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STOCHASTIC AND DETERMINISTIC
ANALYSIS OF SIS HOUSEHOLD EPIDEMICS

PETER NEAL,∗ University of Manchester

Abstract

We analyse SIS epidemics among populations partitioned into households. The analysis
considers both the stochastic and deterministic models and, unlike in previous analyses,
we consider general infectious period distributions. For the deterministic model, we
prove the existence of an endemic equilibrium for the epidemic if and only if the threshold
parameter, R∗, is greater than 1. Furthermore, by utilising Markov chains we show that
the total number of infectives converges to the endemic equilibrium as t → ∞. For
the stochastic model, we prove a law of large numbers result for the convergence, to the
deterministic limit, of the mean number of infectives per household. This is followed by
the derivation of a Gaussian limit process for the fluctuations of the stochastic model.
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1. Introduction

The household epidemic model, which models the spread of an epidemic among a com-
munity of households, has recently received considerable attention; see, for example, [6], [4],
[2], and [3]. In all the above examples, closed-population SIR (susceptible → infective →
removed) epidemics are considered and, therefore, endemic behaviour is not possible. The
simplest epidemic model which can exhibit endemic behaviour is the closed-population SIS
(susceptible → infective → susceptible) epidemic model. That is, infectives at the end of their
infectious period return to the susceptible state and therefore can be reinfected. The study of
homogeneously mixing closed-population SIS epidemic models goes back to [16]; see also [11]
and [9] for stochastic analyses. However, it is only recently, in [1] and [10], that the extension
to a household epidemic model has been considered. The aim of the current work is to study
closed-population SIS household epidemic models further.

In [1, Section 2] the initial stages of the epidemic process were considered, that is, when there
are initially a few infectives in an otherwise susceptible population. In such circumstances, by
considering a sequence of epidemics indexed by the total number of households, n, as n → ∞,
a branching process approximation for the epidemic can be derived. The branching process
approximation can be used to answer the question of whether or not the SIS epidemic can
exhibit endemic behaviour. The results of [1, Section 2] apply to a very general SIS epidemic
model allowing for unequally sized households and general infectious periods. Therefore, we
shall focus on the endemic behaviour or, more specifically, the trajectory of the total number
of infectives per household. In this respect, we extend the work of [1, Section 3] by taking a
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novel approach. In [1, Section 3] the special case of equally sized households (i.e. in which
there exists an m ≥ 2 such that all households contain m individuals) and exponentially
distributed infectious periods was considered. This enabled the derivation of a system of
differential equations defining the deterministic SIS epidemic model; see [1, Equation (10)].
The differential equations can then, in principle, be solved to determine the progress of the
epidemic over time. Moreover, results of [12] and [13] can be utilised to prove convergence
(suitably normalised) of the stochastic epidemic model to the deterministic limit and to derive a
Gaussian limit process for the fluctuations of the epidemic model about the deterministic limit.
Finally, for equally sized households of size 2 in [1], the endemic behaviour of the deterministic
model was considered, and it was shown that if the initial proportion of the population which is
infectious is positive, then the distribution of the total number of infectives within the households
converges to the endemic equilibrium, given that it exists, as t → ∞.

In [10] the SIS household epidemic model was analysed using methods from statistical
physics, namely self-consistent field methods. The analysis was essentially deterministic,
and self-consistent field theory was utilised to consider the individual household epidemics as
independent epidemics, subjected to a ‘mean-field’ global infection. We shall also utilise a
construction which considers the individual household epidemics as conditionally independent
given the total amount of global infection. However, our approach is rather different to that
of [10], and we provide rigorous mathematical justification for our construction of the model.

The methods and results of [1] and [10] have two major drawbacks. Firstly, for m ≥ 1 and
0 ≤ i ≤ m, it is necessary to keep track of the total number of households of size m with i

infectives. Therefore, for m ≥ 1 we require m separate differential equations for households
of size m and, so, for unequally sized household epidemics the system of differential equations
rapidly grows in complexity. Secondly, it is required that each infectious period, the length
of time from an individual becoming infected until they return to the susceptible state, be
exponentially distributed. In order to surmount these problems we focus on a single quantity,
the total number of infectives or, more precisely, the mean number of infectives per household.
This requires a radically different approach to analysing the model, a full description of which
is given in Section 2. Although our methods can be used with very general choices of infectious
period, it is again necessary to restrict attention to exponentially distributed infectious periods
to obtain explicit results. This is primarily due to difficulties in obtaining explicit expressions
for the deterministic model for general choices of infectious period.

The paper is structured as follows. In Section 2 the household epidemic model is described
in full detail. Since we are considering asymptotic results, we define a sequence of epidemic
processes {En}, indexed by the total number of households, n, as n → ∞. Then, in Section 3, a
weak law of large numbers result is derived for the convergence of the mean number of infectives
per household to a deterministic limit. In Section 4 we study the deterministic limit in some
detail in the case where the infectious periods are exponentially distributed. In particular, we
extend [1, Theorem 3.1] to a very general household structure and thereby prove an associated
conjecture (see [1, p. 64]). These results establish necessary and sufficient conditions for
the existence of an endemic equilibrium and show that, as t → ∞, the epidemic converges
to the endemic equilibrium, if it exists. Although the deterministic model can be described
using a system of differential equations, our results are proved by utilising Markov birth–death
processes and Markov chains, via a coupling argument. Similar results have been obtained in [5]
for metapopulation models. The method of proof we use is very different to that presented in [5],
but Markov processes are again utilised in studying the deterministic model. Furthermore, the
results of [5] are not directly applicable to the epidemic model, since [5, condition (H1)] is
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violated. In Section 5 we aim to extend the results of Section 3 by establishing a Gaussian
limit process for the fluctuations of the stochastic model about the deterministic model. We
are only able to do this for exponentially distributed infectious periods, since we require an
explicit expression for the deterministic model. However, in Theorem 5.1 we are able to obtain
useful bounds for the fluctuations of the stochastic model for more general choices of infectious
period. In particular, the bounds are of the same order of magnitude as those obtained from the
Gaussian limit process. Finally, in Section 6 a summary of the results and an outline of further
work is given.

2. Model set-up

We consider a sequence of epidemic processes {En} indexed by the total number of house-
holds, n, as n → ∞. For i ≥ 1, let hi denote the total number of individuals within household i.
Note that we assume that, for all i ≤ n, the ith household in En is of size hi . (This assumption
can easily be relaxed but is retained for clarity of exposition.) For i ≥ 1, label the individuals in
household i as (i, 1), (i, 2), . . . , (i, hi). For a fixed n ≥ 1, the epidemic process is constructed
as follows. An individual, (i, j) say, the j th individual in household i, becomes infected for
the kth time at time t , say, and has infectious period Qijk , which is distributed according to
an arbitrary (but specified) continuous, nonnegative distribution Q. The infectious period Qijk

is independent of all other infectious periods and individual i is infectious in the time interval
[t, t + Qijk), returning to the susceptible state at time t + Qijk . During its infectious period,
individual (i, j) makes global infectious contact at the points of a homogeneous Poisson point
process with rate βG{(1/n)

∑n
i=1 hi}, and the individual thus contacted is chosen uniformly

at random from the entire population, including individual (i, j) itself. Also, for 1 ≤ k ≤ hi

(k �= j), individual (i, j), whilst infectious, makes infectious contact with individual (i, k) at
the points of a homogeneous Poisson point process with rate βL. Those individuals initially
infectious at time t = 0 are assumed to have independent infectious periods identically
distributed according to an arbitrary (but specified) continuous, nonnegative distribution Q̃.
Note that Q̃ and Q can be distinct.

