Hence the sum assured during the first year is $1000-678.067=$ 321.933; and the amount for each succeeding year is found by adding $678 \cdot 067 \div 10=67.807$ to that for the year preceding. The sum assured during the eleventh year is thus $£ 1000$; and it remains at this amount during the rest of life.

The deduction at the outset seems here somewhat heavy; but it rapidly diminishes, and vanishes at the end of ten years. Were the term extended to twenty years the deduction at the outset would be only 365.053 , and the assurance would consequently commence at 634947.

I must defer till another opportunity the development of the schemes here shadowed forth. I will now merely mention, that they find their practical applications in cases in which it is arranged that a party who has been "rated up," instead of paying additional premium, shall be subjected to a temporary abatement of assurance.

> I am, Sir,
> \quad Your most obedient servant,

London, 21 Oct. 1872.
P. GRAY.

ON the relation between the value of a policy and the rate of interest.

To the Editor of the Journal of the Institute of Actuaries.
Sire,-In the paper on "Extra Premium" by Mr. J. R. Macfadyen, in the current volume of the Journal, that gentleman has given, in a footnote on p. 89, a demonstration intended to show that "in any given case it is practically certain that the value of a policy by a higher rate of interest must always be less than by a lower." Having, sometime ago, myself arrived at a similar result to Mr. Macfadyon's by a rather different process, I venture to send it you, with the hope that it may be of interest to some of your readers.

We have, by a well-known formula,

$$
{ }_{2} V_{x}=1-\left(1-V_{x}\right)\left(1-V_{z+1}\right) \ldots \ldots\left(1-V_{x+n-1}\right) ;
$$

consequently, it will be sufficient to consider how the value of a policy one year old is affected by increasing or diminishing the rate of interest at which it is calculated.

Now,

$$
\begin{aligned}
\mathbf{V}_{x} & =1-\frac{1+a_{x+1}}{1+a_{x}} \\
& =1-\frac{a_{x}}{v p_{x}\left(1+a_{x}\right)}
\end{aligned}
$$

or, omitting the subscript x,

$$
\mathrm{V}=1-\frac{a}{v p(1+a)}
$$

Differentiating this with respect to v, we have

$$
\begin{aligned}
\frac{d \nabla}{d v} & =-\frac{1}{p} \cdot \frac{v(1+a) \frac{d a}{d v}-a(1+a)-a v \frac{d a}{d v}}{v^{2}(1+a)^{2}} \\
& =-\frac{1}{p} \cdot \frac{v \frac{d a}{d v}-a(1+a)}{v^{2}(1+a)^{2}} .
\end{aligned}
$$

Now,

$$
a=v p+v^{2} p+v^{3}{ }_{3} p+\ldots \ldots
$$

where $\quad n p=$ probability of a living n years.

$$
\begin{aligned}
\therefore \quad v \frac{d a}{d v} & =v p+2 v_{2}^{2} p+3 v_{3}^{3} p+\ldots \ldots \\
& =a_{x}+v p a_{x+1}+v_{2}^{2} p a_{x+2}+\ldots \ldots
\end{aligned}
$$

Also, $\quad a(1+a)=a_{x}+v p a_{x}+v_{2}^{2} p a_{x}+\ldots .$.
Hence, if a_{x} is greater than $a_{x+3}, a_{x+2}, \ldots \ldots . i . e$. , if the value of an annuity on x 's life is greater than the value of an annuity on any life older than x,
then

$$
a(1+a)>v \frac{d a}{d v}
$$

that is, $\frac{d V}{d v}$ is a positive quantity: in other words, as v increases so also does V . But as $v\left(=\frac{1}{1+i}\right)$ increases, i diminishes; therefore the lower the rate of interest the greater is the value of a policy of one year's standing on x 's life.

Similarly; if a_{x+1} is greater than $a_{x+2}, a_{x+3} \ldots \ldots, \nabla_{x+1}$ increases in value as the rate of interest diminishes; and generally, if the values of annuities on the lives $x, x+1, x+2, \ldots \ldots$ form a continually decreasing series, the value of a policy of one year's standing taken out at any age from x upwards is greater the less the rate of interest. Whence it follows from (1) that ${ }_{n} V_{x}$ increases as the rate of interest decreases.

> I am, Sir,
> Your obedient servant,

> 18 Lincoln's Inn Fields, 26 August 1872.
W. SUTTON.

ERRATUM.

The last line on p. 4 of this volume is misplaced and should be carried over so as to be the last line on p. 8.

