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We report on the experimental investigation of the large-scale instantaneous flow
structures in turbulent Taylor–Couette flow using tomographic particle image velocimetry.
The results indicate three distinct regimes for counter-rotating flow within a shear
Reynolds number range of 11 000 < ReS < 47 000. Close to only inner cylinder rotation,
large-scale structures are aligned in the azimuthal direction, similar to Taylor vortices.
Near the point of only outer cylinder rotation, we observe columnar vortical structures in
the axial direction, which are associated with small Rossby numbers. This is the first time
such columnar structures are reported in a fully turbulent Taylor–Couette flow. A transition
between these two regimes is observed around the point of exact counter-rotation, where
the instantaneous azimuthal structures are inclined with respect to the walls. Furthermore,
it is shown that the reported transitions in the turbulent flow structure modify the angular
momentum transport, thereby affecting the torque scaling.
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1. Introduction

Taylor–Couette (TC) flow is of considerable scientific interest, because it allows us to
study turbulence under the effects of shear, rotation and wall curvature in a controlled way
(Grossmann, Lohse & Sun 2016). The flow is fully determined by three dimensionless
numbers, namely the shear Reynolds number ReS, the rotation number RΩ and the radius
ratio η, defined as (Dubrulle et al. 2005):

η = ri

ro
, (1.1)

ReS = 2 |ηReo − Rei|
1 + η

, (1.2)

RΩ = (1 − η)
Rei + Reo

ηReo − Rei
, (1.3)
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with Reo = 2πforo(ro − ri)/ν and Rei = 2πfiri(ro − ri)/ν. Here, fi, fo are the rotation
frequencies, ri, ro are the radii of the inner and outer cylinders, respectively and ν is the
kinematic viscosity of the fluid.

Because the parameter space is relatively large, Taylor–Couette flow shows a very rich
flow behaviour (Grossmann et al. 2016). A well-known example of this richness is given
by the flow visualizations of Andereck, Liu & Swinney (1986), which have revealed many
different flow regimes at ReS up to 6500. Some examples include Taylor vortices, spiral
turbulence and so-called ‘featureless’ turbulence regimes. At higher Reynolds numbers,
flow visualizations are typically difficult to interpret. However, using particle image
velocimetry (PIV), the Taylor vortices could be quantitatively visualized at much higher
Reynolds numbers (Akonur & Lueptow 2003; Racina & Kind 2006; Abcha et al. 2008;
Ravelet, Delfos & Westerweel 2010). Here, we present the three-dimensional coherent
vortical structures uncovered by quantitative data from tomographic-PIV. The Reynolds
number achieved in these experiments is extended up to ReS = 47 000.

TC flow also reveals interesting transitions in its global properties, most notably the
torque acting on the cylinders. The torque, T , can be expressed in terms of a skin friction
coefficient, Cf = T/2πρr2