We consider the epidemic within individual households when each individual is exposed to
a known global infectious pressure. For i ≥ 1, t ≥ 0, and z = {z(s) : s ≥ 0}, let θi(t; z) denote
the total number of infectives within household i at time t given that each individual within
household i is contacted by global infectives at the points of an inhomogeneous Poisson point
process with rate βGz(s). The individuals within household i then have infectious periods
whose lengths are independently distributed according to Q (with initial infectious periods
distributed according to Q̃). An individual, while infectious, makes local infectious contact
with a given individual within household i at the points of a homogeneous Poisson point process
with rate βL. The most important fact to note is that, for i �= j and s, t ≥ 0, θi(t; z) and θj (s; z)
are independent.

Therefore, if we let X̃n(t) = nXn(t) denote the total number of infectious individuals in En at
time t , then Xn(t) = (1/n)

∑n
i=1 θi(t; Xn). The key point is that with this construction the epi-

demics within distinct households are conditionally independent, given Xn = {Xn(s) : s ≥ 0}.
Clearly this introduces an explicit dependence upon the entire past history of the epidemic when
considering Xn(t); however, it transpires that this will not be problematic.

For k ≥ 1 and 0 ≤ l ≤ k, let an
kl denote the total number of households of size k within En

which contain l initial infectives. For k ≥ 1, let ωn
k = (1/n)

∑k
l=0 an

kl denote the proportion
of households of size k and, for 0 ≤ l ≤ k, let ζ n

kl = an
kl/nωn

k . Suppose that, for k ≥ 1 and
0 ≤ l ≤ k, ωn

k → ωk and ζ n
kl → ζkl as n → ∞, with

∑∞
k=1 ωk = 1 and

∑k
l=0 ζkl = 1.
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Finally, let H be a positive discrete random variable with P(H = k) = ωk (k ≥ 1). Thus, H

denotes the limiting probability distribution for household size, and throughout we will specify
conditions on the household size distribution in terms of H .

For k ≥ 1, 0 ≤ l ≤ k, t ≥ 0, and z = {z(s) : s ≥ 0}, let χkl(t; z) denote the total number of
infectives at time t within a household of size k which has l initial infectives and is such that
each individual within it is contacted by global infectives at the points of an inhomogeneous
Poisson point process with rate βGz(s). Thus, for i ≥ 1, if hi = k and θi(0; z) = l, then
θi(t; z) d= χkl(t; z) for all t ≥ 0. Here, ‘ d=’ denotes equality in distribution.

Let x(0) = ∑∞
k=1 ωk

∑k
l=0 lζkl and, for t > 0, let

x(t) =
∞∑

k=1

ωk

k∑
l=0

ζkl E[χkl(t; x)]. (2.1)

Thus, {x(s) : s ≥ 0} describes the total proportion of infectious individuals in the deterministic
equivalent of the limiting stochastic model described above. In Section 4 we shall analyse (2.1)
in detail for the case Q ∼ Exp(γ ).

3. Law of large numbers analysis

In this section we show that if E[H 2] < ∞ then, for any T > 0,

sup
0≤s≤T

|Xn(s) − x(s)| p−→ 0 as n → ∞, (3.1)

where ‘ p−→’ denotes convergence in probability.
We begin by stating the following useful proposition.

Proposition 3.1. For any two inhomogeneous Poisson point processes η1 and η2 with respective
rates α1(s) and α2(s), there exists a coupling such that, for any t (0 ≤ t < Y ),

η1[0, t] = η2[0, t],
where Y is a nonnegative random variable with cumulative distribution function

P(Y ≤ t) = 1 − exp

(
−

∫ t

0
|α1(s) − α2(s)| ds

)
.

Let xn(0) = ∑∞
k=1 ωn

k

∑k
l=0 lζ n

kl and, for t > 0, let

xn(t) =
∞∑

k=1

ωn
k

k∑
l=0

ζ n
kl E[χkl(t; xn)] =: 1

n

n∑
i=1

E[θn
i (t; xn)].

Thus, {xn(s) : s ≥ 0} is the deterministic equivalent of {Xn(s) : s ≥ 0}. Furthermore, we have
the following lemma linking xn(·) and x(·).
Lemma 3.1. Suppose that

∑∞
k=1 k

∑k
l=0 |ωn

k ζ n
kl − ωkζkl | → 0 as n → ∞. Then, for any

T > 0,
sup

0≤s≤T

|xn(s) − x(s)| → 0 as n → ∞.
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Proof. For k ≤ 1 and 0 ≤ l ≤ k,

sup
0≤s≤T

E[|χkl(s; x) − χkl(s; xn)|] ≤ k P
(

sup
0≤s≤T

|χkl(s; x) − χkl(s; xn)| �= 0
)
.

By Proposition 3.1, there exists a random variable Y k
n with

P(Y k
n ≤ T ) = 1 − exp

(
−kβG

∫ T

0
|x(s) − xn(s)| ds

)
,

such that the inhomogeneous Poisson point processes ηk and ηn
k with respective rates kβGx(s)

and kβGxn(s) can be coupled as follows, for any t (0 ≤ t < Y k
n ):

ηk[0, t] = ηn
k [0, t].

Therefore, we have

P
(

sup
0≤s≤T

|χkl(t; x) − χkl(t; xn)| �= 0
)

≤ P(Y k
n ≤ T )

≤ kβG

∫ T

0
|x(s) − xn(s)| ds. (3.2)

By (3.2),

sup
0≤s≤T

|x(s) − xn(s)|

≤
∞∑

k=1

k∑
l=0

sup
0≤s≤T

|ωkζkl E[χkl(s; x)] − ωn
k ζ n

kl E[χkl(s; xn)]|

≤
∞∑

k=1

k

k∑
l=0

|ωkζkl − ωn
k ζ n

kl | +
∞∑

k=1

ωk

k∑
l=0

ζkl E
[

sup
0≤s≤T

|χkl(s; x) − χkl(s; xn)|
]

≤
∞∑

k=1

k

k∑
l=0

|ωkζkl − ωn
k ζ n

kl | +
∞∑

k=1

ωkk
2βG

∫ T

0
|x(s) − xn(s)| ds

≤
∞∑

k=1

k

k∑
l=0

|ωkζkl − ωn
k ζ n

kl | + βG E[H 2]
∫ T

0
sup

0≤u≤s

|x(u) − xn(u)| ds.

