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This paper presents a detailed analysis of the flows induced in a long two-dimensional
cavity heated from below in the presence of streaming due to ultrasound acoustic waves
emitted by a source. The problem is tackled by using performing spectral element codes,
allowing continuation of steady solutions, bifurcation points and periodic cycles. For a
given dimensionless source size, the governing parameters are the acoustic streaming
parameter A which modulates the acoustic force generating the Eckart streaming and the
Rayleigh number Ra which quantifies the buoyant force responsible for the convection.
The streaming flow, which goes to the right along the horizontal axis and returns along the
lower and upper boundaries, influences the instability thresholds, which are first strongly
stabilized above the pure Rayleigh—Bénard threshold Rayp when A is increased, before a
destabilization to reach the pure streaming threshold A, at Ra = 0. The steady multi-roll
convective flow generated without streaming is replaced by periodic waves when A is
increased, forward waves for moderate A and backward waves for large A. The transition
between these waves induces a specific dynamics involving steady flows, which has been
elucidated. The waves also eventually disappear for a sufficient increase of the Rayleigh
number, replaced by steady multi-roll flows hardly influenced by the streaming flow. A
very rich dynamics is thus observed with the competition between the waves and the steady
flows.
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1. Introduction

Acoustic streaming is a stationary (time-independent) flow occurring in fluids (gases or
liquids) subjected to a high-intensity sound field (Nyborg 1998). Such flow is obtained
without any external mechanical contact, which is a real advantage for the manufacture of
either delicate or aggressive materials, as in the crystal growth from a melt where the
stirring of the liquid during the solidification is needed to homogenize the impurities
(Oh, Park & Cho 2002; Kozhemyakin 2003; Kozhemyakin, Nemets & Bulankina 2014;
Eskin 2015). Acoustic streaming is also relevant to other industrial applications such as
the pumping of fluids (Rudenko & Sukhorukov 1998), sometimes in microflow systems
(Frampton, Martin & Minor 2003), the mixing of liquids in closed containers (Suri et al.
2002) or the enhancement of rate-limited processes such as diffusion, or heat and mass
transfer (El Ghani ef al. 2021).

This streaming is a nonlinear effect which can be connected to the Reynolds stresses
associated with the rapidly oscillating acoustic velocities, but necessitates the dissipation
of the acoustic energy flux (Lighthill 1978; Nyborg 1998; Moudjed et al. 2014). This
dissipation could be due to the presence of boundaries and occurs in the acoustic boundary
layers. The flow thus generated is called Rayleigh—Schlichting streaming. The dissipation
could also be related to the attenuation of the wave in the fluid bulk and, in this case, it
generates Eckart streaming. For the Eckart streaming considered here, the fluid flows away
from the ultrasound source in the same direction as the ultrasound wave propagation.

The use of acoustic streaming in crystal growth applications induces its interaction
with temperature gradients, heat transfer phenomena and gravity induced convective
flows (in such heated situations the Prandtl number (Pr = v/k, where v is the kinematic
viscosity and « is the thermal diffusivity) appears as a non-dimensional characteristic
parameter for the system). Only few studies have treated such interactions. Vainshtein,
Fichman & Gutfinger (1995) analytically investigated the effect of Rayleigh—Schlichting
streaming on the heat transferred between two horizontal parallel plates kept at different
temperatures (hot plate above). They found a marked enhancement of the heat transfer
due to the Rayleigh—Schlichting streaming and derived asymptotic relations expressing
the mean Nusselt number variations. Hyun, Lee & Loh (2005) performed experimental
and numerical studies to measure the enhancement of the convective heat transfer due to
acoustic streaming induced by a vibrating beam (Rayleigh—Schlichting streaming). For a
heat transfer from above, the vibrations induce a temperature drop, which increases with
the vibration amplitude, and is enhanced when the gap is open rather than closed. Their
numerical calculations are able to reproduce the acoustic streaming flow and quantitatively
confirm the drop in the temperature observed when the acoustic vibrations are applied.
More recently, Green et al. (2016) experimentally studied the flow created by a vertically
oriented ultrasonic transducer, placed at the top endwall of a cylindrical Pyrex container.
The bottom endwall is an absorbing material, which will be progressively heated by the
absorbed impinging acoustic beam. They show that a quasi-steady flow field driven by
acoustic streaming is rapidly established within the container, but that this flow, after some
time, is transformed into a secondary flow state, due to a thermal instability induced by
the progressively heated bottom.

Some other studies considered the heat transfer in air between a lower hot plate
and an upper cold plate, but in the case of acoustic standing waves for which
only Rayleigh—Schlichting streaming is effective. Nabavi, Siddiqui & Dargahi (2008)
experimentally studied the modifications induced in the streaming velocity fields by such
differentially heated horizontal walls. They found that, when the temperature difference
is increased, the streaming velocities are increased too and the originally symmetric
streaming vortices are deformed to give asymmetric vortices. Aktas & Ozgumus (2010)
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numerically studied a similar configuration with a two-dimensional approximation. They
point out that the transverse temperature gradient strongly affects the acoustic streaming
structures and velocities. They also mention an enhancement of the overall heat transfer
due to the acoustic streaming.

Finally, some studies considered the influence of Eckart streaming on the flow and
instabilities induced in differentially heated cavities. In the case of a side-heated cavity,
a situation often referred to as the horizontal Bridgman configuration in the field of
crystal growth, Dridi, Henry & Ben Hadid (2008a) first considered a three-dimensional
cavity where the streaming was induced by a transducer of fixed square shape generating
an acoustic beam along the long horizontal axis of the cavity. For varying aspect
ratio, acoustic intensity and Prandtl number, they show how the convective flow is
modified by the streaming and how the further transitions at bifurcation points are also
influenced. Dridi, Henry & Ben Hadid (2010) then considered an infinite layer submitted
to a horizontal temperature gradient and to acoustic streaming induced by a horizontal
ultrasound beam. In the framework of the parallel flow approximation, they first determine
analytically how the cubic profile of the convective flow is modified by the streaming,
for different widths and positions of the acoustic beam. In a second step, they study the
transition to instabilities, first for pure streaming flows, and then for convective flows
submitted to streaming. They show how the instability thresholds are modified, depending
on the type of instability, the Prandtl number, the position of the beam and the acoustic
intensity. Finally, Ben Hadid er al. (2012) studied the influence of Eckart streaming on
an infinite layer heated from below (Rayleigh-Bénard configuration), in the case of a
horizontal centred acoustic beam. They show how the transition to instability is modified
by the streaming, with a threshold evolving in a continuous way from the Rayleigh-Bénard
threshold to the pure streaming threshold. Depending on the beam width and the Prandtl
number, stabilization of the Rayleigh—Bénard flow by the streaming can be obtained, with
an increase of the thresholds (instability onsets) by a factor of up to 10.

The Rayleigh—Bénard configuration will still be considered here. It is a prototype
configuration for flow transitions and heat transfer purposes, which has been studied
extensively. The influence of Eckart streaming on such a configuration is a general
theoretical issue, but it could also be interesting for different applications such as crystal
growth, heat transfer between plates and Soret separation devices (Charrier-Mojtabi,
Fontaine & Mojtabi 2012; Charrier-Mojtabi et al. 2019). In an infinitely extended fluid
layer, the onset of the flow in the Rayleigh—Bénard configuration occurs through an
instability at a critical value of the Rayleigh number, Ra, = 1707.762, with a critical
wavenumber, o, = 3.117. We will consider here a two-dimensional cavity with an
aspect ratio A, = length/height = 10, which corresponds to a slight confinement in the
longitudinal y direction compared with the extended layer, and the streaming will be
induced by an acoustic beam of characteristic dimensionless size Hp = hp/h = 0.338,
where & is the height of the cavity and 4y, is the size of the beam. As shown in Ben
Hadid et al. (2012), the determination of Hj, in practice the width of the gate function
corresponding to the applied force, is not so simple when considering a grid where the
function cannot evolve sharply, but can only move from 1 to 0 on neighbouring points. To
match with the analytical velocity profiles obtained in extended layers, it was found that Hj
has to be calculated as (x(n,) + x(n, + 1))/2 — (x(ng) + x(ng — 1))/2, where ng and n,,
are the extreme points where the force is applied, this force going to O atngy — 1 and n,, + 1,
and x is the dimensionless vertical coordinate at these points, ranging from —0.5 to 0.5. On
our mesh with 87 points along the vertical, the force is applied on 9 points on both sides of
the horizontal axis, from x(ng) ~ —0.1605 to x(n,) ~ 0.1605. With x(ng — 1) ~ —0.1775
and x(n, + 1) ~ 0.1775, we obtain H;, ~ 0.338.
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Figure 1. Sketch of the studied configuration. The rectangular cavity has an aspect ratio A, = 10. The
horizontal walls are isothermal: the bottom wall (in red) is at a hot temperature 7),, whereas the top wall
(in blue) is at a colder temperature 7,.. The lateral walls (in black) are adiabatic. All the boundaries are rigid
walls with no-slip conditions. An acoustic wave is emitted by a transducer on the left wall and absorbed by an
absorber at the right wall. It generates streaming taken into account through a body force F considered as a
gate function on the beam width (dashed lines).

