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Abstract The role of estradiol and the estrogen receptor (ER-«) in the etiology of breast cancer have long
been appreciated. This understanding has been complicated by two discoveries in the 1990s: (1) a second
estrogen receptor (ER-B) whose expression pattern and activity overlap with but are distinct from those of ER-q;
and (2) a pool of ERs located at the plasma membrane. This plasma membrane-localized ER constitutes a dis-
tinct pool of receptors whose protein interactions, signaling mechanisms, and cellular functions are not the
same as that of the cytoplasmic- and nuclear-localized ER and are not as well understood. Here, we will con-
sider the structure and function of the membrane-localized ER protein. We will then discuss what is known
about the role of the membrane ER in the development and its implications for breast cancer treatment.

Keywords: Breast cancer; Breast cancer susceptibility gene 1 (BRCA1); Epidermal growth factor receptor

(EGFR); Estrogen receptor (ER-a); G protein; Insulin-like growth factor 1 receptor (IGF1R); Plasma

membrane; Signaling

Introduction

ER-a (ESRA), 2 member of the nuclear receptor
superfamily, is a ligand-activated transcription factor
that contains domains for DNA binding, transcriptional
activation, and hormone (17B-estradiol, E2) binding.
The full-length ER-a is a 595 amino acid, 66-kDa
protein. ER-B (ESRB), which is encoded by a sepa-
rate gene, was identified and characterized in 1996
[1,2]. The DNA-binding and ligand-binding domains
of ER-B show a high degree of identity to ER-«; while
the N-terminal activation function (AF-1), hinge, and F
(C-terminal) domains are not conserved. A third recep-
tor (ER-v) was identified in teleost fish [3]; but a mam-
malian homolog has not been found. Early evidence of
the existence of membrane-associated E2 receptors
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that can transduce rapid signaling events through
G-protein activation has been reviewed elsewhere [4].
In the last few years, new data have emerged on the
structure, function, and potential physiologic impor-
tance of membrane ERs.

Characterization of plasma membrane ER

While the presence of high-affinity cell-surface bind-
ing sites for E2 was known in the 1970s [5], structural
characterization of these sites has only recently been
achieved. Thus, expression of exogenous ER-a or
ER-B in Chinese hamster ovary cells resulted in
expression of ER in the nucleus and cell membrane
[6]. The abundance of membrane ER was 2-3% of
that of nuclear ER, but the dissociation constants
(Kgs) were similar. Both membrane ERs were able to
activate G proteins (Gaq and Gas), generate cAMP
(via Gas), stimulate inositol triphosphate (IP3) pro-
duction and calcium influx (via Gagq), and induce
extracellular signal-regulated kinase (ERK) signaling
and cell proliferation [6]. About 5% of the endoge-
nous ER-a localizes to the cell membrane in MCF-7,
an E2-responsive breast cancer cell line, suggesting
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a role for the membrane ER in breast cancer.
Recently, a G protein-coupled receptor, GPR30, was
found to localize to the endoplasmic reticulum, bind
E2, and induce calcium mobilization and IP; synthe-
sis in response to E2 [7].

The mechanism(s) by which ER-a localizes to the
cell membrane is uncertain, since it does not contain
a classical membrane localization signal. Serine-522
in the E-domain (ligand-binding domain) is required
for membrane insertion, as is caveolin, a scaffold pro-
tein [8]. While full-length ER-a probably comprises
most membrane ER, the E-domain is sufficient for
insertion into the membrane. Membrane localization
of ER-a also requires palmitoylation of cysteine-447.
Mutation of this site blocked palmitoylation of ER-«,
association with caveolin, membrane localization,
rapid signaling, and proliferation in response to E2 [9].
Dimerization is required for membrane ER-a to medi-
ate the rapid non-genomic actions of E2, but not for
its insertion into the membrane [10].

Recent studies have identified an N-terminally
truncated ER-« (46 kDa) in vascular endothelial cells
that is generated by alternative splicing and recruited
to the plasma membrane by palmitoylation [11,12].
ER46 transduces membrane-initiated E2 responses,
including activation of eNOS (NOSS3, endothelial nitric
oxide synthetase), consistent with an earlier study
showing that endogenous plasma membrane ER-a
activates Gal, leading to synthesis of nitric oxide [13].
Whether ER46 is expressed on the membranes of
other cell types is unclear at present.