Therefore, it follows by Gronwall’s inequality that

sup
0≤s≤T

|x(s) − xn(s)| ≤
∞∑

k=1

k

k∑
l=0

|ωn
k ζ n

kl − ωkζkl | exp(βGT E[H 2]), (3.3)

and the lemma follows since the right-hand side of (3.3) converges to 0 as n → ∞.

For all t ≥ 0,

Xn(t) − xn(t) = 1

n

n∑
i=1

{θi(t; Xn) − E[θi(t; Xn) | Xn]}

+ 1

n

n∑
i=1

{E[θi(t; Xn) | Xn] − E[θi(t; xn)]}.
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We shall make use of a sequence of immigration–death processes {In}n≥1 to assist in proving
that

sup
0≤s≤T

∣∣∣∣1

n

n∑
i=1

{θi(s; Xn) − E[θi(s; Xn) | Xn]}
∣∣∣∣ p−→ 0 as n → ∞.

For n ≥ 1, suppose that immigrations occur at the points of a homogeneous Poisson point
process with rate

nKn = 1

4

βG

n

{ n∑
i=1

hi

}2

+ βL

n∑
i=1

h2
i

4
= n

1

4

{
βG

(
1

n

n∑
i=1

hi

)2

+ βL
1

n

n∑
i=1

h2
i

}
.

Then
Kn → K = 1

4 {βG E[H ]2 + βL E[H 2]} as n → ∞.

Upon immigrating into the population, the immigrants have independent lifetimes identically
distributed according to Q. That is, if individual i, say, with lifetime Qi , immigrates into the
population at time t , say, then individual i dies at time t + Qi .

Further suppose that, for n ≥ 1, the process In starts at time t = 0 with rn initial
individuals in the population. Suppose both that there exists an r ≥ 0 such that rn/n → r as
n → ∞ and that the initial individuals have independent and identically distributed death times
Q̃1, Q̃2, . . . , Q̃rn , respectively. For k ≥ 1, let the first two entries of (tnk , Qk, Uk) denote the
immigration time and the lifetime, respectively, of the kth immigrant in In, and let Uk denote a
uniform random variable on [0, 1] which plays no part in the immigration–death process but is
instrumental in coupling the epidemic process to the immigration–death process. It is assumed
that the random variables (Qk, Uk) are independent and identically distributed with Qk and Uk

independent.
For n ≥ 1 and t ≥ 0, let

AI
n(t) = {(tnk , Qk, Uk) : tnk ≤ t},

AD
n (t) = {(tnk , Qk, Uk) : tnk + Qk ≤ t} ∪ {Q̃k : Q̃k ≤ t}.

Therefore, the sets AI
n(t) and AD

n (t) respectively consist of those individuals who have immi-
grated into In and died in In, up to and including time t . For n ≥ 1 and t ≥ 0, let Z̃I

n(t) = nZI
n(t)

and Z̃D
n (t) = nZD

n (t) denote the cardinalities of AI
n(t) and AD

n (t), respectively. Hence, Z̃I
n(t)

and Z̃D
n (t) respectively denote the total number of immigrations and deaths in In up to time t .

The key point in utilising In is that, in the epidemic En, infections occur at the points of an
inhomogeneous Poisson point process with rate nλn(t), given by

βG

n

{ n∑
i=1

θi(t; Xn)

}{ n∑
i=1

(hi − θi(t; Xn))

}
+ βL

n∑
i=1

θi(t; Xn)(hi − θi(t; Xn)).

Hence, λn(t) ≤ Kn for all t ≥ 0. Thus, for n ≥ 1, the epidemic En can be coupled to the
immigration process In as follows. Suppose that rn = nXn(0)(= nxn(0)), and let the initial
infectives in En have (remaining) infectious periods Q̃1, Q̃2, . . . , Q̃rn , respectively. Thus, for
every removal of an initial infective in En there will be a corresponding death of an initial
individual in In. Now, for k ≥ 1, consider the kth immigration in In. If Uk ≤ λn(t

n
k )/Kn

then an infection occurs in En and the infectious period of the infective is Qk . The individual
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infected can then be chosen from among the susceptibles according to the correct conditional
distribution. Thus, we have a coupling such that, for all n ≥ 1, s, and t (0 ≤ s ≤ t),

|Xn(t) − Xn(s)| ≤ {ZI
n(t) − ZI

n(s)} + {ZD
n (t) − ZD

n (s)}, (3.4)

where ZI
n(·) and ZD

n (·) are more convenient to analyse than Xn(·).
For all t ≥ 0,

ZI
n(t) ∼ 1

n
Po(nKnt),

ZD
n (t) ∼ 1

n

{
Bin(rn, F̃ (t)) + Po

(
nKn

∫ t

0
F(s) ds

)}
, (3.5)

where, for s ≥ 0, F̃ (s) and F(s) denote the cumulative distribution functions of Q̃ and Q,
respectively.

Lemma 3.2. For all T > 0,

sup
0≤s≤T

∣∣∣∣1

n

n∑
i=1

{θi(s; Xn) − E[θi(s; Xn) | Xn]}
∣∣∣∣ p−→ 0 as n → ∞.

Proof. Firstly note that, using (3.5) and Chebyshev’s inequality, it is trivial to show that,
for all s ≥ 0, |ZI

n(s) − E[ZI
n(s)]| p−→ 0 and |ZD

n (s) − E[ZD
n (s)]| p−→ 0 as n → ∞. Further-

more, since the {θi(s; Xn)} are conditionally independent given Xn, it follows by Chebyshev’s
inequality (cf. [14, Lemma 5.4]) that, for any s ≥ 0 and ε > 0,

P

(∣∣∣∣1

n

n∑
i=1

{θi(s; Xn) − E[θi(s; Xn) | Xn]}
∣∣∣∣ > ε

)
≤ 1

ε2

1

n2 E

[
var

( n∑
i=1

θi(s; Xn)

∣∣∣∣ Xn

)]

≤ 1

ε2

1

n2

n∑
i=1

h2
i = 1

ε2n

∞∑
k=1

k2ωn
k

→ 0 as n → ∞.

Fix a T ≥ 0 and an ε > 0. For 0 ≤ s ≤ T , let zI(s) = Ks and zD(s) = x(0)F̃ (s) +
K

∫ s

0 F(u) du. Note that zI(T ), zD(T ) < ∞ and that zI(s) and zD(s) are nondecreasing in s.
Therefore, there exist r ∈ N and u0, . . . , ur (0 = u0 < u1 < · · · < ur = T ) such that, with
Bk = {s : uk ≤ s ≤ uk+1} (0 ≤ k ≤ r − 1), we have maxs,s′∈Bk

|zI(s) − zI(s′)| < ε/10 and
maxs,s′∈Bk

|zD(s) − zD(s′)| < ε/10. Since, for all s (0 ≤ s ≤ T ), E[ZI
n(s)] → zI(s) and

E[ZD
n (s)] → zD(s) as n → ∞, it follows that

lim
n→∞ P

(
|ZI

n(s) − zI(s)| <
ε

10
, s ∈ Hr

)
= 1, (3.6)

lim
n→∞ P

(
|ZD

n (s) − zD(s)| <
ε

10
, s ∈ Hr

)
= 1, (3.7)

lim
n→∞ P

(∣∣∣∣1

n

n∑
i=1

{θi(s; Xn) − E[θi(s; Xn) | Xn]}
∣∣∣∣ <

ε

10
, s ∈ Hr

)
= 1, (3.8)

where Hr = {u0, u1, . . . , ur}.
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By the triangle inequality, for all k (0 ≤ k ≤ r − 1) and s (uk ≤ s ≤ uk+1) we have