In this study, we will first focus on the modifications the Eckart flow induced by acoustic
streaming is able to introduce in the stability of the Rayleigh—Bénard problem in such a
cavity, in particular the modification of the thresholds and the change of instabilities. In
a second step, we will characterize the flows, steady or oscillatory, which develop beyond
these thresholds. This problem has similarities with the Poiseuille-Rayleigh-Bénard
situation (Nicolas 2002). Interestingly, the Eckart streaming in the closed cavity generates
both flows in the beam direction along the beam axis and in the opposite direction along
the boundaries, whereas the Poiseuille flow has only one direction, namely the direction
induced by the imposed pressure gradient. We will see that very interesting behaviours
will be put into light in our configuration. To tackle this problem, a spectral element
code is used allowing time evolution calculations, the continuation of steady solutions
and bifurcation points, but also the continuation of periodic oscillatory solutions. The
combination of these different tools is a key element of this study.

After the introduction, we present the governing equations of the problem and the
derivation of energy budgets in §2. The numerical methods are shortly described in
§3 with tests of accuracy. The results concerning streaming flows without buoyancy
are presented in § 4. The influence of these streaming flows on the buoyant instability
thresholds is depicted in § 5. What occurs beyond these thresholds is described in §§ 6 and
7. After the presentation of the forward and backward waves in § 6, we describe the more
global dynamics involving competition between steady solutions and waves in § 7.

2. Governing equations and energy budgets
2.1. Governing equations

We consider a rectangular cavity of height 4 along x and length [ along y (aspect ratio
Ay = I/h) filled with a homogeneous Newtonian fluid and subject to a vertical temperature
gradient and to the effect of ultrasound waves (see figure 1). The vertical temperature
gradient is due to differentially heated horizontal walls. The waves are generated by an
ultrasound source, of size h, (hp < h), located in the middle of the left endwall of the
cavity. The right endwall is assumed to be absorbing for sound waves so that reflection
is avoided and the waves propagate in the horizontal y direction, towards the right. The
physical model is the one already used by Ben Hadid et al. (2012). The previous study,
however, considered a cavity with an infinite length and focused on the stability thresholds.

The attenuation of the wave inside the fluid generates a body force. As shown by Nyborg
(1998), this force is equal to the spatial variation of the Reynolds stress and can be written
as F = —p(( « V' +u/(V -u)), where p is the constant equilibrium density, «’ is the
fluctuating velocity in the sound wave and () means a time average over a large number
of cycles. For a plane wave propagating in the y direction, this body force is oriented in
the y direction and its intensity is given by F' = py Vg e~2¥Y, where y is the sound wave
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spatial attenuation coefficient and V,, is the sound wave velocity amplitude. Note that
this expression of F can also be derived from the more general expression F = 2y1,/c,
where 1, is the acoustic intensity, assuming a plane wave and c is the sound velocity
(Nyborg 1998; Moudjed et al. 2014, 2015). The real wave initiated by a transducer is
more complex: it induces a pressure field with an amplitude which presents a complex
structure in the near field, a maximum at the Fresnel length and a further decrease in the
far field, where a cardinal-Bessel shape is obtained in the beam cross-section. However,
provided the divergence of the beam is weak (Dridi et al. 2008a) and the attenuation of
the wave is sufficiently small, the body force can be considered as constant (F = py Vg)
in the acoustic beam of characteristic width 4, and zero outside. It is a rather crude
approximation, but it reflects well the effect of the force induced by the acoustic beam
on the fluid in many situations. For example, for decimetric experiments in water using
ultrasound at 2 MHz as in Moudjed et al. (2015) (/ = 0.1 m, y = 0.1), the attenuation
along the length of the cavity, controlled by 2y/ = 0.02 <« 1, remains very weak. Note
that such an approximation was proposed by Eckart (1948) and later used by Rudenko &
Sukhorukov (1998), Dridi, Henry & Ben Hadid (2008b), Dridi et al. (2008a, 2010), Ben
Hadid et al. (2012) and Charrier-Mojtabi et al. (2012, 2019).

The top and bottom horizontal walls are perfectly conducting and held at different
temperatures, respectively T, and Tj, with Tj, > T,, whereas the vertical walls are adiabatic.
All the boundaries are rigid walls with no-slip conditions. We assume that the physical
properties of the fluid are constant (kinematic viscosity v, thermal diffusivity «, density
p) except for the fluid density in the buoyancy term, which obeys the Boussinesq
approximation, p = po(1 — B(T — T,;)), where B is the thermal expansion coefficient
and T,,, = (T, + Tp)/2 is a reference temperature. Using £, h? /v, v/h and (T, — T,) as
scales for length, time, velocity and temperature, respectively, the governing equations,
which are the Navier—Stokes equations coupled to the energy equation, can be written in a
dimensionless form as

V.V =0, @.1)
1% R
Sr VIV = VPV 4 T+ () ey, 2.2)
r
or + (W -VT) = L ver (2.3)
ot - Pr ’ '

where the dimensionless variables are the velocity vector [V = (u, v)] (u along the
vertical and v along the horizontal), the pressure P and the temperature 7  defined
by T = (T —T,)/(T, — T;). Here, f(x) = A is the dimensionless force inducing the
acoustic streaming (deduced from F), and §j, is a function of the vertical x coordinate; its
value is 1 inside the acoustic beam and 0O outside, corresponding to a gate function on the
beam width. In these equations, Ra = Bg(T, — T)h? /(kv) is the Rayleigh number with g
the gravitational acceleration, Pr = v/« is the Prandtl number and A = yV3h3 /v? is the
acoustic streaming parameter. The dimensionless beam width is given by Hp = hy/h.

The study is focused on the flow in a fluid with a Prandtl number Pr = 1, inside a
two-dimensional (2-D) cavity heated from below, with aspect ratio Ay = 10. The streaming
is induced by an acoustic beam with a dimensionless width H;, = 0.338.

2.2. Kinetic energy budgets

In order to better understand the stabilizing or destabilizing mechanisms which will affect
the Rayleigh—Bénard situation when acoustic streaming is applied, we can perform kinetic
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energy analyses based on the critical eigenvectors at threshold. The steady solution at
threshold [u;, T](x;) (generally referred as the basic solution or basic flow) and the critical
eigenvector [up ;, Tp](x;) both enter the equation of the energy budget giving the rate of
change of the fluctuating kinetic energy defined as ey = Re(up; up ;/2) (Re and the overbar
denote the real part and the complex conjugate, respectively). In these expressions, x1 (u1)
and x» (1) are assumed to be x («) and y (v), respectively. After integration on the volume
of the cavity, an equation for the rate of change of the total fluctuating kinetic energy
(Ex = [ ex d§2) can be obtained
0E}

W =Es+ Ep + Ey, 24)

Enge(—/‘%j@ﬁ%”dQ),

B Q b axj b

Eb=Re<&3/nnJ¢ﬁ“dQ>,
Pr Q ’

Ev=Re<—/1§@i§&£dQ).
Q 0x;j 0x;

Since no acoustic force term appears in the perturbation equations, the rate of change of
the total fluctuating kinetic energy has 3 contributions: Ej represents the production of
fluctuating kinetic energy by shear of the basic flow (inertia term), Ej, the production of
fluctuating kinetic energy by buoyancy and E,, the viscous dissipation of fluctuating kinetic
energy. At threshold, the critical eigenvector is associated with an eigenvalue with zero real
part. This implies that dEy/dt is equal to zero at marginal stability. Finally, we normalize
(2.4) by —E, = |E,|, which is always positive, to get an equation involving normalized
energy terms E' = E/|E,| at threshold

E +E,=1. (2.6)

Finally, the critical Rayleigh number can also be expressed as a function of energetic
contributions. For that, we use the fact that the expression of E} linearly depends on Ra. At
the threshold, we can write E, = Ra.E). And from (2.6), we get Ra.E; = 1 — E; which,
for A = 0, i.e. in the pure buoyancy case, gives RaoEgv() = 1, where the subscript 0 refers
to the case A = 0 and Rag = Ra.(A = 0). Finally, the ratio of these two equations gives

where

(2.5)

Ry

f—",
Rac _ ﬂ (2.7)
Ray  (Ey/Ep) '
——

Ry

which indicates that the variation of Ra. with A can be expressed through the ratio of the
two quantities Ry and Ry, the first quantity being connected to the shear of the basic flow
due to acoustic streaming and the second quantity to buoyancy. For A = 0, Ry and R;, are
equal to 1 and Ra, = Ray.

3. Numerical methods and tests of accuracy

The 2-D steady calculations were performed with the 2-D version of the spectral element
code with continuation techniques developed by Henry & Ben Hadid (2007), further used
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Time scheme  Time step Period Floq Floqz
Order 3 1073 0.4348844  0.866309  0.253032
Order 2 1073 0.4348841  0.866306  0.253027
Order 2 1074 0.4348709  0.866178  0.252762
Order 2 1073 0.4346522  0.864314  0.248825

Table 1. Periodic oscillatory solution obtained at A = 4000 and Ra = 6760 with different time schemes and
time steps (for A = 4000, the oscillatory instability threshold is at Ra. = 6609.92). We compare the period of
the computed oscillatory solution and the first two Floquet multipliers Floq; and Floq, (those with the strongest
norm) obtained by the Arnoldi method, which are real in this case (2-D cavity with Ay, = 10, H, = 0.338,
Pr=1).

by Torres et al. (2013, 2014) and more recently adapted to non-Newtonian fluids by Henry
et al. (2022). In this code, Newton—Krylov methods are used to compute both the steady
flow solutions taking into account the acoustic streaming force and the bifurcation points
at which these solutions are destabilized by steady or oscillatory perturbations.