i LU2
sh, which facilitates a comparison with other wall-bounded

flows. Here, ρ is the density of the fluid, L is the height of the cylinder. Here, Ush is
(the cylindrical analogue to) the shear velocity difference across the gap between the
cylinders, and it is defined as Ush = 4πri| fo − fi|/(1 + η) (Dubrulle et al. 2005; Ravelet
et al. 2010); Cf is shown in figure 1 versus RΩ for our set-up (details of the facility are given
in § 2). The given Cf values are corrected to exclude the effect of von Kármán gaps on the
measured torque. The torque contribution from these gaps was assumed independent of the
rotation number and estimated at 50% of the overall torque at RΩ = 0.091 (outer cylinder
rotation only) (Ravelet et al. 2010; Greidanus et al. 2015). Different scaling behaviours
for positive and negative RΩ can readily be seen from figure 1. Furthermore, a bump is
observed at slightly negative rotation number, approximately −0.02 for our set-up, which
is associated with a local enhancement of the angular momentum transfer with respect
to the trend line for strong negative RΩ (dash-dotted lines in figure 1). We refer to the
point of maximum enhancement as the optimal angular momentum transfer, although
in our case it is not an absolute Cf maximum as would be the case for smaller radius
ratios (e.g. van Gils et al. 2011; Grossmann et al. 2016). Note that the angular momentum
transfer is the equivalent of the Reynolds shear stress in wall-bounded turbulence. The
torque scaling and the optimal transfer of angular momentum are discussed in a number
of papers (e.g. Eckhardt, Grossmann & Lohse 2007; Paoletti & Lathrop 2011; van Gils
et al. 2011, 2012; Brauckmann & Eckhardt 2013; Grossmann et al. 2016). These studies
showed that the RΩ corresponding to optimal angular momentum transfer depends on η,
and approaches RΩ = 0 (exact counter-rotation) when η → 1. While the transitions in the
torque scaling are clear, the underlying changes in the turbulent flow are not. Ravelet et al.
(2010) notice a change of flow structures in the axial–radial plane, and suggest that this
may be related to the changes in the torque. For RΩ < 0 the flow was dominated by large
rolls (also known as Taylor vortices), while for RΩ > 0 the flow was denoted ‘featureless’
and dominated by small-scale motions. Similar changes in roll structure were also seen
in direct numerical simulations (DNS) (Ostilla et al. 2013). Furthermore, the Taylor
vortices are related to the momentum transport at conditions of inner cylinder rotation
only (Ostilla-Mónico et al. 2016). However, as will be shown in § 3, the structural changes
associated with the optimal angular momentum transfer are much more complex than a
basic appearance/disappearance of the Taylor vortices or a change in their strength. These
could previously not be observed in planar PIV measurements, and three-dimensional
velocity fields are required to fully appreciate these changes.
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FIGURE 1. Friction factor Cf as a function of RΩ , cf. Ravelet et al. (2010). Black solid
lines mark conditions of inner cylinder rotation only (RΩ = −0.083), exact counter rotation
(RΩ = 0) and outer cylinder rotation only (RΩ = 0.091). The black arrow indicates the location
of optimum angular momentum transfer for the present set-up (RΩ

∼= −0.02), which is estimated
from the local bump in the Cf profile. This bump is seen as an overshoot from the expected trend
based on the data at strong negative rotation number (RΩ < −0.083), which is indicated by the
dashed line for each case.

It is interesting to note that the Taylor vortices were also associated with torque
hysteresis in TC flow (Huisman et al. 2014; Gul, Elsinga & Westerweel 2018). These
observations support the view that the rolls contribute significantly to the torque.

Here we present tomographic-PIV measurements, which reveal the full three-dimensional
changes in the large-scale flow structure associated with the transitions in torque scaling
and optimal angular momentum transport. Both the magnitude and orientation of the
large-scale structure are shown to change significantly through the transitions between
the different flow regimes. Moreover, we determine the contribution of the large scales to
the overall torque.

2. Methodology

2.1. Experimental set-up
The present TC geometry consists of coaxial cylinders with radii ri = 110 mm and
ro = 120 mm, corresponding to a gap width of d = 10 mm and a radius ratio of η = 0.917.
The height of the cylinders is 220 mm. The top and the bottom covers are attached to and
co-rotating with the outer cylinder. The working fluid is water. Torque measurements are
performed by using a torque meter (HBM T20WN, 2 Nm) that is attached to the shaft
of the inner cylinder. The acquisition rate of the torque signal is 2 kHz, and the absolute
precision of the torque meter is ±0.01 Nm. It is not possible to actively control the water
temperature in the current TC system. However, similar to previous studies (Akonur &
Lueptow 2003; Racina & Kind 2006) the fluid temperature was measured before and
after recording each data set, and the angular velocities of the cylinders were adjusted to
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compensate for the temperature dependent fluid viscosity, so that a constant flow Reynolds
number could be maintained. When the temperature change over a recording exceeded
0.5 ◦C, the data were considered invalid and were not used. Some further details of the
facility are given by Ravelet et al. (2010).