∣∣∣∣1

n

n∑
i=1

{θi(s; Xn) − E[θi(s; Xn) | Xn]}
∣∣∣∣

≤
∣∣∣∣1

n

n∑
i=1

{θi(s; Xn) − θi(uk; Xn)}
∣∣∣∣

+
∣∣∣∣1

n

n∑
i=1

{θi(uk; Xn) − E[θi(uk; Xn) | Xn]}
∣∣∣∣

+
∣∣∣∣1

n

n∑
i=1

{E[θi(s; Xn) | Xn] − E[θi(uk; Xn) | Xn]}
∣∣∣∣. (3.9)

By (3.4), the first and third terms on the right-hand side of (3.9) are less than

ZI
n(uk+1) − ZI

n(uk) + ZD
n (uk+1) − ZD

n (uk) (3.10)

and
E[ZI

n(uk+1) − ZI
n(uk)] + E[ZD

n (uk+1) − ZD
n (uk)], (3.11)

respectively. Therefore, letting Wn(u) = |ZI
n(u)− zI(u)|+ |ZD

n (u)− zD(u)| (u ≥ 0), we have,
from (3.9), (3.10), and (3.11),

∣∣∣∣1

n

n∑
i=1

{θi(s; Xn) − E[θi(s; Xn) | Xn]}
∣∣∣∣ ≤ Wn(uk+1) + Wn(uk) + E[Wn(uk+1)] + E[Wn(uk)]

+ 2(zI(uk+1) − zI(uk)) + 2(zD(uk+1) − zD(uk))

+
∣∣∣∣1

n

n∑
i=1

{θi(uk; Xn) − E[θi(uk; Xn) | Xn]}
∣∣∣∣.

For all l (0 ≤ l ≤ r), E[Wn(ul)] → 0 as n → ∞, so, for all sufficiently large n,

E[Wn(uk+1)] + E[Wn(uk)] <
ε

10
.

Thus, by considering each Bk separately it follows that if, for all u ∈ Hr , we have

Wn(u) = |ZI
n(u) − zI(u)| + |ZD

n (u) − zD(u)| <
2ε

10
,

∣∣∣∣1

n

n∑
i=1

{θi(u; Xn) − E[θi(u; Xn) | Xn]}
∣∣∣∣ <

ε

10
,

then

sup
0≤s≤T

∣∣∣∣1

n

n∑
i=1

{θi(s; Xn) − E[θi(s; Xn) | Xn]}
∣∣∣∣ < ε,

and the lemma follows using (3.6), (3.7), and (3.8).

We are now in a position to prove (3.1).
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Theorem 3.1. For all T > 0,

sup
0≤s≤T

|Xn(s) − x(s)| p−→ 0 as n → ∞.

Proof. By Lemma 3.1 and the triangle inequality, it is sufficient to show that

sup
0≤s≤T

|Xn(s) − xn(s)| p−→ 0 as n → ∞.

Note that, by the triangle inequality,

sup
0≤s≤T

|Xn(s) − xn(s)| ≤ An(T ) + Bn(T ), (3.12)

where, for t ≥ 0,

An(t) = sup
0≤s≤t

∣∣∣∣1

n

n∑
i=1

{θi(s; Xn) − E[θi(s; Xn) | Xn]}
∣∣∣∣,

Bn(t) = sup
0≤s≤t

∣∣∣∣1

n

n∑
i=1

{E[θi(s; Xn) | Xn] − E[θi(s; xn)]}
∣∣∣∣

= sup
0≤s≤t

∣∣∣∣
∞∑

k=1

ωn
k

k∑
l=0

ζ n
kl{E[χkl(s; Xn) | Xn] − E[χkl(s; xn)]}

∣∣∣∣.
Therefore, by arguments similar to those used in Lemma 3.1, for t ≥ 0 we have

Bn(t) ≤
{ ∞∑

k=1

k2ωn
k

}
βG

∫ t

0
sup

0≤u≤s

|Xn(u) − xn(u)| ds. (3.13)

Thus, by using (3.13) and applying Gronwall’s inequality to (3.12) we find that, for T ≥ 0,

sup
0≤s≤T

|Xn(s) − xn(s)| ≤ An(T ) exp

({ ∞∑
k=1

k2ωn
k

}
βGT

)
. (3.14)

By Lemma 3.2, the right-hand side of (3.14) converges in probability to 0 as n → ∞, and the
theorem follows.

4. Deterministic model

In order to study the deterministic model x(·), we restrict attention to the case Q ∼ Exp(γ )

where γ > 0; we can then use Markov chains to analyse x(·). In particular, we prove a
generalisation of [1, Theorem 3.1] and, hence, prove a related conjecture (see [1, p. 64]) under
the weak condition that E[H ] < ∞.

We begin by considering a household of size m, for some m ≥ 1. For u ≥ 0, let Gm(u)

denote an (m + 1) × (m + 1) matrix with typical entries gm
ij (u) (0 ≤ i, j ≤ m), where

gm
i(i+1)(u) = (m − i)βGu + (m − i)iβL (0 ≤ i ≤ m − 1),

gm
i(i−1)(u) = iγ (1 ≤ i ≤ m),

gm
ij (u) = 0 (|i − j | ≥ 2, 0 ≤ i, j ≤ m),

gm
ii (u) = −

∑
j �=i

gm
ij (u) (0 ≤ i ≤ m).
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Hence, gm
ij (u) is the infinitesimal transition rate from there being i infectives to there being j

infectives, given that there are u units of global infectious pressure. We shall use Gm(u) to
construct a time-inhomogeneous Markov chain to study the total number of infectives within the
household at any given point in time. Note that Gm(·) does not satisfy the birth condition (H1)
of [5].

Suppose that each individual within the household is contacted by global infectives at the
points of an inhomogeneous Poisson point process with rate βGz(t), for some nonnegative
function z(·). For 0 ≤ a ≤ b, let Sm(a, b; z) = exp(

∫ b

a
Gm(z(s)) ds) with typical entries

sm
ij (a, b; z) (0 ≤ i, j ≤ m). Thus, for 0 ≤ i, j ≤ m, sm

ij (a, b; z) denotes the probability that
there are j infectives within the household at time b given that there were i infectives at time a.

Therefore, turning our attention to x(·), we note that, for t ≥ 0, x(t) solves the equation

x(t) =
∞∑

k=1

ωkk{ζkSk(0, t; x)}� (4.1)

with x(0) = ∑∞
k=1 ωkkζ�

k , where k = (0, 1, . . . , k) and ζk = (ζk0, ζk1, . . . ζkk) for k ≥ 1.
In order to analyse x(·) and, in particular, limt→∞ x(t), we need to introduce some basic

notation and results. For k ≥ 1, let

R(k)∗ = βG

γ
E[H ] (k − 1)!