For transient computations or unsteady flow simulations, an accurate time stepping of
the equations discretized on the spectral element mesh is performed using the third-order
accurate time integration scheme proposed by Karniadakis, Israeli & Orszag (1991).
Finally, for the specific calculation of periodic orbits (or cycles), we used the cycle
continuation method developed by Medelfef et al. (2019), but originally proposed by
Sanchez et al. (2004) and already successfully used in a Rayleigh-Bénard problem by
Puigjaner et al. (2011). The method is still based on a Newton—Krylov approach in which
the periodic states of (2.1)—(2.3) are obtained as fixed points of a Poincaré map. The
trajectories in the phase space used to approach the periodic state are computed with the
time integration scheme at second or third order with a small time step At¢. The method
is found to work well with a convergence generally obtained with a few Newton—Krylov
steps (3 to 7), each Newton—Krylov step requiring 1 to 4 generalized minimal residual
algorithm (GMRES) iterations for a prescribed precision of 1072, The stability of these
periodic solutions is further investigated in the framework of the Floquet theory using an
Arnoldi method (Medelfef ef al. 2019). In our previous work (Medelfef e al. 2019), a time
integration scheme at third order was always used. Here, for some cases, the period is
so long that the time step has to be increased and this is only possible with a scheme at
second order. In order to be sure that the corresponding loss of accuracy was acceptable,
we performed some tests on the calculation of the periodic solution at A = 4000 and
Ra = 6760, a case for which both schemes and different time steps can be used. For the
different tests, the period and the two first Floquet multipliers related to the calculated
cycle are given in table 1. We see that, for a time step Az = 107>, the schemes at order 2
and 3 give practically the same results, with differences only affecting the seventh digit for
the period and the sixth digit for the Floquet multipliers. The scheme at order 2 with
At = 107* yields results which are also very close. Even the scheme at order 2 with
At = 1073 provides acceptable results, with a relative error on the period of 5 x 1074
with respect to the reference case at order 3.

The grid used for all our calculations of streaming flow in a Rayleigh—Bénard cavity
with an aspect ratio Ay = 10 has Ny = 101 x N, = 87 points in the y and x directions,
respectively. The number of points Ny in the short vertical x direction is higher than
needed: this choice comes from our previous study (Ben Hadid et al. 2012), where we
wanted to very progressively vary the beam width. Tests have been done to check the
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Grid points ~ Ra. Hopf =~ Ra. Hopf A Hopf Ra. SN Ra. SN
Ny along y A =2000 A =4000 Ra=0 A=1000 A =2000

101 3621.623 6609.926  7051.356 7721.86 7639.17
111 3621.623 6609.927  7051.356 7721.04 7639.63
121 3621.623 6609.927  7051.356 7720.48 7638.50
151 3621.623 6609.927  7051.356 7720.61 7638.74

Table 2. Tests of accuracy for the simulations. The critical values at different primary Hopf bifurcation points
(see figure 8) and saddle nodes (SN) points (on the upper solid black curve SNy, in figure 20) are given for
different numbers of grid points in the horizontal y direction. The number of grid points N, in the vertical x
direction is kept at 87, a sufficiently high value (2-D cavity with Ay, = 10, H, = 0.338, Pr = 1).

Figure 2. Characteristic streaming flow in the cavity with aspect ratio Ay = 10 for a beam width H, = 0.338
(Ra =0,A = 2000, Pr =1).

quality of the discretization along the horizontal y direction. As shown in table 2, where
the number of points N, in the y direction is varied, the chosen grid gives an excellent
resolution of the problem. The thresholds at different bifurcation points do not evolve or
only very little when N, is increased. The very good tests on the Hopf thresholds indicate
that both the flow solution and the eigenvector that will induce the oscillatory behaviour
are well resolved on the grid. The tests on the saddle-node points at which steady solutions
appear are also excellent.

4. Streaming flows without buoyancy (Ra = 0)

In the absence of buoyancy (Ra = 0), steady numerical solutions of the system (2.1)—(2.3)
in a 2-D cavity of aspect ratio Ay, = 10 have been obtained for a beam width H, = 0.338,
a Prandtl number Pr = 1 and different values of the acoustic streaming parameter A. The
global view of the flow is shown in figure 2 through velocity vector plots. We see the
typical stationary streaming structure of the Eckart flow in a bounded cavity: around the
sound beam axis, the flow is directed away from the sound source, in the same direction as
the acoustic waves propagation, whereas along the upper and lower walls, the flow is in the
opposite direction, back to the source, allowing mass conservation in the closed cavity. The
horizontal velocity profiles at mid-length in the cavity are plotted in figure 3 for different
values of A. These profiles reproduce the positive v values around the sound beam axis at
x = 0 and the negative v values associated with the back flow along the upper and lower
walls. These profiles are compared with the analytical parallel flow profiles obtained in
an extended cavity (black + symbols) and derived in Ben Hadid et al. (2012). For all the
values of A, the comparison is excellent, indicating that the parallel flow approximation
is still valid in the central part of a cavity of aspect ratio Ay, = 10. Moreover, the direct
proportionality of the velocity profiles with A obtained analytically also applies to our
numerical profiles and the changes of curvature in the profiles occur in any case at the
limits of the beam. Finally, as expected for rather small beam widths, the region with
positive velocities is larger than the beam width Hp, (only slightly here) and the maximum
velocity occurs along the beam axis.

952 A28-8


https://doi.org/10.1017/jfm.2022.907

https://doi.org/10.1017/jfm.2022.907 Published online by Cambridge University Press

Eckart streaming flows in a Rayleigh—Bénard configuration

0 60 80

Figure 3. Horizontal velocity profiles, characteristic of the streaming, at mid-length in the cavity with aspect
ratio Ay = 10 for a beam width Hj, = 0.338 and different values of A (1000, 2000, 3000, 4000, 5000, 6000,
6500, A. = 7051.36) (Pr = 1). The profiles obtained for Ra = 0 (coloured lines, pure streaming) are compared
with those obtained at the thresholds Ra, (thick black dashed lines) and with the analytical parallel flow profiles
in an extended cavity (black + symbols, Ben Hadid ez al. 2012). The horizontal dashed lines indicate the limits
of the acoustic beam.

In our 2-D simulations, the flow must change direction at the endwalls through vertical u
velocities, which are plotted for A = 4000 in figure 4(a,b) (solid isocontours) with zooms
on the two extremities of the cavity. These vertical velocities have their larger values in the
end parts, principally on a length of approximately 1, i.e. the height of the cavity. Outside
these end parts, where the return of the flow occurs, the vertical velocities are rather
small, in any case below 10 % of w4 and 2 % of v;,,4, (maximum vertical and horizontal
velocities in the cavity, respectively), and they still strongly decrease when moving towards
the cavity centre. In this long central zone, the parallel flow approximation can then be
considered as well verified. The isotherms for the same case (A = 4000) are also given in
figure 4(c,d) (solid isocontours). The heat transfer appears to be diffusive in the main part
of the cavity, except in the same end parts where it is influenced by the vertical velocities.
Note that these pure streaming steady flows have the up—down symmetry.

When the acoustic streaming parameter A is increased, the streaming flow is eventually
destabilized by a Hopf bifurcation. Such thresholds for the pure streaming flow in a 2-D
cavity (A, = 10) were already calculated by Ben Hadid et al. (2012) for different beam
widths H, and they were compared with the thresholds in an extended cavity (parallel flow
approximation) obtained previously by Dridi et al. (2010). For the 2-D situation studied
here with Hj, = 0.338, the critical threshold is A, = 7051.36 and it corresponds to the
minimum of the critical curve given in Ben Hadid et al. (2012), i.e. to the more unstable
situation. In an extended cavity, the thresholds are rather smaller, and the minimum
threshold is obtained for H, ~ 0.32 with A, = 5143 (Dridi et al. 2010).

The perturbation at the Hopf bifurcation for A = A, in our 2-D situation is shown
in figure 5(i) through the vertical velocity isocontours of the critical eigenvector (real
part). We see that the perturbation is concentrated near the right boundary of the cavity
and has a arrowhead shape. Such perturbation will break the up—down symmetry of the
pure streaming flow. It is associated with a critical angular frequency w, = 16.8935 and
corresponds to a wave travelling towards the source, in the direction opposite to the beam
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Figure 4. Vertical velocity (a,b) and isotherm (c,d) contours plots in the cavity for A = 4000 at the threshold
Ra, (dashed lines, see text in § 5 and table 3 for details) and at Ra = 0 (solid lines, pure streaming). Zooms on
the end parts of the cavity (2-D cavity with Ay, = 10, H, = 0.338, Pr = 1).

propagation direction. Such waves will be denoted as backward waves, whereas those
travelling in the beam propagation direction will be denoted as forward waves. This wave
appears at a supercritical bifurcation, as shown by the regularly increasing cycle amplitude
above the instability threshold in the phase diagram in figure 6. Its backward propagation is
illustrated in figure 7 for A = 7200 and Ra = 0 by the plots of the vertical velocity contours
at different times during the period. Note that the wave, which is well represented by the
vertical velocity, is mainly visible near the right boundary of the cavity, where it is initiated
successively from the upper and lower recirculation zones.

5. Buoyant instability thresholds in presence of streaming flows

When buoyancy is considered (here in a fluid with Pr = 1), the steady flow in the
cavity heated from below will become unstable beyond a critical threshold expressed
by the critical Rayleigh number Ra.. Without streaming (A = 0), the steady flow is a
pure diffusive temperature field (perfectly horizontal isotherms throughout the cavity),
which has both the up—down and left-right symmetries, and the instability is steady and
occurs at the critical threshold Ra. = 1728.83, a value slightly larger than the well-known
Rayleigh—Bénard value in an extended layer, due to the slight lateral confinement in
our cavity with Ay = 10. The critical eigenvector, shown through the vertical velocity
in figure 5(a), corresponds to 10 counter-rotating rolls inside the cavity. It breaks the
up—down symmetry, but keeps the left-right symmetry of the basic steady flow at
threshold.