Signaling from membrane ER

One signaling mechanism of membrane located G
protein-coupled ERs involves cross-activation of
growth factor receptor signaling pathways, including
those of the epidermal growth factor receptor (EGFR)
and the insulin-like growth factor 1 receptor (IGF1R)
[14-16]. In a recent study, E2-stimulated ERK activa-
tion in breast cancer and vascular endothelial cells
required both ER-a and EGFR activation, which was
mediated by the rapid release of the heparin-binding
EGF-like growth factor (HBEGF) in MCF-7 cells [17].
Other events in this pathway were identified, includ-
ing its dependence upon several G proteins (Gaq,
Gai, and GRvy) and the role of SRC-mediated activa-
tion of several matrix metalloproteinases (MMP2 and
MMP9) in E2-induced HBEGF release and activation
of several protein kinases (ERK, c-Akt, and p383
MAP kinase (SAPK2B)) [17].

Shc is a ubiquitous signaling adapter protein con-
taining Src homology 2 and 3 (SH, and SHy)
domains. In MCF-7 cells, E2 causes the rapid asso-
ciation of Shc with ER-a and their translocation
to the plasma membrane. This process involves
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E2-induced phosphorylation of IGF1R and forma-
tion of a ternary protein complex of ER-«, Shc, and
IGF1R at the membrane [18,19]. The E2-induced
association of ER-a with IGF1R and membrane
localization of ER-a required Shc; and all three com-
ponents were necessary for E2-induced ERK phos-
phorylation. The ability of membrane ER-a to
transduce EGFR and IGF1R signaling (leading to
ERK activation and cell proliferation) has other impli-
cations. Thus, EGF and IGF1 can activate unli-
ganded ER-a via ERK-mediated phosphorylation of
serine-118 on the AF-1 domain [19,20], although
other kinases may mediate the E2-induced phos-
phorylation of serine-118 [21]. c-Akt, another target
of growth factor signaling, phosphorylates ER-a on
serine-167 of AF-1; and this event may contribute to
Tamoxifen resistance [22]. Coregulator proteins are
also phosphorylation targets. Thus, E2 rapidly
induces phosphorylation of the coactivator AlB1
(amplified in breast cancer 1) in an ER-dependent
manner [23]. The p160 family coactivator GRIP1 is
phosphorylated by ERK at serine-736, an event that
is required for growth factor induction of GRIP1
coactivator function [24]. These findings suggest
that growth factor signaling initiated by membrane
ER may activate the nuclear ER-a via phosphoryla-
tion of nuclear ER-« or its coactivators [25], allowing
the membrane ER to regulate both transcriptional
and non-genomic actions of E2.

Role of membrane ER in breast cancer

Previous studies revealed that the tumor suppressor
protein encoded by the breast cancer susceptibility
gene 1 (BRCAT1) interacts directly with ER-a and
inhibits its transcriptional activity and estrogen-
responsive gene expression [26-29]. In ER-a posi-
tive breast cancer cells (MCF-7 and ZR-75-1), E2
caused activation of ERK and cell proliferation that
was blocked by exogenous BRCA1 or inhibition of
ERK signaling [30]. BRCA1 also inhibited EGF-
induced ERK activity and cell proliferation that was
mediated, in part, through the mitogen-activated
kinase phosphatase 1 (MKP1). These findings sug-
gest that the ability of BRCAT1 to inhibit E2-stimulated
breast cancer cell proliferation is due, in part, to inhi-
bition of membrane ER-a signaling.

A role for the membrane ER in breast cancer
response to hormonal manipulation has been postu-
lated. Thus, it was suggested that membrane ER-a
contributes to estrogen hypersensitivity in women
who relapse following oophorectomy [31]. These
patients often respond to aromatase inhibitors, which
block peripheral conversion of androgens to estro-
gen. In the setting of long-term E2 deprivation, ER-a
is up-regulated, as are growth factor pathways
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that mediate the rapid non-genomic effects of E2
(including those involving ERK, phosphatidylinositol-
3-kinase (PI3K), mammalian target of rapamycin
(MTOR), and several signaling adaptor proteins (Shc,
Grb2, and Sos)) [31]. These are some of the same
components that mediate membrane ER-«a signal-
ing, suggesting that the membrane ER contributes
to the E2 hypersensitivity. A similar mechanism may
mediate relapse in patients treated with Tamoxifen.
In this respect, it has been reported that resistance
to Tamoxifen-induced apoptosis is mediated by
HER2/Neu and the plasma membrane ER [32].