ρk−1

k−1∑
i=0

ρi

i!
and

R∗ =
∞∑

k=1

kωkR
(k)∗

E[H ] =
∞∑

k=1

ωk

βG

γ

k!
ρk−1

k−1∑
i=0

ρi

i! ,

where ρ = γ /βL. The quantity R∗ plays a vital role in both the stochastic and deterministic
analyses of the epidemic model. In this situation, R

(k)∗ denotes the mean number of global
infectious contacts (births) emanating from the epidemic within a household of size k (individual
in the branching process) where initially there is one infective within the household and there
are no global infections into the household. Then, for the stochastic model, it was shown in [1]
that if R∗ ≤ 1 then the approximating branching process goes extinct, almost surely, and the
epidemic also dies out. However, if R∗ > 1 then there is a nonzero probability that the branching
process does not go extinct, corresponding to the epidemic taking off. The deterministic model
is analysed below. We show that if R∗ ≤ 1 then there exists only one equilibrium point, x∗ = 0,
and this point is an attractor, that is, for all x(0) ≥ 0, x(t) → x∗(= 0) as t → ∞. For R∗ > 1,
there are two equilibrium points, x∗ = 0 and s∗ > 0. Then x∗ is an unstable equilibrium point
while s∗ is an attractor, in that, for any configuration of initial infectives such that x(0) > 0,
x(t) → s∗ as t → ∞. An analysis of the distribution of the total number of infectives within
the differently sized households, in equilibrium, is also given.

The first step is to consider, for m ≥ 1 and s ≥ 0, time-homogeneous Markov birth–death
processes with transition matrices, Gm(s), corresponding to epidemics within households of
size m subjected to a constant global infectious pressure s. Let πm(s) denote the stationary
distribution of the birth–death process. Then

0 = πm(s)Gm(s),

and if we define S̃m(t; s) = exp(tGm(s)) for t ≥ 0, then

πm(s) = πm(s)S̃m(t; s)
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for all t ≥ 0. For all m ≥ 1, let

Fm =
{
a = (a0, a1, . . . , am) ∈ R

m+1 : 0 ≤ ai (0 ≤ i ≤ m),

m∑
i=0

ai = 1

}
.

For any m ≥ 1, and a, b ∈ Fm, let a ≤ b if
∑m

i=k ai ≤ ∑m
i=k bi for all k (1 ≤ k ≤ m), and let

a < b if the same conditions hold with strict inequality for at least one value of k. It is trivial
to prove that, for s < s′, πm(s) < πm(s′), since for s > 0 we have

π0
m(s) =

{
1 +

m∑
k=1

k∏
i=1

(m + 1 − i)(βGs + (i − 1)βL)

iγ

}−1

and for 1 ≤ k ≤ m we have

πk
m(s) = (m + 1 − k)(βGs + (k − 1)βL)

kγ
πk−1

m (s).

For s ≥ 0, let µm(s) = ∑m
i=1 iπi

m(s) denote the mean number of infectives, in stationarity,
within a household of size m given that the household is subjected to a constant global infectious
pressure s, and let µ(s) = ∑∞

k=1 ωkµk(s).
We shall consider the solutions to µ(s) = s after the following preliminary lemma.

Lemma 4.1. For m ≥ 1 and ai, bi ≥ 0 (0 ≤ i ≤ m), suppose that fm(x) = ∑m
i=0 aix

i and
gm(x) = ∑m

i=0 bix
i . Suppose that, for 0 ≤ j < k ≤ m, aj /bj < ak/bk . Then, for all x ≥ 0,

d

dx

(
fm(x)

gm(x)

)
> 0 and

d2

dx2

(
fm(x)

gm(x)

)
< 0.

Proof. The lemma trivially holds for m = 1 and can then be proved using induction on m

by considering

d

dx

(
amxm + fm−1(x)

bmxm + gm−1(x)

)
and

d2

dx2

(
amxm + fm−1(x)

bmxm + gm−1(x)

)
.

An immediate consequence of Lemma 4.1 is the following corollary.

Corollary 4.1. For all m ≥ 1, µm(s) is a concave function with

d

ds
µm(s) > 0 and

d2

ds2 µm(s) < 0 (4.2)

for all s ≥ 0. Hence, µ(s) is a concave function with

d

ds
µ(s) > 0 and

d2

ds2 µ(s) < 0 (4.3)

for all s ≥ 0.

Proof. For m ≥ 1 and k ≥ 1, let

k∏
i=1

{
(m + 1 − i)(βGs + (i − 1)βL)

iγ

}
=

k∑
i=0

ϕm
kis

i , say.
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Therefore,

µm(s) =
m∑

i=0

iπi
m(s) = fm(s)

gm(s)
,

where

fm(s) =
m∑

k=1

k

k∏
i=1

{
(m + 1 − i)(βGs + (i − 1)βL)

iγ

}
=

m∑
k=1

k

k∑
i=0

ϕm
kis

i (4.4)

and

gm(s) = 1 +
m∑

k=1

k∏
i=1

{
(m + 1 − i)(βGs + (i − 1)βL)

iγ

}
= 1 +

m∑
k=1

k∑
i=0

ϕm
kis

i . (4.5)

Interchanging the order of summations in (4.4) and (4.5) yields

fm(s) =
m∑

i=0

si
m∑

k=i

kϕm
ki, gm(s) = 1 +

m∑
i=0

si
m∑

k=i

ϕm
ki .

Therefore, the conditions of Lemma 4.1 are satisfied and (4.2) follows.
Equation (4.3) follows since µ(s) is a linear combination of the µm(s).

Note that µ(0) = 0 and µ(∞) = E[H ]. Thus, from Corollary 4.1, there exists at most
one s > 0 such that µ(s) = s. Furthermore, such a solution will exist if and only if
(d/ds)µ(s)|s=0 > 1.

Lemma 4.2. For all m ≥ 1,

d

ds
µm(s)

∣∣∣∣
s=0

= lim
ε↓0

ε−1µm(ε) = mR
(m)∗

E[H ]
and, hence,

d

ds
µ(s)

∣∣∣∣
s=0

= lim
ε↓0

ε−1µ(ε) = R∗.

Proof. For m ≥ 1 and 1 ≤ k ≤ m,

πk
m(ε) = π0

m(ε)

k∏
i=1

(m + 1 − i)(βGε + (i − 1)βL)

iγ
.

Thus, π1
m(ε) = (mβG/γ )επ0

m(ε) and, for 2 ≤ k ≤ m,

πk
m(ε) = mβG

γ
επ0

m(ε)

k∏
i=2

(m + 1 − i)(i − 1)βL

iγ
+ o(ε)

with π0
m(ε) = 1 − O(ε). Therefore, for 1 ≤ k ≤ m,

πk
m(ε) = mβG

γ
ε

(m − 1)!
k(m − k)!ρ

−(k−1) + o(ε).
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Thus,

µm(ε) =
m∑

k=0

kπk
m(ε)

= mβG

γ
ε

m∑
k=1

k
(m − 1)!
k(m − k)!ρ

−(k−1) + o(ε)

= m

E[H ]R
(m)∗ ε + o(ε)

and, so, limε↓0 ε−1µm(ε) = mR
(m)∗ / E[H ], as required.