When the acoustic force is applied (A #0), the steady flow is modified by the
presence of streaming and the instability generally becomes oscillatory beyond a modified
threshold. The basic steady flow at threshold is close to the streaming flows presented
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Figure 5. Vertical velocity contour plots for the real part of the eigenvectors at the critical Rayleigh number
Ra, for increasing values of the acoustic streaming parameter A from 0 (Rayleigh—-Bénard threshold, Ra, =
Rag = 1728.83) to A, = 7051.36 (pure streaming threshold at Ra = 0) through A = 1000, 2000, 3000, 4000,
5000, 6000, 6500. The values of Ra. are given in each case. The type of instability and the values of the critical
angular frequency w. can be found in table 3 (2-D cavity with A, = 10, H, = 0.338, Pr = 1).
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Figure 6. Phase diagram giving the periodic orbits for values of A (7060, 7100, 7200, 7500) close above the
oscillatory instability threshold (A, = 7051.36, red open circle) for a pure streaming flow (Ra = 0, 2-D cavity
with A, = 10, H, = 0.338, Pr = 1). Here, u; and u, are the vertical velocities at the points (x = 0.16055,
y =0) and (x = 0.05437, y = 0.46822), respectively. The cycle presented in figure 7 is given in red.
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Figure 7. Vertical velocity contour plots during a cycle at A = 7200 for a pure streaming flow (Ra = 0). The
oscillatory instability threshold is at A, = 7051.36 and corresponds to the instability /4 (see table 3). The period
of this cycle is Tpse = 0.36812 and 5 plots are given, each Ty5/4 from 0 to Tpge (2-D cavity with Ay, = 10,
Hp = 0.338, Pr=1).

in the previous section. However, as the thresholds generally occur at Ra #0 and the
isotherms are slightly deformed by the streaming flow in the end parts, some buoyant flow
will appear in these zones. To quantify this effect, the velocity profiles at mid-length in
the cavity at the thresholds have also been plotted in figure 3 as thick black dashed lines.
We see almost no effect on these profiles for all the values of A. We have also plotted
the isocontours of vertical velocity and temperature in the end parts at the threshold in
figure 4. The isocontours are given for A = 4000, a value for which the threshold is quite
high (Ra. = 6609.92), and they appear as dashed lines. Compared with what is obtained
at Ra = 0, the influence is perceptible in both the vertical velocity and temperature,
but remains weak. Note that the basic flow at threshold keeps the up—down symmetry
mentioned previously for the pure streaming flows at Ra = 0 in § 4.

The variation of the critical thresholds Ra. with the acoustic streaming parameter A
is given in figure 8. The thresholds first increase with A from the value Rag = 1728.83
at A =0 to a maximum value close to 7346 obtained for A &~ 4800. They decrease
then quite rapidly to reach the pure streaming threshold (Ra = 0) at A, = 7051.36.
Contrary to the case of the extended layer where a single critical curve was found
from the buoyant threshold to the pure streaming threshold (Ben Hadid er al. 2012),
the thresholds correspond here to four successive critical curves corresponding to four
different instabilities denoted as I; to I4. The corresponding eigenvectors which are
presented in figure 5 change with the change of instability, but rather evolve with A from
the usual roughly circular Rayleigh—Bénard rolls occupying the whole cavity to deformed
rolls concentrated in the right end part.

The variation of the critical angular frequency at threshold, w., with the acoustic
streaming parameter A is given in figure 9. The angular frequency (which is zero for
A = 0, steady threshold) appears to be negative for the small values of A and to change sign
and become positive above a value of A between 1900 and 2000. The change of critical
instability also induces jumps in the variation of w,.
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Figure 8. Critical curves for the onset of instability in the Rayleigh—-Bénard—Eckart problem in a long 2-D
cavity, expressed as Ra. as a function of A (A, = 10, H, = 0.338, Pr = 1). Four different instabilities (from
I to I4) determine the critical curve from the pure Rayleigh-Bénard threshold at Rag = 1728.83 to the pure
streaming threshold at A, = 7051.36.
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Figure 9. Critical angular frequency at the onset of instability in the Rayleigh-Bénard—Eckart problem in a
long 2-D cavity expressed as w, as a function of A (A, = 10, H, = 0.338, Pr = 1).

In fact, these instabilities occur at Hopf bifurcation points with complex conjugate
eigenvectors, associated with £w,. The sign of w, plotted in figure 9 is then not enough
to determine the phase speed of the perturbations (corresponding to waves) and the
consideration of the real and imaginary parts of the critical eigenvectors is needed. If
H is the complex eigenvector associated with the angular frequency w, which has a sign
Sw, the time evolution of the perturbation will be given by

Re [H exp(iwt)| = Re [(H, + iH;)(cos(wr) + isin(wt))] = H, cos(wt) — H; sin(w?),
(5.1)
where Re denotes the real part, i is the unit imaginary number and H, and H; refer to the
real and imaginary parts of the eigenvector, respectively. To find the propagation direction

of the waves, we can consider the evolution of the perturbations at different successive
times during a period T, = 27/w, for example at 1 =0, t = Tys /4, t = Tose/2,
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Figure 10. Vertical velocity contour plots of the eigenvectors associated with a positive angular frequency w,
at Ra, for A = 4000 (see figure 9). The first plot (a) corresponds to the real part and the second plot (b) to the
imaginary part of the eigenvector (2-D cavity with Ay, = 10, H, = 0.338, Pr = 1).

t = 3T,5./4. Using (5.1), we obtain the corresponding perturbations at those times, which
are H,, —H;s,,, —H,, H;s,,, respectively. In figure 10, as an example, we give the vertical
velocity isocontours for the real and imaginary parts of the eigenvector at A = 4000, which
are associated with the critical threshold and angular frequency given in figures 8 and 9,
respectively. For this case at A = 4000, w, is positive (figure 9), so that the time evolution
of the perturbation during a period will correspond to H,, —H;, —H,, H;. In practice, for
example, the red zone (associated with positive vertical velocities) close to the right wall
in H, (corresponding to t = 0) is found to evolve towards the left in successively —H;
at t = T,y /4 (the main blue zone in H; which becomes red in —H;), —H, at t = Ty /2
(the main blue zone in H, which becomes red in —H,) and finally H; at t = 3T,,./4 (the
second red zone from the right in H;) (figure 10). This indicates that the positive values
of w, obtained for the large values of A in figure 9 correspond to left travelling waves
(backward waves) and the negative values obtained for small A to right travelling waves
(forward waves). In our situation, we then obtain forward waves at small A, close to the
Rayleigh—Bénard threshold, and backward waves for larger A, as in the pure streaming
case (Ra = 0,A, = 7051.36).

To depict the origin of the instabilities, the variations with A of the different
contributions to the total kinetic energy budget at threshold (2.6) are shown in figure 11(a).
We see that both buoyancy and shear contributions are destabilizing (positive values) and
they together balance the stabilizing dissipation (negative values). The normalized shear
contribution E, increases from 0 at A = 0 to 1 at A = A., while the normalized buoyancy
contribution E) decreases from 1 to 0, and the change of critical eigenvector from I to /4
does not affect much these variations. This indicates that the instability evolves regularly
from buoyancy induced at A = O to shear induced at A = A..

As shown in § 2, the critical Rayleigh number can also be expressed as a function of
energetic contributions, R connected to shear and R, connected to buoyancy (Ra./Ray =
Rs/Rp, (2.7)). The variations with A of these two quantities Ry and R, are shown in
figure 11(b); Ry and Rp continuously decrease as A is increased, but Ry decreases from
1 forA =0to0for A = A, whereas R;, decreases from 1 to approximately 0.015, a small
but non-zero limiting value. Moreover, the initial decrease of R; is small, corresponding
to a small initial shear destabilization E;, whereas the initial decrease of R is strong,
corresponding to a strong decrease of the destabilizing buoyancy contribution E; . These
initial variations leading to Ry >> R;, explain the initial increase of Rac, i.e. the stabilizing
effect. For larger A, the curve of R, gets the stronger decrease, which limits the increase
of Ra, and induces its further decrease. Finally, the curves of Ry and R; eventually cross
(which corresponds to Ra, = Rag), which allows the ultimate decrease of Ra, toward O for
A=A
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Figure 11. Contributions to the total fluctuating kinetic energy budget (E; (shear, solid curve), E, (buoyancy,
dashed curve)) (a) and energy factors Ry (connected to shear, solid curve) and Rj (connected to buoyancy,
dashed curve) (b) for the critical perturbations at threshold as a function of the acoustic streaming parameter A
(2-D cavity with Ay, = 10, H, = 0.338, Pr = 1).

) (Q Jj Al
Figure 12. Velocity vectors plot for the steady flow in the pure Rayleigh-Bénard situation (A = 0) at
Ra = 3000. The steady threshold is at Ra. = 1728.83 (2-D cavity with A, = 10, H, = 0.338, Pr = 1).

These energy analyses confirm those obtained in an extended layer (Ben Hadid et al.
2012). As in this previous study, the variation of the instability thresholds when streaming
is applied is strongly connected with the changes of the perturbation fields that occur when
A is increased.