We investigated the flow at three shear Reynolds numbers: ReS = 11 000, 29 000 and
47 000. For each ReS, the rotation number is varied between RΩ = −0.083 (only inner
cylinder rotates) and RΩ = 0.091 (only outer cylinder rotates). An overview of the flow
conditions is given in table 1. Kolmogorov length scales calculated from the torque data
are 60, 31 and 22 μm for ReS = 11 000, 29 000 and 47 000, respectively.

Tomographic-PIV (Elsinga et al. 2006) was used to measure the instantaneous
three-dimensional velocity distribution in the gap between the cylinders. The measurement
volume spanned 40 × 20 × 10 mm3 in the axial, azimuthal and radial directions,
respectively. In order to minimize the effect of the end gaps of the TC facility on the
measurements, the images were recorded at the mid-height of the rotational axis of the
TC set-up. The flow was seeded with fluorescent (Rhodamine B) tracer particles of
15 μm diameter, which were illuminated by a frequency-doubled Nd:YAG laser (New
Wave Solo-III) with 50 mJ pulse−1 energy at a wavelength of 532 nm. The laser light
enters the TC gap in the radial direction, illuminating the whole gap (10 mm) between
the cylinders. Two spherical lenses ( f = −50 mm, f = −40 mm) and one cylindrical
lens ( f = +200 mm) were placed between the laser and the test section to expand
the laser beam for the illumination of the measurement volume. The fluorescent light
emitted by the particles (peaking around 580 nm) was captured by four cameras (LaVision
Imager Pro LX 16M) arranged in a rectangular configuration, which were mounted with
Scheimpflug adapters. Optical low-pass filters (570 nm cutoff) were used to separate the
fluorescent signal from the background laser light. In order to increase the recording rate
of the cameras, the images were cropped to 1000 × 600 pixels. This allowed recording
double-frame PIV images at a rate of 7.55 Hz. The pulse delay between frames was
adjusted to yield an approximately 10 voxel maximum displacement of the particles. It
should be noted that, the curved wall of the outer cylinder can introduce optical distortions
in the images. However, these distortions were found to be relatively small and could be
corrected using a standard volume self-calibration procedure (Wieneke 2008; Tokgoz et al.
2012).

Volume reconstruction was performed at a resolution of 27 voxels mm−1 using the
MART algorithm (Elsinga et al. 2006). The particle image displacement between
consecutive volumes was obtained using a multi-pass cross-correlation (Westerweel,
Dabiri & Gharib 1997). The final interrogation window size was 40 × 40 × 40 voxels,
corresponding to a spatial resolution of 1.5 mm. The window overlap was 75 %. For each
flow case, a total of 200 uncorrelated velocity fields were obtained in this way. For further
information on the implementation of tomographic-PIV the reader is referred to Tokgoz
et al. (2012).

2.2. Large-scale/small-scale decomposition
In order to gain a better understanding of the transitions in flow structure, we introduce
a triple-decomposition u = U + u′

L + u′
S, where the instantaneous velocity field u is split

into the time-averaged mean velocity U , and the fluctuations u′. Then, the fluctuating
part is separated into large-scale and small-scale components, such that u′ = u′

L + u′
S.

The large-scale component u′
L is computed by filtering the instantaneous fluctuating

velocities, u′, using a second-order regression (Savitzky & Golay 1964). The method fits
a second-order polynomial function to the velocity distribution in a defined kernel around
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ReS = 11 000 ReS = 29 000 ReS = 47 000

RΩ Rei Reo fi fo Rei Reo fi fo Rei Reo fi fo
(−) (−) (−) (Hz) (Hz) (−) (−) (Hz) (Hz) (−) (−) (Hz) (Hz)