Just as membrane ERs can mediate cardioprotec-
tive and neuroprotective effects of E2, they may medi-
ate survival of breast cancer cells. Thus, E2-blocked
chemotherapy and radiation-induced apoptosis in
ER-positive breast cancer cells through stimulation of
ERK and inhibition of c-Jun N-terminal kinase (JNK)
activity by the membrane ER-a [33]. Expression of
the metastasis-associated gene 1 (MTA1) is associ-
ated with aggressive breast cancer. Interestingly, a
short form of MTA1 (MTA1s) sequesters ER-a in the
cytoplasm and represses E2-induced transcriptional
activity, while promoting its non-genomic responses
[34]. These findings suggest that cell membrane (or at
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least non-nuclear) ER-a signaling may promote the
malignant phenotype of breast cancer.

The presence of ER-a and ER-B in plasma mem-
brane caveolae from cultured lung carcinoma cells
was described recently; and ER-a immunostaining
was detected at the cell membrane in archival
human breast and lung tumor samples, based on
confocal microscopy [35]. Consistent with a plasma
membrane ER-a in lung cancer cells, E2 induced
ERK signaling and lung cancer cell proliferation that
was blocked by Faslodex (ICI 182,780), a pure anti-
estrogen [35]. A recent study compared the proper-
ties of stably integrated wild-type nuclear ER-a vs. a
modified membrane-targeted ER-« in originally ER-
negative MDA-MB-231 breast cancer cells. Unlike
the nuclear ER-«a, the membrane receptor expres-
sion was not decreased by E2 or Faslodex; and the
ability to regulate ERK activity, c-Akt activity, and
cell proliferation differed between the nuclear vs.
membrane receptors [36]. Interestingly, an inverse
correlation between EGFR and ER-« levels in human
breast cancers has been described [37,38]. This
correlation may be mediated through an E2-sensitive
negative regulatory element within first intron of the
EGFR gene. It has been postulated that increased
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Schematic illustration of signaling pathways for cell membrane-localized ER-« in breast cancer cells. The ligated plasma
membrane ER-« (shown here as a homodimer) signals through several pathways, involving IGF1R, G proteins, and EGFR.
Activation of growth factor signaling pathways through several kinases (including c-Akt, ERK, and others (e.g. JNK)) lead to
the following consequences: (1) stimulation of cell proliferation (which is modulated by BRCA1 and MKP1); (2) inhibition of
apoptosis; and (3) stimulation of transcription by the nuclear ER-«. Activation of nuclear ER-« is mediated by phosphoryla-
tion of nuclear receptor coactivators (e.g. AIB1, GRIP1, and CBP (CREB-binding protein)) or, more directly, by phosphory-
lation of ER-« itself. Abbreviations: ERE: estrogen response element; MEK: MAPK/ERK kinase; P;: inorganic phosphate;

PKA: protein kinase A. Other abbreviations, see text.
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EGFR expression may contribute to the aggressive
behavior and poor prognosis of ER-negative breast
cancers.

Perspectives

Figure 1 shows a model for cross-talk between plasma
membrane ER-a, EGFR, IGF1R, and nuclear ER-a that
may occur in human breast cancer cells and result in
stimulation of proliferation and inhibition of apoptosis.
The studies described herein suggest potential roles
for the cell membrane ER-«a in the development and
progression of breast cancer, including a role in
relapse following hormonal therapy. Studies of mem-
brane ER structure and function are hindered by the
low abundance of ER protein localized at the mem-
brane and the difficulty in isolating effects due to
membrane vs. nuclear ER pools in the same cell. The
development of more specific reagents to investigate
the cell membrane ER in vitro and in vivo and to iden-
tify functions of other intracellular receptor pools (e.g.
mitochondrial and endoplasmic reticulum) should bet-
ter position us to: (1) understand the physiologic roles
of these receptors; and (2) selectively target extranu-
clear ER for cancer treatment.
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