6. Characteristics of the flows triggered at the instability thresholds

The real perturbation at the pure Rayleigh—Bénard threshold (A = 0) generates a steady
flow, which breaks the up—down symmetry of the diffusive basic state. Two stable
solutions, related by the broken symmetry, then appear at this pitchfork bifurcation. One
of these solutions is shown in figure 12 through the velocity field for Ra = 3000. We see
that these steady solutions correspond to 10 counter-rotating regular rolls inside the cavity
and that they keep the left—right symmetry of the basic state.

When streaming becomes effective (A # 0), the perturbations at the Hopf thresholds are
expected to generate oscillatory flows. These flows have been found to be time periodic,
at least close to the thresholds, and to belong to supercritical branches. To obtain these
periodic flows, we have used the cycle continuation method presented in § 3 and more
precisely described in Medelfef et al. (2019).

The periodic flows have first been calculated in a certain range of Rayleigh
number beyond the critical threshold Ra. for different values of the acoustic
streaming parameter A, up to the pure streaming threshold at A, = 7051.36 (A =
1000, 2000, 3000, 4000, 5000, 6000, 6500, A.). For these values of A, the critical
characteristics at the oscillatory transition are given in table 3. To characterize the
dynamics of these periodic orbits in the phase space, we have chosen to generally
follow two velocities u; and up, which are the vertical velocities at the points (x =
0.16055,y =0) and (x = 0.05437,y = 0.46822), respectively. In the following, we
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A Instability Ra, W, Tosc,c
0 I 1728.83 0. —
1000 I 2246.97 —1.6497 3.809
2000 I 3621.62 0.1866 33.67
3000 I 5292.63 6.4996 0.9667
4000 I 6609.92 15.4190 0.4075
5000 I 7334.14 23.0724 0.2723
6000 I3 5134.74 22.2228 0.2827
6500 Iy 2879.00 14.7012 0.4274
7051.36 (A;) n 0 16.8935 0.3719

Table 3. Critical characteristics, type of instability, Rayleigh number Ra,, angular frequency w. and period
Tosc.c at the instability thresholds for different values of the acoustic streaming parameter A from 0
(Rayleigh—-Bénard threshold) to A (pure streaming threshold) (2-D cavity with Ay = 10, H, = 0.338, Pr = 1).

present the characteristics of the periodic orbits appearing above the thresholds for the
different instabilities /] to I4 for selected values of A.

6.1. Forward waves for the instability I1 at A = 1000

In our 2-D cavity, for small values of A, the steady perturbation of the Rayleigh—Bénard
situation (A = 0) will become oscillatory and progress away from the transducer, in the
direction of the beam propagation, giving what we have called a forward wave. Such
forward wave is illustrated in figure 13 for A = 1000 and Ra = 2400 by the plots of the
vertical velocity contours at different times during the period. The perturbation, initiated at
the left endwall, is still not much deformed by the streaming flow. It is more intense in the
right half of the cavity, but remains visible in the whole cavity. The bifurcation diagram
and phase diagram for A = 1000 are also given in figure 14. We see that the bifurcation is
supercritical and that the cycle amplitude at u; increases with Ra above the threshold. The
period, which is Tys. = 3.809 at threshold, first decreases down to approximately 3.68 at
Ra = 2450 and then increases (see figure 15).

6.2. Backward waves for the instability I at A = 4000

For larger values of A (A > 2000), backward waves, i.e. waves travelling in the direction
opposite to the beam propagation, are expected. Such backward wave is illustrated in
figure 16 for A = 4000 and Ra = 6800 by the plots of the velocity vectors fields at different
times during the period. This case is on the same branch of instability (instability /) as the
previous case at A = 1000, but the instability has evolved with the stronger influence of the
streaming on both its shape and its localization in the cavity (figure Se). For Ra = 6800,
i.e. not far from the oscillatory instability threshold at Ra, = 6609.92, the instability has
already well developed, giving a wavy shape to the streaming jet, with eddies alternately
arranged on its both sides. The isotherms, given in figure 16(e), are also well deformed,
with a wavy shape following that of the jet. The bifurcation diagram and phase diagram
for A = 4000 are given in figure 17. Here also, the bifurcation is supercritical and the cycle
amplitude at u; increases with Ra above the threshold, very slowly close to the threshold,
quickly around A = 6800, and then more slowly beyond A = 7100. The period, which is
Tose.c = 0.4075 at threshold, regularly increases, reaching the value 0.5806 at Ra = 7600
and 0.7862 at Ra = 8540.7 (figure 15).
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Figure 13. Vertical velocity contour plots during a cycle at A = 1000 and for Ra = 2400 (the oscillatory
instability threshold is at Ra, = 2246.97 and corresponds to the instability /1, see table 3). The period of this
cycle is Ty = 3.6790 and 5 plots are given, each Ty /4 from 0 to Tse (2-D cavity with A, = 10, H, = 0.338,
Pr=1).
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Figure 14. Bifurcation diagram (a) and phase diagram (b) giving the periodic orbits above the oscillatory
instability threshold (Ra. = 2246.97, red open circle) for A = 1000 in a 2-D cavity with aspect ratio A, = 10
(Hp = 0.338, Pr = 1). The cycle presented in figure 13 is given in red.

6.3. Backward waves for the other instabilities I, Iz and 14

We have seen that the critical curve (figure 8) involves other instabilities than /; when
the acoustic streaming parameter A is increased. The waves connected with the instability
14 have been illustrated in figure 7 for A = A.. We now show the waves corresponding
to the instability I for A = 5000 and Ra = 7500 and the instability /3 for A = 6000 and
Ra = 5400 in figures 18 and 19, respectively. For these two instabilities, the waves are
backward waves, which look similar to those obtained for the instability I at A = A., with
an even stronger localization near the right endwall. The velocity vectors plots used to
depict the waves for A = 6000 show that, for Ra = 5400, the perturbation of the streaming
jet remains moderate and is only visible through a slight undulation of the jet close to the
right endwall. Comparing these results with those shown in figure 16, we thus observe
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Figure 15. Variation of the period beyond the oscillatory instability threshold (given as a red open circle)
for different values of the acoustic streaming parameter A. The characteristics at the critical thresholds, type of
instability, critical Rayleigh number Ra,. and critical period T are given in table 3 (2-D cavity with A, = 10,

Hy = 0.338, Pr = 1).

Figure 16. Velocity vectors plots during a cycle at A = 4000 and for Ra = 6800 (the oscillatory instability
threshold is at Ra. = 6609.92 and corresponds to the instability /1, see table 3). The period of this cycle is
Tose = 0.4419 and 5 plots are given, each T,z /4 from 0 to Tys.. For t = T, (last plot e), the isotherms are also
given (2-D cavity with Ay = 10, H, = 0.338, Pr = 1).

a strong variation between the waves of the instability /; at A = 4000 and those of the
instability /> at A = 5000 and the instability /3 at A = 6000. Concerning the period of
these cycles, for the three instabilities /5, I3 and 4, the periods are rather short (7,5 < 0.5).
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Figure 17. Bifurcation diagram (@) and phase diagram (b) giving the periodic orbits above the oscillatory
instability threshold (Ra. = 6609.92, red open circle) for A = 4000 in a 2-D cavity with aspect ratio Ay = 10
(Hp = 0.338, Pr = 1). The cycle presented in figure 16 is given in red.
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Figure 18. Vertical velocity contour plots during a cycle at A = 5000 and for Ra = 7500 (the oscillatory
instability threshold is at Ra. = 7334.14 and corresponds to the instability />, see table 3). The period of this
cycleis Tpge = 0.27645 and 5 plots are given, each Ty /4 from 0 to Ts (2-D cavity with A, = 10, H, = 0.338,
Pr=1).

They regularly increase above the thresholds when Ra is increased, but in a rather moderate
way (figure 15).

7. More global dynamics showing the competition between waves and steady
solutions

The periodic orbits shown in the previous section, which correspond to forward waves at
small values of A and backward waves at larger A up to A., belong in fact to limited regions
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Figure 19. Velocity vectors plots during a cycle at A = 6000 and for Ra = 5400 (the oscillatory instability
threshold is at Ra, = 5134.74 and corresponds to the instability /3, see table 3). The period of this cycle is
Tose = 0.28639 and 5 plots are given, each Tp5/4 from O to Tps (2-D cavity with A, = 10, H, = 0.338,
Pr=1).

in the (Ra, A) parameter space. This is shown in figure 20, in the global stability diagram
which has been uncovered by a detailed study. We see that the forward and backward
waves (denoted FW and BW, respectively, in the plot) belong to regions delimited by the
Hopf thresholds and by saddle-node curves which are initiated close to A = 2000, in the
region of sign change for w.. To describe the complex stability diagram in figure 20 and
the global dynamics it involves, we will then first focus on what occurs close to the change
of sign of w, and particularly for A = 2000.