−0.083 −10 543 0 −1.55 0 −27 796 0 −4.04 0 −45 049 0 −6.55 0
−0.050 −8538 2137 −1.26 0.30 −22 510 5765 −3.23 0.76 −36 482 9343 −5.24 1.23
−0.030 −7323 3512 −1.08 0.47 −19 306 9259 −2.74 1.20 −31 289 15 006 −4.44 1.95
−0.025 −7019 3843 −1.03 0.52 −18 505 10 133 −2.66 1.33 −29 991 16 422 −4.26 2.14
−0.020 −6715 4175 −0.99 0.56 −17 704 11 006 −2.51 1.43 −28 693 17 837 −4.02 2.29
−0.0125 −6260 4672 −0.92 0.63 −16 502 12 316 −2.34 1.60 −26 745 19 961 −3.75 2.57
−0.010 −6108 4837 −0.90 0.65 −16 102 12 753 −2.26 1.64 −26 096 20 669 −3.61 2.62
−0.005 −5804 5169 −0.85 0.70 −15 301 13 627 −2.15 1.75 −24 798 22 084 −3.43 2.80
0 −5500 5500 −0.81 0.74 −14 500 14 500 −2.03 1.86 −23 500 23 500 −3.25 2.98
0.005 −5196 5831 −0.76 0.79 −13 699 15 373 −1.92 1.98 −22 202 24 916 −3.07 3.16
0.0125 −4740 6328 −0.70 0.85 −12 498 16 684 −1.75 2.14 −20 255 27 039 −2.80 3.43
0.020 −4285 6825 −0.63 0.92 −11 296 17 884 −1.58 2.31 −18 307 29 163 −2.54 3.70
0.025 −3981 7157 −0.59 0.97 −10 495 18 867 −1.47 2.42 −17 009 30 578 −2.36 3.88
0.050 −2462 8813 −0.36 1.19 −6490 23 235 −0.91 2.99 −10 518 37 657 −1.46 4.78
0.091 0 11 498 0 1.55 0 30 312 0 3.90 0 49 127 0 6.24

TABLE 1. Flow conditions.

https://doi.org/10.1017/jfm.2020.679 Published online by Cambridge University Press
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a point (see Elsinga et al. (2010) for the specifics of this filter). The filter wavelength, i.e.
kernel size, is taken to be the gap width, d, which is of the order of the diameter of a Taylor
vortex (Bilson & Bremhorst 2007) and representative of the large-scale turbulence. The
filter returns approximately the average velocity gradient across the kernel. Therefore, the
smallest vortex diameter that is captured is slightly less than the kernel size. Also note
that the velocity (gradient) within half a correlation window distance from the wall is
not included in the analysis, because it cannot be resolved accurately by PIV (Adrian &
Westerweel 2011). As opposed to the traditional Reynolds decomposition (u = U + u′),
the present triple decomposition allows us to isolate the large turbulent rolls, which are
expected to contribute importantly to the torque and affect the torque scaling transitions
(§ 1). This expectation is indeed confirmed by the results presented in § 3.

The contributions of U , u′
L and u′

S to the wall friction, hence torque, are determined
as follows. For a statistically steady flow the total mean stress, τtot, in the flow varies as
∼r−2 due to the conservation of angular momentum (e.g. Eckhardt et al. 2007). Here, the
overbar indicates a temporal and spatial averaging in the axial and azimuthal directions.
Furthermore, it is assumed that for these high Reynolds numbers viscous stresses in the
bulk are negligible, and only important in a very thin region near the wall. This implies
that the total stress is equal to the Reynolds stress in the bulk flow, uθur, where uθ and ur
are the azimuthal and radial velocity components, respectively. For the wall shear stress
on the inner cylinder, τi, it follows that τi = ((ri + ro)/2ri)

2ρuθur = ((1 + η)/2η)2ρuθur,
which leads to Cf = ((1 + η)/2η)2uθur/U2

sh where the Reynolds stress is taken in the bulk
at the midpoint between the cylinders. Furthermore, the Reynolds shear stress is related to
the decomposed velocity field according to

uθur = UθUr + u′
θ,Lu′

r,L + u′
θ,Lu′

r,S + u′
θ,Su′

r,L + u′
θ,Su′

r,S. (2.1)

Note that the correlations between the mean and the fluctuations are zero by definition,
and have been omitted in (2.1). The remaining contributions to the shear stress are
examined in § 3.