The preceding results are drawn together in Lemma 4.3.

Lemma 4.3. For R∗ ≤ 1, the only s ≥ 0 such that µ(s) = s is s = 0. For R∗ > 1, there exists
a unique s∗ > 0 such that µ(s∗) = s∗. Moreover, for s1 < s∗ < s2, we have s1 < µ(s1) and
µ(s2) < s2.

Before returning to x(·), we state a very useful general result for time-inhomogeneous
Markov birth–death processes.

Consider any two continuous-time, time-inhomogeneous Markov birth–death processes,
labelled one and two, with respective infinitesimal transition rate matrices H1(u) and H2(u)

at time u ≥ 0. For u ≥ 0, let W1(u) and W2(u) respectively denote the total numbers of
individuals alive in processes one and two at time u. Suppose that the maximum population
size in both processes is m ≥ 1, and that, for j = 1, 2, the transition matrices Hj (u) are
(m + 1) × (m + 1) matrices of the form

h
j

i(i+1)(u) > 0 (0 ≤ i ≤ m − 1),

h
j

i(i−1)(u) = iγ (1 ≤ i ≤ m),

h
j
ik(u) = 0 (|i − k| ≥ 2, 0 ≤ i, k ≤ m),

h
j
ii(u) = −

∑
k �=i

h
j
ik(u) (0 ≤ i ≤ m).

Proposition 4.1. Suppose that, for 0 ≤ i ≤ m − 1,

h1
i(i+1)(u) ≤ h2

i(i+1)(u) < ∞ (u ≥ 0) (4.6)

and
W1(0) ≤ W2(0). (4.7)

Then a coupling exists such that, for all t ≥ 0,

W1(t) ≤ W2(t) almost surely. (4.8)

Furthermore, if either the inequality in (4.7) or the inequalities in (4.6) are strict, then, for all
t > 0,

P(W1(t) < W2(t)) > 0 (4.9)

and, so,
E[W1(t)] < E[W2(t)]. (4.10)
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Proof. We assume that processes one and two behave independently whenever W1(t) �=
W2(t). Note that, for birth–death processes, if W1(s) < W2(s) and W1(u) > W2(u) (s < u)

then there exists a t (s < t < u) such that W1(t) = W2(t). Therefore, it suffices to specify a
coupling for W1(t) = W2(t).

Suppose that, at time t ≥ 0, W1(t) = W2(t) = i (0 ≤ i ≤ m). The two processes can
be coupled as follows. Let ηi

1 and ηi
2 be inhomogeneous Poisson point processes with rates

h1
i(i+1)(u) and h2

i(i+1)(u) − h1
i(i+1)(u), respectively. Let Di ∼ Exp(iγ ). If there are no points

in either ηi
1(t, t + Di] or ηi

2(t, t + Di], then a death occurs in both processes at time t +Di and
W1(t + Di) = W2(t + Di) = i − 1. Alternatively, if there is at least one point in (t, t + Di]
on the superposition of ηi

1 and ηi
2, let Bi (t < Bi ≤ t + Di) denote the time of the first such

point. If the point corresponds to a point in ηi
1, then a birth occurs in both processes and

W1(Bi) = W2(Bi) = i + 1. Otherwise, a birth only occurs in process two and W2(Bi) = i + 1
with W1(Bi) = i. In this case, the two processes evolve independently until such time, s > Bi ,
that W1(s) = W2(s). Therefore, (4.8) holds.

Since the maximum population size is m, for both process one and process two there is
always a nonzero probability of no births or deaths occurring in any finite interval. Thus, if
W1(0) < W2(0) then

P(W1(t) < W2(t)) ≥ P(no births or deaths in either process in [0, t]) > 0.

Now suppose that W1(0) = W2(0) < m and that the strict inequalities (4.6) hold. Then
P(W1(t) < W2(t)) is greater than the probability that there is only one birth in process two
with no corresponding birth in process one, and no deaths in either process. This probability
is positive, since whenever there are the same number of individuals in both processes a birth
can occur in process two with no corresponding birth in process one. Thus, (4.9) is proved for
W1(0) = W2(0) < m. A simple adaptation can be applied to prove it in the case W1(0) =
W2(0) = m, and (4.10) is then immediate.

For j = 1, 2 and 0 ≤ s ≤ t , let Rj (s, t) = exp(
∫ t

s
Hj (u) ds). The next corollary then

follows immediately from (4.10).

Corollary 4.2. For m ≥ 1 and 0 ≤ i ≤ m − 1, suppose that

h1
i(i+1)(u) ≤ h2

i(i+1)(u) (u ≥ 0) (4.11)

and that x, y ∈ Fm with x ≤ y. If either x < y or the inequality in (4.11) is strict, then, for
all a and b (0 ≤ a < b),

xR1(a, b) < yR2(a, b).

Applying Corollary 4.2 to the household model yields the following useful results.

Lemma 4.4. Suppose that, for all m ≥ 1, am, bm ∈ Fm with am ≤ bm. Let xa(0) =∑∞
k=1 ωkka�

k and xb(0) = ∑∞
k=1 ωkkb�

k with

xa(t) =
∞∑

k=1

ωkk{akSk(0, t; xa)}� and xb(t) =
∞∑

k=1

ωkk{bkSk(0, t; xb)}�.

Suppose that there exists a k ≥ 1 such that ωk > 0 and ak < bk . Then, for all t > 0,
xa(t) < xb(t) and, for all m ≥ 1,

amSm(0, t; xa) < bmSm(0, t; xb).
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For i = 1, 2, let vi = {vi(u) : u ≥ 0}. Suppose that v1(u) < v2(u) for all u ≥ 0. Then, for
all m ≥ 1, cm < dm (where cm, dm ∈ Fm), and t > 0,

cmSm(0, t; v1) < cmSm(0, t; v2) (4.12)

and

cmSm(0, t; v1) < dmSm(0, t; v1). (4.13)

Thus, we have shown that the SIS household epidemic model satisfies a monotonicity
condition. That is, two populations with identical household structures and disease dynamics
can be coupled household by household such that if, for all i ≥ 1, there are initially at least as
many infectives in household i in population two as there are in population one, then there are
at least as many infectives in household i in population two as there are in population one at all
times t ≥ 0.

We now consider the stationary distributions πm(s) (m ≥ 1, s ≥ 0).

Lemma 4.5. For m ≥ 1, 0 ≤ r < s, and all t > 0,

πm(r) < πm(r)S̃m(t; s) < πm(s) (4.14)

and, similarly,

πm(r) < πm(s)S̃m(t; r) < πm(s). (4.15)

Proof. We prove (4.14); (4.15) follows similarly.
Fix r and s (r < s). For all u ≥ 0, let v1(u) = r and v2(u) = s in Lemma 4.4. Then, by

stationarity, (4.12), and (4.13), we have

πm(r) = πm(r)S̃m(t; r) < πm(r)S̃m(t; s) < πm(s)S̃m(t; s) = πm(s),

as required.