7.1. Specific dynamics for A = 2000

The bifurcation diagram for A = 2000 and its associated phase diagram are presented
in figure 21. For A = 2000, it is possible to obtain the backward wave predicted at the
threshold Ra, = 3621.62 only in a small Ra range above the threshold and then with a
weak amplitude (cycles coloured in blue in figure 21). Such a backward wave is presented
in figure 22 at different times during the period for Ra = 3630. The wave has a weak
intensity and a long period. In contrast with the previous cases, its travel inside the cavity
does not seem regular during the period (figure 22). Moreover, the calculated period
at Ra = 3630 is T,5c = 41.711, a value already much stronger than the critical value at
the very close threshold, 7)., = 33.67. Such cycles are obtained up to Ra = 3640, but
not for Ra = 3650 where steady solutions are finally reached. Following these steady
solutions by continuation, it was found that they belong to a closed curve extending
between saddle-node points at Ra, = 3642.27 and Ra, = 3711.24. Those steady solutions,
however, are stable only along the upper and lower parts of the closed curve in figure 21(a),
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Figure 20. Stability diagram giving the critical Rayleigh number Ra, for the oscillatory instability threshold
(black dashed line) and the steady thresholds (solid lines) in large ranges of the acoustic streaming parameter
A and the Rayleigh number Ra (2-D cavity with Ay = 10, H, = 0.338, Pr = 1). The steady thresholds given
by the black solid curves SNy, SNy, and SNy, correspond to saddle-node points which delimit domains of
existence of stable steady solutions. The coloured curves refer to the saddle-node points mentioned in figure 29.
Pgy is the limit point of the saddle-node curves SNy, and SNy,. Here, FW and BW indicate the domains of
forward and backward waves, respectively, which are delimited by the Hopf curve and saddle-node curves. A
zoom of what occurs at the sign change for w. (close to A = 2000) is given in figure 28.

where we can find the blue solid circles corresponding to the two stable solutions at
Ra = 3650. The steady flow corresponding to one of these stable solutions is given in
figure 23 where we see the steady wavy shape of the jet, the other stable steady solution
being obtained by up—down symmetry. Finally, for values of Ra above the steady solutions
range (Ra > 3720), it was again possible to get cycles (solid green curves in figure 21), but
they now correspond to forward waves and appear with an already large amplitude, which
then increases with Ra. In fact, we observe a kind of continuity between the amplitude
increase of the backward waves, the stable steady solutions and the forward waves. As an
example of forward wave, we give the cycle obtained at Ra = 3800 in figure 24. This cycle
is characterized by a rather moderate period 7,5 = 15.233 and a seemingly regular travel
of the wave.

Some interesting information can be obtained from the change of the cycles and their
periods when Ra is increased. For that, the time evolution of u; along a period for some
of the cycles at A = 2000 is shown in figure 25 and the variation of their period is given
in table 4 and plotted in figure 26. When Ra is increased, we first see the strong increase
of the period for the backward waves from the value at the threshold T, . = 33.67 to
T,sc = 88.374 at Ra = 3640. Beyond the steady solutions range, we then observe a strong
decrease of the period for the forward waves, from T,, = 56.538 at Ra ~ 3718 to the
minimum 7,5 ~ 5.85 at Ra = 4680, before a further increase (figure 26). The shape of the
cycles also strongly changes in the Ra range of increasing period for the backward waves
and of decreasing period for the forward waves (figure 25). The cycles no longer have a
classical temporal sine shape, but present alternatively time periods with strong evolution
and time periods with weak evolution. The ultimate (asymptotic) shape at very large period
can correspond to what is obtained at Ra = 3710 by time stepping, the period T, & 864.9
being too long to use the cycle continuation method in this case. The time evolution of u;
for this case of forward wave is shown in figure 25(b) and its plot in the bifurcation and
phase diagrams in figure 21 is given as dashed green curves. In figure 25(b), we see that
the cycle remains a long time (¢ ~ 400) at an almost constant negative value of up, in
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Figure 21. Bifurcation diagram (a) and phase diagram (b) giving the solutions above the oscillatory instability
threshold (Ra. = 3621.62, red open circle) for A = 2000 in a 2-D cavity with aspect ratio Ay = 10 (H, =
0.338, Pr = 1). The cycles in blue correspond to backward waves, whereas those in green correspond to
forward waves. Among these cycles, those presented in figures 22 and 24 are given in red. The dashed left
green curve in (a) (inner green curve in (b)) corresponds to the cycle at Ra = 3710 and its evolution with
time is shown in figure 25(b). The black arrows in () indicate the direction of the evolution along the cycles,
clockwise and counterclockwise for the cycles associated with backward and forward waves, respectively. The
steady solutions are found along the solid black curve, but they are stable only along the upper and lower parts
of this curve in (a), where we can find the blue solid circles corresponding to Ra = 3650.

Figure 22. Vertical velocity contour plots during a cycle at A = 2000 and for Ra = 3630 (the oscillatory
instability threshold is at Ra, = 3621.62, see table 3). The period of this cycle is 7,5 = 41.711 and 5 plots are
given, each Ty /4 from 0 to Ty (2-D cavity with Ay = 10, H, = 0.338, Pr = 1).

952 A28-22


https://doi.org/10.1017/jfm.2022.907

https://doi.org/10.1017/jfm.2022.907 Published online by Cambridge University Press

Eckart streaming flows in a Rayleigh—Bénard configuration

Figure 23. Velocity vectors plot for the steady flow obtained for A = 2000 at Ra = 3650 (2-D cavity with
Ay, =10, H, =0.338, Pr = 1).

(a)
(b)

: gl\@ @O @)(@

©

Figure 24. Vertical velocity contour plots during a cycle at A = 2000 and for Ra = 3800 (the oscillatory
instability threshold is at Ra, = 3621.62, see table 3). The period of this cycle is T, = 15.233 and 5 plots are
given, each Ty /4 from O to Tpse (2-D cavity with Ay = 10, H, = 0.338, Pr = 1).

the neighbourhood of the steady solutions with negative u; values (see figure 21), then
evolves rapidly towards the opposite positive value of u;, now in the neighbourhood of
the other steady solutions with positive u; values, where it remains a long time, before
returning rapidly close to the former steady solutions. Such an evolution is typical of a
heteroclinic cycle. A similar, however, less marked, evolution can be found for the cycle
associated with backward waves at Ra = 3640. As seen in figure 21, this cycle (right blue
curve in (a) and outer blue curve in (b)) visits the neighbourhood of the steady solutions,
which induces a longer time spent close to these steady solutions (figure 25a). We can
then think that the cycles corresponding to backward waves (forward waves) will evolve
towards long period heteroclinic cycles as they get closer to the steady solutions when Ra
is increased (decreased). In both cases, the cycles are expected to disappear at heteroclinic
bifurcations.
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Figure 25. Time evolution of u; for periodic solutions obtained at different values of Ra above the Hopf
threshold (Ra, = 3621.62) for A = 2000 in a 2-D cavity with aspect ratio Ay, = 10 (H, = 0.338, Pr =1). In
(a), the evolution is given during a period for the cycles at Ra = 3630 and 3640 corresponding to backward
waves (blue solid curves) and the cycles at Ra = 3720, 3740 and 3800 corresponding to forward waves (green
solid curves). In (b), the evolution corresponds to the very long period oscillatory solution obtained at Ra =
3710 (forward wave). The solution remains a long time close to the steady solutions with negative u; values,
then evolves rapidly towards the other steady solutions with positive u; values where it remains for a long time,
before returning rapidly close to the former steady solutions (see the cycle in the phase space in figure 210).

Backward waves Forward waves

Ra 3630 3635 3640 3710 3718.037 3720 3740 3760 3800 3840
Tose 41711 52382 88374 8649  56.538  50.898 28927 21.632 15.233 12.239

Table 4. Period T, of the oscillatory solutions obtained at A = 2000 for increasing values of Ra above
Ra. = 3621.62 for which the critical period is Tosc, = 33.67.
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Figure 26. Variation of the period beyond the oscillatory instability thresholds (given as open circles) for
two values of the acoustic streaming parameter, A = 1000 and 2000 (2-D cavity with A, = 10, H, = 0.338,
Pr=1).
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Figure 27. Loci in the parameter space (a) and in the phase space (b) for the intermediate steady solutions at
fixed values of A (A = 1953.14, 1970 and 2000, red curves) or fixed value of Ra (Ra = 3650, green curve) in a
2-D cavity with aspect ratio Ay = 10 (H, = 0.338, Pr = 1).

7.2. Dynamics in the neighbourhood of w. sign change

The study for A = 2000 has shown the existence of steady solutions in a certain Ra range,
on a closed curve. The change of this curve when A is decreased is shown in figure 27. For
A = 1970, the curve has evolved, but with a similar shape, and it appears in a lower Ra
range. In contrast, for A = 1953.14, there is a clear change of shape of the steady solutions
curve, which accompanies the lowering of the Ra range. The change seems to be connected
with the collision between two previous saddle-node points, which gives two new steady
bifurcation points. If we now fix Ra, the steady solutions also belong to a closed curve,
which is now limited in a A range, as it is illustrated in figure 27 for Ra = 3650 with the
green curve.