3. Large-scale flow structures and their contribution to torque

First, we examine the kinetic energy contained in the large- and smaller-scale velocity
fluctuations by means of their root-mean-square (r.m.s.) values (figure 2). The r.m.s. values
are taken over the fluid volume corresponding to one counter-rotating Taylor vortex pair
as well as 200 uncorrelated snapshots. All investigated Reynolds numbers (ReS = 11 000,
29 000 and 47 000) showed qualitatively similar results. Therefore, here and throughout
this section, we focus on ReS = 29 000, which is the middle Reynolds number in our
investigations. The plot (figure 2) shows that the energy in the large and the small scales
are of the same order of magnitude, which means that both are significant. However,
several transitions can be seen from the r.m.s. profiles. For RΩ < −0.05, the small-scale
and large-scale r.m.s.s are approximately equal. Then in the range −0.025 < RΩ < 0.005,
the large-scale r.m.s. peaks and dominates, with the azimuthal component u′

θ,L having
the highest r.m.s. observed. The small-scale r.m.s. attains a minimum in this range.
Finally, for positive rotation numbers (RΩ > 0.02) the relative importance reverses; the
small-scale r.m.s. dominates while the large-scale r.m.s. decreases. These transition points
are consistent with those for the torque scaling (figure 1). Furthermore, the present results
are consistent with the observation of large rolls and small-scale motions dominating the
flow for RΩ < 0 and RΩ > 0 respectively (Ravelet et al. 2010).
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FIGURE 2. The r.m.s. of fluctuating large- and small-scale velocities versus RΩ at ReS =
29 000. u′

z, u′
θ and u′

r represent the fluctuating velocities in the axial, azimuthal and the radial
directions, respectively. The second indices L and S (e.g. u′

z,L and u′
z,S) represent the large- and

smaller-scale components of the fluctuating velocity, respectively. The lines are included to guide
the eye. The r.m.s. of fluctuating large- and small-scale velocities are normalized using the r.m.s.
of the non-filtered fluctuations of each velocity component, e.g. u′

z. Horizontal arrows indicate
the dominant scale in the different ranges of the rotation number.

Not only does the relative energy of the large scales change with rotation number,
so does the orientation of the large-scale vortices. Since both the mean U , and the
large-scale fluctuations u′

L showed roll structures, we combined these fields, i.e. (U + u′
L),

when evaluating the large-scale vortices and the associated large-scale vorticity. This
can be interpreted as U capturing the steady, azimuthally homogeneous part of the
rolls, while u′

L contains the unsteadiness of the rolls as well as any deviations from
homogeneity in the azimuthal direction. Within the (U + u′

L) field, the large-scale vortices
are detected using the Q-criterion (Hunt, Wray & Moin 1988), where Q is the second
invariant of the velocity gradient tensor. The employed threshold is Q ≥ 0.024, which
is non-dimensionalized using U2

sh/d2. Furthermore, the direction of the vorticity vector
within these structures is taken as a measure for the orientation of the vortices. Figure 3
presents the statistical distribution of the orientation of the vortices for different RΩ ,
where the angles β and φ are defined in the inset of figure 3(d). Please note that all data
points within the detected structures have been included in the statistics of β and φ. The
results show profound changes in the orientation of the vortices. At large negative rotation
number (RΩ = −0.083, figure 3a), the vortices are approximately aligned in the azimuthal
direction (β ≈ ±90◦) and inclined with the cylinder walls at predominantly 25◦. The
two peaks in the joint probability-density-function (p.d.f.) correspond to counter-rotating
vortex pairs. Because the vortices occur in pairs, the height of the two peaks is expected
to be equal. However, in figure 3(a) the peak heights are different due to the limited
measurement domain, which captures only three vortices, that is, one pair plus a half-pair.
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FIGURE 3. Joint-PDF of the orientation of the vorticity vector in the large-scale vortices for
RΩ = −0.083 (a), −0.010 (b), 0 (c) and 0.091 (d). ReS = 29 000 for all cases. The angles β and
φ are with respect to the TC coordinate system as shown in (d). For reference, φ = 0, β = ±90◦
corresponds to alignment in azimuthal direction, which coincides with the orientation of a pair
of Taylor vortices, φ = 0, β = ±90◦ + θ corresponds to spiral vortices inclined at an angle θ
with respect to the azimuthal direction and φ = 0, β = 0 corresponds to alignment in axial
direction. Furthermore, red symbols (×) mark the orientation of the vortex axes as shown in the
corresponding plots in figure 4.