Lemmas 4.3, 4.4, and 4.5 lead to the following key result.

Lemma 4.6. Let R∗ > 1, and let s∗ > 0 be a solution to µ(s∗) = s∗.

(i) For s > s∗, let µ(s) = s0. Then s∗ < s0 < s and, for any s1 (s0 < s1 < s), there exists a
t1 > 0 such that, for all m ≥ 1,

πm(s)Sm(0, t1; ys) < πm(s1),

where, for t, u ≥ 0, yu(t) = ∑∞
k=1 ωkk{πk(u)Sk(0, t; yu)}�.

(ii) For 0 < r < s∗, let µ(r) = r0. Then r < r0 < s∗ and, for any r1 (r < r1 < r0), there
exists a t1 > 0 such that, for all m ≥ 1,

πm(r)Sm(0, t1; yr ) > πm(r1).

Proof. We shall prove statement (i); statement (ii) follows similarly.
Fix s and s∗ (s > s∗) and µ(s) = s0 < s1 < s. Firstly, note that ys(0) = s0. Now suppose

that there exists a t2 > 0 such that ys(t2) > s0 and, for all t (0 ≤ t < t2), ys(t) ≤ s0. This is a
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contradiction since, by Lemma 4.4,

ys(t2) =
∞∑

k=1

ωkk{πk(s)Sk(0, t2; ys)}�

≤
∞∑

k=1

ωkk{πk(s)S̃k(t2; s0)}�

≤
∞∑

k=1

ωkkπk(s)
�

= s0.

Thus, for any t2 > 0 and for ys(t2) > s0, we require that there exist a t3 (0 < t3 < t2) such
that ys(t3) > s0, or, equivalently, that there exist a t2 > 0 such that ys(t2) > s0 only if

d

dt
ys(t)

∣∣∣∣
t=0

≥ 0.

However,

d

dt
ys(t)

∣∣∣∣
t=0

=
∞∑

k=1

ωkk{πk(s)Gk(s0)}� <

∞∑
k=1

ωkk{πk(s)Gk(s)}� =
∞∑

k=1

ωkk0� = 0.

Therefore, for all t ≥ 0, ys(t) ≤ s0 and, hence, by Lemma 4.4, for all m ≥ 1 we have

πm(s)Sm(0, t; ys) ≤ πm(s)S̃m(t; s0). (4.16)

Then, since
πm(s)S̃m(t; s0) → πm(s0) as t → ∞,

it follows that there exists a t1 > 0 such that

πm(s)S̃m(t1; s0) < πm(s1). (4.17)

Hence, statement (i) follows by (4.16) and (4.17).

Lemma 4.7. Let R∗ > 1, and let s∗ > 0 be a solution to µ(s∗) = s∗. Suppose that there exists
an ε > 0 such that, for all m ≥ 1 with ωm > 0, ζm ≥ πm(ε). Then

x(t) → s∗ as t → ∞.

Proof. Fix an ε (0 < ε < s∗) such that, for all m ≥ 1,

am = πm(ε) ≤ ζm ≤ πm(∞) = bm.

For t ≥ 0, let

xa(t) =
∞∑

k=1

ωkk{akSk(0, t; xa)}�,

xb(t) =
∞∑

k=1

ωkk{bkSk(0, t; xb)}�.

https://doi.org/10.1017/S0001867800001403 Published online by Cambridge University Press

https://doi.org/10.1017/S0001867800001403


Stochastic and deterministic SIS household epidemics 959

By successive applications of Lemma 4.6, for any r1 and r2 (r1 < s∗ < r2), there exists a
t1 > 0 such that, for all m ≥ 1,

πm(r1) < amSm(0, t1; xa),

πm(r2) > bmSm(0, t1; xb).

Moreover, Lemmas 4.5 and 4.6 can then be utilised to show that, for all t ≥ 0,

πm(r1) < πm(r1)S̃m(t; µ(r1)) < amSm(0, t1 + t; xa),

πm(r2) > πm(r2)S̃m(t; µ(r2)) > bmSm(0, t1 + t; xb).

Thus, for all t ≥ t1,

xa(t) >

∞∑
k=1

ωkkπk(r1)
� = µ(r1),

xb(t) <

∞∑
k=1

ωkkπk(r2)
� = µ(r2).

By Lemma 4.4, xa(t) < x(t) < xb(t) for all t ≥ 0. Hence, for all t > t1,

µ(r1) < x(t) < µ(r2).

Since the above result holds for all r1 and r2 (r1 < s∗ < r2) and µ(s∗) = s∗, the lemma
follows.

The equivalent result for the case where R∗ ≤ 1 is as follows.

Lemma 4.8. Suppose that R∗ ≤ 1. Then

x(t) → 0 as t → ∞.

Proof. The proof is similar to that in the case R∗ > 1; hence, the details are omitted.

Lemma 4.7 shows that if R∗ > 1 then, for most initial configurations of infectives, the mean
number of infectives per household converges to s∗ > 0 as t → ∞, i.e. an endemic equilibrium
exists. Moreover, in equilibrium the proportion of households of size m with i infectives is
given by πi

m(s∗). However, there is still some work to be done to achieve our goal of showing
that x(t) → s∗ as t → ∞ if x(0) > 0 and R∗ > 1. Suppose that, for any x(0) > 0, there exist
t1 > 0 and ε > 0 such that, for all m ≥ 1, with ωm > 0,

πm(ε) < ζmSm(0, t1; x).

We can then apply Lemma 4.7 to prove the required result. Thus, we proceed by showing that
t1 > 0 and ε > 0 exist.

Lemma 4.9. Suppose that x(0) > 0. Then, for all m ≥ 1 and t > 0,

ζmSm(0, t; x) > πm(0) = (1, 0, . . . , 0).

Proof. Note that, for any m ≥ 1 and t > 0, if ζm > (1, 0, . . . , 0) then

ζmS̃m(t; 0) > πm(0)S̃m(t; 0) = πm(0).
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Therefore, by Lemma 4.4, for all t > 0,

x(t) =
∞∑

k=1

ωkk{ζkSk(0, t; x)}� ≥
∞∑

k=1

ωkk{ζkS̃k(t; 0)}� > 0.

Thus,
∫ t

0 x(s) ds > 0 for any t > 0, corresponding to all individuals being subjected to total
global infectious pressure βG

∫ t

0 x(s) ds > 0 up to time t . Hence, for all t > 0, each individual
has a positive probability of being infectious at time t , and, so, the lemma follows.

Lemma 4.10. Suppose that x(0) > 0. Then, for all m ≥ 1 and t > 0, there exists an εm > 0
such that

ζmSm(0, t; x) > πm(εm).