To better characterize the changes that affect the steady solutions range, we have
followed the characteristic points of the closed curves by continuation, more precisely
the upper and lower saddle-node points obtained for example for A = 2000 and 1970
and the steady bifurcation points appearing after collision for A = 1953.14. The stability
diagram thus obtained for 1910 < Ra < 2010 is shown in figure 28. On this diagram, the
oscillatory instability threshold (corresponding to the curve given in figure 8) is plotted
as a dashed line, the saddle-node points appear along the solid, almost straight, lines
SNy and SNy,, and the two bifurcation points belong to the solid ellipse. The loci of
the steady solutions presented in figure 27 are also given as coloured lines. We first see
that the critical curve of the oscillatory instability thresholds is not continuous with A,
but is interrupted in the interval 1941.25 < A < 1961.62 by steady thresholds. At both
extremities A., and A., of this interval, the critical complex conjugate eigenvalues collide
on the real axis and give two real eigenvalues, which will split and give two different
steady thresholds. At the lower threshold (lower part of the ellipse) corresponding to a
first primary pitchfork bifurcation on the basic solution branch, two branches of stable
steady solutions are created (see the curve for A = 1953.14 in figure 27a). These branches
reverse direction and become unstable at saddle-node points belonging to the solid line
SNy, above the ellipse, and finally meet at a second primary pitchfork bifurcation point
(upper part of the ellipse). These saddle-node points SNy, are secondary points which
have appeared at the first collision point at A, = 1941.25. At the second collision point
(Ac, = 1961.62), the two primary bifurcation points merge and give birth to saddle-node
points SNz, (belonging to the lower solid straight line in figure 28), which are now the
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Figure 28. Stability diagram giving the critical Rayleigh number Ra,. for the oscillatory instability threshold
(black dashed line) and the steady instability thresholds (black solid lines) for values of the acoustic streaming
parameter A close to the change of wave travelling direction (2-D cavity with Ay = 10, H, = 0.338, Pr = 1).
The steady thresholds include pitchfork bifurcation points (points on the ellipse) and saddle-node points SNy,
and SNy, (points on the two other solid curves) which delimit the domain of the intermediate steady solutions.
The coloured curves give the loci of the steady solutions obtained at constant A (red curves) or Ra (green curve)
and shown in figure 27.

lower bounds of the steady solutions curve, now disconnected from the basic solution
branch (see the curves for A = 1970 and 2000 in figure 27a). Beyond this second collision
point, the steady solutions then exist between the two solid straight lines SNy, and SNy,
which feature the lower and upper saddle-node points on the steady solutions curve.

7.3. Global dynamics description

Figure 28 only shows the dynamics in the close neighbourhood of the sign change of
w¢. To obtain the global dynamics shown in figure 20 in large ranges of A and Ra, we
have first followed the lower and upper saddle-node points in figure 28 by continuation.
The variation of the corresponding critical Rayleigh numbers with A is shown as black
solid lines in figure 20, together with the oscillatory instability threshold given as a
dashed line. In this larger range of A from 0 to 5000, the steady bifurcation points
along the ellipse observed in figure 28 are almost not visible. We see that the lower
saddle-node points SNy can be followed over a large range of values of A, at least up
to A = 5000, and that their threshold increases almost linearly with A up to A = 3000
and then with a slowly increasing slope, in any case more quickly than the oscillatory
instability thresholds. In contrast, the thresholds for the upper saddle-node points SNy,
strongly increase, with an increasing slope which even becomes very large for A &~ 2296
with Ra. ~ 5721. In fact, additional calculations showed us that this point, denoted as
Pgy, is a limit point for the upper saddle-node curve, which can then be followed back
for decreasing A by continuation. The curve, now denoted as SNy, , then first increases for
decreasing A, reaches a maximum at Ra ~ 8515 for A &~ 1520, and then decreases down
to Ra = 2630.63 for A = 0.

From figures 28 and 20, we can infer different conclusions. Backward waves are
observed forA > A,, butin a limited Ra range between the Hopf bifurcation curve and the
lower saddle-node curve SNy . This range, however, increases in size with the increase of A.
Steady solutions as the one shown in figure 23 (belonging to the loci shown in figure 27a)
are observed for A > A, , and they appear for Ra values above the lower saddle-node
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Figure 29. Loci in the parameter space for the steady solutions at A = 2320 (a) and A = 2280 (b) in a 2-D
cavity with aspect ratio A, = 10 (H, = 0.338, Pr = 1). The solid circles along the curves (black in (a), red or
black in (b)) indicate the stable parts of these curves, delimited either by two saddle nodes or by a saddle node
and the upper limit of the curve. The saddle nodes indicated by blue or green solid circles in (a) (which also
exist in (b)) are those followed in figure 20.

curve SNy, i.e. after the backward waves when Ra is increased. The corresponding Ra
range increases with the increase of A, and seems to have no upper limit when A > 2296.
To clarify this point, we have computed the loci of the steady solutions for A = 2320
and they are presented in figure 29(a). We see that the steady solutions belong to curves
with complex shapes exhibiting new saddle-node points depicted, for some of them, with
blue and green solid circles. For Ra values above the lower limit at Ra, = 4551.70, two
stable steady solutions related by the up—down symmetry can be found, and even four
for Ra values between the values associated with the green saddle points. These stable
solutions exist in a very large Ra range, as they are still found beyond Ra = 30000, where
we stopped following them. The corresponding flow structures are shown in figure 30 for
three values of Ra. For Ra = 4700, the flow has evolved with respect to what was obtained
for A = 2000 and Ra = 3650 in figure 23: the wavy shape of the jet is more pronounced
on the whole cavity length and is connected with the presence of 10 main cells along its
sides. The wavy shape is still increased for larger Ra, but it is connected with 9 cells for
Ra = 6000 and 8 cells for Ra = 10 000. For Ra = 10 000, the roll structure is more visible
than the jet, which rather sinuates between the rolls. For larger values of A as A = 3000 and
5000, we have verified that the loci of the steady solutions begin at the lower saddle-node
curve SNy, given in figure 20 and that they extend up to very large values of Ra. These loci
are still more complex and are not studied in detail here.

To understand what occurs at the limit point Psy at A & 2296 (figure 20), we have
calculated the loci of the steady solutions just before this limit point, for A = 2280. In
figure 29(b), we can see that the steady solutions belong to two different loci corresponding
to different ranges of Ra. These loci appear to result from the splitting of the steady
solutions curves obtained for A = 2320 (figure 29a), with the creation of saddle-node
points (in fact SNy, and SNy,), which appear at the limit point Pgy and now limit these
loci. We first find a closed curve, which extends between the lower saddle-node curve SN,
and the upper saddle-node curve SNy, (figure 20). This closed curve is the continuation
of the closed curves found for A = 1970 and 2000 (figure 21), but it extends on a larger
Ra range (approximately 1000) and has a very sharp evolution at the upper saddle nodes,
due to the proximity to the splitting. The second set of steady solutions exists above the
saddle-node curve SNy, and extends over a very large Ra range. Finally, in between these
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Figure 30. Velocity vectors plots for the stable steady flows obtained for A = 2320 at Ra = 4700 (a), 6000 (b)
and 10000 (c¢). These stable solutions belong to the loci presented in figure 29(a), as well as the stable solutions
obtained by up—down symmetry from these ones (2-D cavity with A, = 10, H, = 0.338, Pr = 1).

two sets of steady solutions (i.e. between SNy, and SNy, ), is the domain of the forward
waves (figure 20).

The study of the steady solutions initiated at SNy, for smaller values of A necessitates
catching the evolution of the green and blue saddle-node points mentioned in figure 29(a).
These points have been followed as a function of A and the corresponding variations
of their thresholds are given in figure 20. The loci of the steady solutions initiated at
SNy, have also been determined for different values of A, and the results obtained for
A = 2280, 2200, 2000 and 1000 are plotted in figure 31. Note that, as we have two loci
corresponding to solutions related by up—down symmetry, we only focus on one of them.
The lower blue and green saddle-node points first collapse together with the saddle-node
curve SNy, at A ~ 2220 (figure 20). As shown in figure 31 for A = 2200, two different
loci appear beyond this collapse. One of them (in red) is a closed curve limited by two
new lower saddle-node points initiated at the collapse and by the former upper blue
and green saddle-node points. The other locus is the main curve initiated at SNy, and
extending towards large Ra. Both loci contain stable parts mentioned by a solid circle on
the plot. The thresholds for the new saddle-node points on the red curve are very close to
that of SNy, and are then not plotted in figure 20. When A is further decreased, the red
closed curve shrinks and finally disappears at A &~ 2170, when the upper blue and green
saddle-node points collapse together with the new lower saddle-node points (figure 20).
As a consequence, for A < 2170, only the main curve initiated at SNy, exists, as shown in
figure 31 for A = 2000 and 1000.

Examples of flow structures on the stable part of the steady solutions curves initiated
at SNy, are shown in figure 32 for three values of A. For A = 2000 and Ra = 9000
(Ra. = 7639 at SNy, ), the flow structure looks similar to that presented for A = 2320
and Ra = 10000 in figure 30 with the streaming flow sinuating between 8 quite regular
rolls. The isotherms, also given in figure 32 for this case, appear to be strongly deformed
by the rolls. For A = 1000 and Ra = 9000 (Ra. = 7721 at SNy, ), the streaming is still
less visible. The 8 rolls are also not regular with a size decreasing from the left endwall
to the right endwall. Finally for A = 0 and Ra = 4000 (Ra. = 2631 at SNy,), there is no
more streaming and the rolls are regular. Such 8 rolls solution of the Rayleigh-Bénard
problem (A = 0) appears at a saddle-node point and is then not directly connected to a
primary bifurcation, in contrast with the 10 rolls solution that appears at the first primary
bifurcation point (Ra, = 1728.83).

952 A28-28


https://doi.org/10.1017/jfm.2022.907

https://doi.org/10.1017/jfm.2022.907 Published online by Cambridge University Press

Eckart streaming flows in a Rayleigh—Bénard configuration

5

725 Il Il Il Il Il
6000 6500 7000 7500 8000 8500 9000 9500 10000
Ra

Figure 31. Loci in the parameter space for the upper steady solutions (above SNy,) at A = 1000 (magenta),
2000 (blue), 2200 (green and red) and 2280 (black). For each value of A, as we have two loci corresponding
to solutions related by up—down symmetry, we here focus on the lower locus, as can be seen in figure 29 for
A = 2280. The solid circles along the curves indicate the stable parts of these curves, delimited either by two
saddle nodes or by a saddle node and the upper limit of the curve (2-D cavity with Ay = 10, H, = 0.338,
Pr=1).
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Figure 32. Velocity vector plots for the stable steady flows initiated at the upper saddle-nodes curve SNy,
in figure 20 for A = 2000 and Ra = 9000 (a), A = 1000 and Ra = 9000 (b), A = 0 and Ra = 4000 (c). For
A = 2000 (a), the isotherms are also given. The steady flows obtained by up—down symmetry from these ones
are also stable solutions (2-D cavity with A, = 10, H, = 0.338, Pr = 1).