At RΩ = −0.010 (figure 3b), which is near the condition for optimum angular momentum
transport, the inclination angle increases and attains a wider distribution, where |φ| varies
mostly between 20 and 60◦. The distribution for the angles widens even more when
the cylinders are in exact counterrotation (figure 3c), which marks the transition from
azimuthally aligned vortices at negative RΩ , to axially aligned vortices at positive RΩ

(β = φ = 0, figure 3d). Some typical examples of the associated instantaneous vortical
structures are shown in figure 4 by means of Q iso-surfaces. Consistent with the statistical
results in figure 3, the axes of the vortices are initially at shallow angles with respect
to the walls (figure 4a). These structures are analogous to Taylor vortices, which were
observed in the time-averaged flow at similar RΩ (Dong 2007; Ravelet et al. 2010; Tokgoz
et al. 2012; Ostilla et al. 2013). As the rotation number increases, the vortices become
more inclined as the condition of optimal angular momentum is approached (figure 4b).
The broad distribution of the angles in figure 3(c) is associated with ‘blob-like’ structures
for Q (figure 4c). At positive rotation numbers, the vortex axes are aligned in the axial
direction and column-like (figure 4d). Maretzke, Hof & Avila (2014) associated finite
columnar structures with optimal transient growth modes in laminar TC at similar rotation
numbers. However, it has remained unclear whether columnar vortices could be seen at
fully turbulent conditions (Tuckerman 2014). The present findings suggest they represent
the large-scale flow structure at RΩ > 0.

In order to better understand the formation of columnar vortices, the Rossby number,
Ro = U/2ΩL, is evaluated. Here, Ω = 2πfo is the angular velocity of the rotation, while
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(b)

(a)

(c)

Ui

Ui

Uo

Uo

Ui

Uo = –Ui

Ui = 0

Uo = 0
(d )

FIGURE 4. Examples of instantaneous large-scale vortical structures at ReS = 29 000 for RΩ =
−0.083 (a), −0.010 (b), 0 (c) and 0.091 (d). The iso-surfaces show Q = 0.024. Panels (a–c)
show projections onto the azimuthal–radial plane, while (d) shows the projection on the
azimuthal–axial plane. Ui and Uo indicate the velocity of the inner and outer cylinder walls,
respectively. The red dashed-lines (in a,b,d) indicate the axes of the vortical structures, which
have been determined visually. Note that the blobs in (c) do not reveal a principal axis.

U and L are the large-scale turbulent velocity and length scale respectively. In the bulk
of a wall-bounded turbulent shear flow, the r.m.s. of the fluctuating velocity is of order
5 % of the velocity difference across the layer, which yields U ≈ 0.05 × 2π|fi − fo|ri
for TC flow. The length scale of interest is the gap width, i.e. L = d. For the case of
outer cylinder rotation only, RΩ = 0.091, it follows that Ro = 0.275. Such a small Rossby
number suggests that the Coriolis force dominates over inertial forces. At similar Ro,
columnar vortical structures have been shown to form in DNS of homogenous rotating
turbulence without walls (e.g. Yoshimatsu, Midorikawa & Kaneda 2011). Therefore, the
present columnar vortices are consistent with general turbulence at Ro < 1. Finite size or
end effects are not necessary to explain the existence of columnar vortices in the TC gap.

