mauay)H§13(Rd) + ”ytH?P(Rd))
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/T +y83Vm83(Nu) dx—T(O)/N(N+m)|8szivu|2dx
C(e)( D2y, 029) 11> + Cor (|| (m, w, y) s may + 19211572 ()
+C(e) / |0%m|* dz. (3.49)

Let us now turn our attention to the first integral term in (3.49). Using (3.1)1, integration
by parts, the Cauchy—Schwartz inequality (1.11) and a Moser-type calculus (1.12), we
can show that

T(0)
- / +my D3Vmo3(Nu) dx

N+m ° £ N+m
TO+y\ 5 3 TO +y
- 7 N 3 3 N
+/<V(N+m)6 md;(Nu) + N+m8wm8$(v u))dx
/NT(O +y

<N+ (02my +u - VORL0;0;(N +m) + Opu - VO,;0;(N + m)

+--+ 00w -VO;(N +m)+ -+ 0,0;0ju - V(N +m))
~ Ow(N+m)
(N +m)?
+0;u-VO;(N+m)+ -4 0;0;u- V(N +m))
o (8;1814(N—|—m) 3 26h(N+m)8i(N+m)>
(N +m)? (N +m)3
X (0jmy +u - VO;(N +m)+ 0ju- V(N +m))
o (8hazaj(N+m) _ 26h8Z(N+m)8J(N+m) —+ -
(N +m)? (N +m)3
n 68h(N+m)5¢(N+m)3j(N+m)>
(N +m)*

(0:0;ms +u - VO;0;(N +m)

x (my+u- V(N + m))) dz
+ Cdyl|(m, u)H%{?’(Rd)

N(T
<5t | TN da 4 OB m. ) By + OB me, By, )|

+efomP + C(e) / (0 + 1G2m]* + 2ul*) da. (3.50
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Likewise, we can deduce

Iy = — /(8h8i8juVu + 0h0;ud;Vu + - - - + Opud;0;Vu + - - - + uahaiajVu)ag(Nu) dz

< Co|(u, 8Iu,82u, B;Z’U)H2 + 5H8§u\|2 +C(e) / |8§u\4dx, (3.51)

Ig —/ @83 N’LL
= / 23602 div(Nu) dz — / D3EO3(Nu)dx
—/85’90(5%0,: + 93 (mu)) dz — /8§E3§(<ﬂt + (m+ N)u)dz

< 2dt/| 8o da + Co1 | (02m, 9Pm, P, 03w, 90) 2. (3.52)

Now it is time to estimate the terms of the form [ |-|* dz in the previous relations. Using
(3.5), (3.7), (1.11)—(1.14), (3.4) and d = 2,3 we have

/ (02ul* + |0Pm|* + By, da

< c/(|a§u|4 +102m[4) dz + C81[|(Dem, 02m, By, 02u)|2

< C|2ul|*~ 4|0, 02ul|* + C||02m||*~ 4| 0:02m||* + C61[|(Dxm, 2m, Oy, O2u) ||
< O 02u||*~ |0, 02?2 |0, 02u||* + C||02m||*~ || 0,02m|| 2|9, 02m||?

+ C61]|(0zm, 8§m, Oz u, 8§u)||2

< C61]|(9pm, 32m, 93m, 0w, 02w, D3u)||?. (3.53)

Therefore, (3.47), together with (3.48)—(3.53), implies that

d

T (|83u|2 dz + — 2 (u63N83u + O NOPPud;0ju + - - + 0RO NOPudu + - - +)

TO +y
+ mlff” m|® + |52<P|2> dx

+ O/N(N +m)|9,V dival? dz + C[0%u)2

< CE)I(2y, Day)1* + Cor(ll (m, )l gs may + lleellr2 )
+ CVél ||(mt, aa:mta agmta aa:(pa Yt, aa:yt)HQ (354)
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Analogously to (3.37) and (3.44), we apply the Cauchy—Schwartz inequality (1.11) to
the identity

TO 4y
N +m

Ny —TOm

7 7(0)
— /83 (W)Vm@idex—Q/@m (N_'_tr;y)ame%dem,

|02V m|* dz

which yields

1(83m, 9zm)||>
< O||(97w, 03w, O3y)II* + Co1 || (m, ym, Opu, O3, y, 82y, OZy)|*. (3.55)

Next, let us take 929; on both sides of (3.1), multiply the resulting equation by
020y(Nw), and integrate it over R%. We discover that

/ 020, 020;(Nw) dz + / 020020y (Nu) da
/a?a my N =TOmo o\ o2o, (N d
NN Tm VT NN ) Y )=t .

/a“‘at Yu)020;(Nu) do — /a 01 p020;(Nu)dx = 0. (3.56)

In a completely similar way, we can obtain

1d

5& <N|8§’U/t2 + 2(81N3§ufajut + -+ 3§N3§ufuf)
N(TO +y)
782 2+ b 2
(N +m)? |05 + 105 1]

- / N2y 02 div g da + O (02, 8%,

< Cll(m, )| F2gay + COLI (e, we, 01, ye) |2 gay + 105m])),
(3.57)

with the help of (3.10) with k = 2.
In the following, we define

Go = AN(102y]” + |92u:?).
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Deriving Go with respect to ¢, using (3.1)3, and integrating it over the whole space, we
obtain
d

— [ Godz + | N(|0?y)? + |0%y,|?) dz + 2T [ N§?y,0? divu, dz
dt x x 3 x x

= /(§T<0>Na§ya§ divu + NO2ydZ(u- Vy + 2ydivu — tul?)
+ Ny 030, (u - Vy — lul?)) dz