It is interesting to come back to the oscillatory solutions. As already mentioned, the
backward waves (denoted as BW in figure 20) are observed for A > A.,, between their
initiation thresholds at the Hopf bifurcation curve and the saddle-node curve SNy. Their
domain of existence is very thin close to A, but increases in size with the increase of A. If
a very strong increase of the period is found for these waves for A = 2000 at the approach
of SNy (figure 26), this increase becomes more and more limited when A is increased
(figure 15). Moreover, before reaching SNy, bifurcation of cycles can sometimes be found.
For example, for A = 3000, a steady bifurcation of cycle occurs at Ra &~ 5850, leading
to a new periodic cycle, whereas for A = 5000, a Naimark—Sacker bifurcation occurs at
Ra ~ 7600, leading to a quasi-periodic solution. In contrast, the forward waves (denoted
as FW in figure 20) are observed for 0 < A < 2296, in a domain limited by the Hopf
bifurcation curve and the saddle-node curves SNy, and SNy,. As shown for A = 1000 and
2000 in figure 26, there is a very strong increase of the periods for the cycles in this domain
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Figure 33. Loci in the parameter space for a set of unstable steady solutions found for fixed values of A
(A = 2100, 2150, 2220, 2280, 2350 and 2500, from left to right) in a 2-D cavity with aspect ratio A, = 10
(Hp = 0.338, Pr = 1). These unstable steady solutions are associated with the second Hopf bifurcation, as
those in figure 27(a) were associated with the first Hopf bifurcation.

at the approach of SNy, and SNy,, indicating the presence of heteroclinic bifurcations.
We can note that there is a domain of A where both backward and forward waves can be
observed. This domain extends between A., and Pgy, i.e. for 1961.62 < A < 2296. In this
domain, as observed for A = 2000, we get successively forward waves, steady solutions on
closed curves, backward waves and steady solutions again, when increasing the Rayleigh
number.

Finally, while looking for the closed curve at A = 2280 (red curve in figure 29b), we
found another set of steady solutions along closed curves, which evolves with A similarly
to the set shown in figure 27(a). This new set of solutions, shown in figure 33, is now
associated with the second Hopf bifurcation, which has its critical thresholds Ra, slightly
above those shown in figure 8 for the first Hopf bifurcation. The closed curve for A = 2100
(which needs a zoom to be seen clearly) includes two primary pitchfork bifurcations,
which are found in the domain of A where the angular frequency sign change occurs
for this second Hopf bifurcation (as the ellipse domain shown in figure 28 for the first
Hopf bifurcation). The other closed curves give solutions for values of A close above this
domain. The shape of the curves is modified when A is increased, in particular at the upper
saddle node, where it is a sign of further changes in the dynamics, such as those shown in
figure 29. In any case, all these steady solutions are unstable as they all have at least an
unstable complex conjugate pair of eigenvalues, which is due to the previously occurred
first Hopf transition.

8. Conclusion

Thanks to performing spectral element codes allowing the continuation of steady
solutions, bifurcation points and periodic cycles, we were able to perform a detailed
analysis of the flows induced in a 2-D Rayleigh—Bénard configuration when Eckart
streaming is applied. The 2-D cavity, heated from below with a hot plate at the bottom
and a cold plate at the top, has a horizontal aspect ratio A, = 10. It contains a fluid with
a Prandtl number Pr = 1. The streaming is induced by a uniform acoustic force applied
in a centred acoustic beam, of fixed size, which occupies approximately the third of the
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cavity height (H, = 0.338). The intensity of the acoustic force is modulated by the acoustic
streaming parameter A.

The streaming flow simulated in such long cavity has particular properties. It goes to
the right along the central horizontal axis, in the zone affected by the acoustic force, and
returns along the lower and upper boundaries. The flow is almost parallel in a large part
of the cavity, except close to the endwalls where its change of direction occurs on a length
of approximately the height of the cavity. As a consequence, the vertical profiles of the
horizontal velocity compare very well with those obtained analytically in an extended
cavity, with the parallel flow approximation. Such a flow is almost not modified when
the Rayleigh number Ra is non-zero, as long as Ra remains below the critical value Ra,
corresponding to the development of instabilities. Only very slight changes occur in the
end parts due to buoyancy effects.

We first studied the instabilities that develop in such a configuration. For the pure
streaming flow, an oscillatory instability, corresponding to a perturbation localized close
to the right endwall, occurs at A, = 7051.36. This instability generates a backward wave,
i.e. in the direction opposite to the beam propagation. For the pure Rayleigh—-Bénard
situation, the steady instability threshold is at Rap = 1728.83, a value slightly larger than
for an extended cavity, and the perturbation corresponds to 10 rolls inside the cavity.
The introduction of streaming increases the thresholds, with a maximum at Ra, ~ 7346
obtained for A &~ 4800. The thresholds further decrease and reach the pure acoustic
streaming threshold A, at Ra = 0. Four different instabilities are involved at the thresholds:
the instability /1 from A = 0 to values above 4000, the instability /4 in the decreasing part
of the thresholds, just below A., and the instabilities /> and /3 in between. Finally, these
instabilities are associated with complex conjugate perturbations and a critical angular
frequency. The perturbations are more intense in the right part of the cavity. For I1, they,
however, extend in a large part of the cavity. In contrast, for I, I3 and Iy, they are really
localized near the right endwall. These perturbations are expected to generate forward
waves for small A values, up to A & 1950, and backward waves for larger A values.

We then tried to characterize the flows which exist beyond these instability thresholds.
As expected, periodic flows corresponding to forward waves are obtained for moderate
values of A, as A = 1000, whereas periodic flows corresponding to backward waves are
obtained for larger values of A, as A = 3000, 4000, 5000, 6000, 6500. The forward waves,
which appear at thresholds with a small angular frequency, evolve on large time periods
T,sc, whereas the backward waves evolve on smaller time periods, at least for A > 3000.

More interesting is the behaviour observed close to the domain of A where the transition
from forward to backward waves occurs. For A = 2000, a backward wave is obtained
close to the threshold, as expected, but it quickly disappears, when Ra is increased, and
is replaced by steady solutions on a closed curve, and then by forward waves. A deeper
analysis of the primary thresholds curve then reveals that the transition from forward to
backward waves occurs through steady thresholds in the range 1941.25 < A < 1961.62 and
that a domain of steady solutions on closed curves is initiated at these steady thresholds.
This domain extends towards larger values of A, limited in Ra by a lower limit at SNy,
(lower saddle-node points) and an upper limit at SNy, (upper saddle-node points), above
the backward waves domain and below the forward waves domain. If the lower limit SN,
increases regularly with A, up to high values of A, the upper limit SNy, increases very
quickly in Ra for A & 2296, at a limit point Psy where it finally returns towards smaller
values of A, down to A = 0, along the limit curve SNy, .

As aresult, the forward waves only exist above the Hopf thresholds, in a domain limited
in A and Ra by the curves SNy, and SNy,, and they are replaced by steady solutions
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beyond these curves. The limit values of this domain are A & 2296 at Psy and Ra ~ 8515
at the maximum of SNy, . The steady solutions correspond to rather strong convective rolls
between which the streaming flow sinuates. At A = 0, this steady solution, which appears
for Ra > 2631, is still on a disconnected curve and corresponds to 8 rolls in the cavity.

In contrast, the backward waves are observed for A > A, = 1961.62 in a domain
limited in Ra by the saddle-node curve SNy, beyond which steady solutions are found. For
Rayleigh numbers close above SNz, the structure of the jet is still well visible in the steady
solutions, although with a wavy shape, but for larger Ra, the roll structure dominates.

All this indicates also that there is a domain of A where both backward and forward
waves can be observed. This domain extends between A, and Pgy, i.e. for 1961.62 < A <
2296. In this domain, as observed for A = 2000, we get successively forward waves, steady
solutions on closed curves, backward waves and steady solutions again, when increasing
the Rayleigh number. Note finally that the transition between the periodic wave solutions
and the steady solutions often occurs through a very strong increase of the wave period,
indicating that the cycles might disappear at heteroclinic bifurcations. This is observed for
the transitions at SNy, and SNy,, and for the transitions at SNy, below Pgy.

All these results indicate a very rich flow dynamics, with the possibility of forward
and backward waves and the competition between these waves and steady solutions. If
the waves can be observed above the critical Hopf thresholds, in a domain where the
perturbations remain relatively weak and can be transported by the streaming flow, it
was found that a sufficient increase of the Rayleigh number can lead to steady flows
corresponding to strong convective rolls, weakly influenced by the streaming flow which
can only sinuate between the rolls.

Such a situation involving both Eckart streaming and Rayleigh—Bénard instability seems
not to have been studied experimentally. The interesting phenomena highlighted in this
study give us the motivation to perform such an experiment. One possibility is to try
to mimic the configuration presented in this study. Another possibility is to consider a
really 3-D configuration. In this case, it would require further 3-D numerical simulations,
which could also include a more realistic acoustic force field obtained through the Rayleigh
integral (Moudjed et al. 2015). The calculation of this force field, however, will necessitate
the precise knowledge of the source characteristics (geometry, frequency) and the fluid
properties (acoustic attenuation coefficient).
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