The observed transitions in the orientation of the large-scale vortical structures
(figures 3 and 4) have important implications for the Reynolds shear stress, as shown
in figure 5. For RΩ < −0.025, the Reynolds shear stress in the bulk, hence the torque, is
dominated by the mean flow contribution. At these conditions, the large-scale vortices are
approximately aligned in the azimuthal direction and can be considered as steady Taylor
vortices. However, beyond the conditions for optimal angular momentum transfer, i.e.
RΩ

∼= −0.02, the large-scale vortices become more inclined with respect to the azimuthal
direction (e.g. figure 4b), which reduces their contribution to the mean flow because of
azimuthal averaging. These large-scale vortices induce a fluctuating velocity perpendicular
to the vortex axis, which means they induce both u′

θ,L and u′
r,L at the same location,
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(×10–3)

FIGURE 5. Contributions to the friction factor Cf associated with the mean flow and the
instantaneous large-scale (LS) and smaller-scale (SS) velocity fluctuations in the TC gap at
ReS = 29 000. Their combined total (circles) is compared against the estimated based on the
torque measurements of Ravelet et al. (2010) (triangles). The dashed lines are indicative of the
trend in the data.

which explains their large correlation, that is their large Reynolds shear stress contribution
u′

θ,Lu′
r,L. For positive RΩ , the orientation of the large-scale vortices changes to the axial

direction. In that case, u′
θ,L and u′

r,L are induced at different locations relative to the vortex,
hence their correlation u′

θ,Lu′
r,L diminishes. As a result, the small scales contribute most to

the Reynolds shear stress beyond RΩ = +0.025 (figure 5).
Finally, the friction coefficient determined from the total Reynolds shear stress in the

core is compared with the Cf determined from the torque measurement (figure 5). The
two approaches are generally consistent meaning that the PIV measurement captured
the main effects. The differences may be explained by limited spatial resolution in PIV,
which causes an underestimation of the small-scale fluctuations and their Reynolds shear
stress contributions (Tokgoz et al. 2012). At negative RΩ , the small scales contribute
relatively little to the overall torque, and the methods agree to within 6 %. However,
at positive RΩ , the small-scale contribution is significant, and the relative difference
increases to approximately 33 %. Furthermore, the uncertainty in the contribution from
the von Kármán gaps between the cylinder end plates to the torque as measured with the
torque sensor may contribute to the observed differences.

4. Conclusion

With increasing rotation number, we found the large-scale flow structure to transition
from steady Taylor rolls, to unsteady vortical structures inclined with respect to the wall,
to columnar vortical structures aligned in the axial direction. These transitions in structure
coincide with the transitions in the torque scaling and angular momentum transfer. The
decay of the Taylor vortices in the mean flow does not coincide with the decay in the
torque, and they occur at different rotation numbers (approximately RΩ = −0.025 and 0
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respectively, see figure 5). Therefore, Taylor vortices cannot fully explain the changes in
the torque scaling near the conditions of optimal angular momentum transfer.

For sufficiently negative rotation number, it is the mean flow that is largely responsible
for the torque, not the turbulence (i.e. the fluctuations).

The unsteady inclined vortical structures at intermediate rotation number induce u′
θ,L

and u′
r,L simultaneously. Hence, these velocity components are highly correlated, which

implies large angular momentum transfer. ‘Optimum’ angular momentum transfer in our
system is associated with the transition from the steady vortices to these unsteady vortices
inclined at 45◦ with the wall. The (steady) Taylor rolls alone are not optimal in transferring
angular momentum.

At large positive rotation number, the axial vortices induce u′
θ,L and u′

r,L in different
places, hence little correlation or angular momentum transfer is produced. The Rossby
number at these conditions is smaller than one indicating that the turbulence is rotation
dominated and that columnar vortices are expected. Columnar structures in TC flow have
been reported for transition (Maretzke et al. 2014). However, they were not observed before
for fully turbulent conditions. The detection of columnar vortices was first made possible
by the volumetric velocity fields provided by tomographic-PIV.
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