- / 2Ny 020, (y div u) da + % / N(97y0; + 07:0;0;) Nﬁym da
= L+L+I+1, (3.58)
Using Moser-type calculus (1.12), it is easy for us to compute
I < CH“H%{"‘(R% + C51||(u7y)|ﬁ13(11&d) + C51H(Ut7yt)||§{2(mad)~ (3.59)

Applying integration by parts and the Moser-type calculus (1.12), we can obtain
=2 / 0,0, (y div w) (9. N2y, + N9, Ay,) da
< CV(sl H (aa:u7 a:c'u'ta 85“’7 85%“17 aa:yta 833/, 8§yt7 agyt) H2 (360)

Similarly, we can deduce that

2 D2y 2 2
=—-Z |V L V + VN
I3 3 / (N m)(N 0yy + 0;yVN)dx

1

3
0;0,(N +m)  20;(N +m);(N +m) By ) de

2N
< _ 2,12 2 2 2. \112 61
< [ Soreg Ve e+ Ca1| (GEm. 32 V)| (3.61)

and

I 2/<Aa§yt Oi(N +m)0;Ay; + -+ + O2(N + m)Ay,
=

3 N+m (N +m)?
20;(N +m)0;(N +m)
(N +m)3
n 20;(N 4+ m)(0;m: Ay + my0; Ay)
(N +m)3
20%(N +m)miAy  60;(N +m)d;(N + m)m;Ay
(N +m)3 (N +m)4

2N
< [ i (90 do -+ OO0y, 92m, 2me. 023, 02, O 02

8§mtAy +0m0;Ay + - + mtagAy
(N +m)?

Ay —

> N2y, dz

1
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For the last integral term in (3.62), using integration by parts and the Cauchy—Schwartz
inequality (1.11), we have

2 1
-3 / m(aimtAy +0;m0; Ay + -+ + mtaiAy)Nagyt dz

_2f 1 e 2 2/ (9 o o

= / N )Na “mi Ay0; ytdm+3 Ay0; (N+m)2NaJalyt dx +
/ama ( Ayt N, ayt>

<C51H(3mmt,3§mt78§ytaazy, By . (3.63)

Furthermore, (3.58)—(3.63) show that

s | VOGP + 102 do + O @2y, | + 310 [ NoZy02 divus o

< CH(m,u,y)Hip(Rd) + CO1[|(Dumy, O3 my, Dpug, Dyug, 87y,) |2 (3.64)

Combining (3.57) and (3.64), one obtains

T()+y
(N +m)?

¥ 102 + 1026 + o (020 + 102 )) do
+ CH (agutu ag‘Pt» ai)y7 aiyt)||2

< Cll(my v, 0,9) 372 gy + CO1 (M, e, 00,50 2 oy + 1(85m, e, D3 0) %)

(3.65)
Therefore, combining (3.56), (3.55), (3.65) and (3.8) with ¢ = 2 and (3.9) with j = 3,
we obtain
d 3 TO 4y s 2, 3 3
LTy N N 9
T (|8 ul® + N+ m) 510m|” + (ah@ Ojudyu + - - - + O NO,ud;0;u

2
+ -+ u83N82u) + |8§Ut|2 + N(@Najuﬁiut + -+ utaiNaiut)

TO 4y
N+m)2 2T(0) (192y]* + |8§yt|2)> dx

+ C”(aimh 8gm7 82’”157 a:;ua 8%80& 62@7 8£ya 8%:%57 a§y7 ;pyt)HQ
C(ll(m,u, (pvyayt)H?‘Iz(Rd) + Co1|(me, u, (Ptayt)”?{Z(Rd))' (3.66)

5 [0zme|” + (|8§¢|2+|3§¢t\ )+

+

Finally, summing up (3.41), (3.46) and (3.66), we find that

d
a / Gdx + C”(ma u, e, y)”%ﬂ‘(ﬂ{") + C”(mta U, Yt, @t)H?LIQ(]Rd) g O’ (367)
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where
G=Aad4 2 2, TO 4y 2 1 2 2) 4\ Vo2
= o [l + e )+ L1+ )+ IV
1 TO) 4y 3
2, 1 9 2 2, 2
m(IVuP + g+ T ) 4 02+ 4R)

2
+ 12 (|8§u|2 + N(u@il\f@iu + O;NOjudu + - --)

1 TO 4y
+ N@%@P + (N+m>2|3§m|2)
7O 4
+ | Opug|* + J

- ' |2
(N +m)?

1
\3zmt|2 + ﬁ|8$gat

2 3
+ NutazNaxut + W(I@ylz + 8myt|2)}

1 TO 4y
+ 0zl + 107w + 5 (10201” + |0z edl”) + (19zml* + |0gmq )

(N +m)?
+ %(uagNagu + OOiNOud2u + - - - + O NI 0judu + - - -

3

e (0207 + 102,

_|_

for some positive constants A; and As.
It is easy to verify that G satisfies

a(||(m,ua¢)||%13(nw) + HyH%I?(]Rd) + H(mtvuta(phyt)”%{%Rd))
< /Gdz < D([I(myw, 0) || Fs may + 19172 ay + 1m0, e, 02, 42) | Fr2 gay), - (3:68)

for some positive constants b > a > 0 and A, As > 0.
Hence, the use of Gronwall’s inequality, (3.67) and (3.68) implies (3.3) for any ¢ € (0, ],
and Lemma 3.3 is proved.
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