Proof. Fix m ≥ 1 and t1, t2 > 0 with t = t1 + t2 and note that, by construction, for all
i ≥ 1 and t2 > 0, s̃m

im(t2; 0) > 0, where s̃m
jk(t2; s) (0 ≤ j, k ≤ m) denotes a typical element of

S̃m(t2; s). Thus, by Lemma 4.9, for all m ≥ 1 there exists a δm > 0 such that

ζmSm(0, t1 + t2; x) ≥ ζmSm(0, t1; x)S̃m(t2; 0) > (1 − δm, 0, . . . , 0, δm).

Hence, by choosing an εm > 0 such that π0
m(εm) = 1 − δm, the lemma is proved.

Theorem 4.1. Let R∗ > 1, and let s∗ > 0 be a solution to µ(s∗) = s∗. Suppose that
x(0) = ∑∞

k=1 ωkkζ�
k > 0. Then

x(t) → s∗ as t → ∞.

Proof. Suppose that there exists an M ≥ 1 such that, for all k > M , ωk = 0. Then it follows
immediately from Lemmas 4.7 and 4.10 that, for x(0) > 0,

x(t) → s∗ as t → ∞.

For M ≥ 1, we can construct lower bound and upper bound approximations to the epidemic
process in which, for all t ≥ 0, all individuals in households of size k > M are respectively
susceptible and infectious. Since we can take M to be arbitrarily large and

∑∞
k=M+1 kωk → 0

as M → ∞, we can make the lower bound and upper bound approximations to the epidemic
process arbitrarily close to the actual epidemic process. The theorem then follows.

5. Fluctuations and Gaussian limit processes

In this section we aim to extend the results of Section 3 to obtain a Gaussian limit process for
the fluctuations in the mean number of infectives per household, Xn(·), about the deterministic
limit, x(·). In other words, for any T > 0, we wish to show that Vn(·) = √

n(Xn(·) − x(·))
converges to a Gaussian process V (·) on [0, T ]. This is possible for Q ∼ Exp(γ ) since we
have an explicit expression for x(·); see Section 4. For more general Q, we are unable to
obtain a Gaussian limit but are able to show that, for any T ≥ 0, {sup0≤s≤T |Vn(s)| : n ≥ 1} is
stochastically bounded.

Firstly, for n ≥ 1, t ≥ 0, and y = {y(s) : s ≥ 0}, let

Yn(t; y) = 1√
n

n∑
i=1

{θi(t; y) − E[θi(t; y)]}.
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Note that, for s ≥ 0,

Vn(s) = Yn(s; Xn) + 1√
n

n∑
i=1

{E[θi(s; Xn) | Xn] − E[θi(s; x)]}.

Thus, we begin by analysing Yn( · ; Xn), and we shall assume that E[H 4] < ∞.
For m ∈ N and t = (t1, t2, . . . , tm), γ = (γ1, γ2, . . . , γm) ∈ R

m, let

Z
γ
n (t; y) =

m∑
k=1

γkYn(tk; y)

= 1√
n

n∑
i=1

m∑
k=1

γk(θi(tk; y) − E[θi(tk; y)])

and

z
γ
n (t; y) = 1

n

n∑
i=1

m∑
j=1

m∑
k=1

γjγk cov(θi(tj ; y), θi(tk; y)).

Lemma 5.1. For any m ∈ N and t ∈ R
m with t ≥ 0,

(Yn(t1; x), Yn(t2; x), . . . , Yn(tm; x))
d−→ (Y (t1; x), Y (t2; x), . . . , Y (tm; x)) as n → ∞,

where Y is a multivariate normal distribution with mean 0 and covariance matrix �(t), and
‘

d−→’ denotes convergence in distribution. The (j, k)th element of �(t) is

∞∑
i=1

ωi

i∑
l=0

ζil cov(χil(tj ; x), χil(tk; x)).

Proof. Fix a γ ∈ R
m. Then, since E[H 2] < ∞, it follows by Lindeberg’s central limit

theorem (see, for example, [7, Theorem 7.2]) that

Z
γ
n (t; x)

z
γ
n (t; x)

d−→ N(0, 1) as n → ∞.

Note that

z
γ
n (t; x) =

∞∑
i=1

ωn
i

i∑
l=0

ζ n
il

m∑
j=1

m∑
k=1

γjγk cov(χil(tj ; x), χil(tk; x))

→
m∑

j=1

m∑
k=1

γjγk

∞∑
i=1

ωi

i∑
l=0

ζil cov(χil(tj ; x), χil(tk; x))

= zγ (t; x), say, as n → ∞.

Therefore Z
γ
n (t; x)

d−→ N(0, zγ (t; x)) as n → ∞ and the lemma follows by the Cramér–Wold
device (see, for example, [7, pp. 48–49]).

In order to make use of Lemma 5.1, we need to show that {Yn(t; Xn)} has the same asymptotic
limiting distribution as {Yn(t; x)} as n → ∞.
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Lemma 5.2. For any t ≥ 0 and ε > 0,

P(|Yn(t; Xn) − Yn(t; x)| > ε) → 0 as n → ∞.

Proof. As noted in [14, Lemma 5.4], by Chebyshev’s inequality, for any ε > 0,

P(|Yn(t; Xn) − Yn(t; x)| > ε) ≤ 1

ε2 E[var(Yn(t; Xn) − Yn(t; x) | Xn)]

= 1

ε2

1

n

n∑
i=1

E[var(θi(t; Xn) − θi(t; x) | Xn)]

≤ 1

ε2

1

n

n∑
i=1

h2
i E[P(θi(t; Xn) �= θi(t; x) | Xn)]. (5.1)

The right-hand side of (5.1) is equal to

1

ε2

∞∑
k=1

k2ωn
k

k∑
l=0

ζ n
kl E[P(χkl(t; Xn) �= χkl(t; x) | Xn)].

By arguments similar to those employed in Lemma 3.1, for k ≥ 1 and 0 ≤ l ≤ k we have

P(χkl(t; Xn) �= χkl(t; x) | Xn) ≤ kβG

∫ t

0
|Xn(s) − x(s)| ds

≤ kβGt sup
0≤s≤t

|Xn(s) − x(s)|.

Thus, it follows from (5.1) that

P(|Yn(t; Xn) − Yn(t; x)| > ε) ≤ 1

ε2 βGt E
[

sup
0≤s≤t

|Xn(s) − x(s)|
] ∞∑

k=1

k3ωn
k . (5.2)

Note that, by Lemma 3.2, sup0≤s≤t |Xn(s) − x(s)| p−→ 0 as n → ∞, for all t ≥ 0. Therefore,
since Xn(s) ≤ ∑∞

k=1 kωn
k (s ≥ 0), it follows that

E
[

sup
0≤s≤t

|Xn(s) − x(s)|
]

→ 0 as n → ∞.

Thus, the right-hand side of (5.2) converges to 0 as n → ∞, and the lemma is proved.

Corollary 5.1. For any m ∈ N and t ∈ R
m with t ≥ 0,

(Yn(t1; Xn), Yn(t2; Xn), . . . , Yn(tm; Xn))
d−→ (Y (t1; x), Y (t2; x), . . . , Y (tm; x)) as n → ∞,

where Y ( · ; x) is as defined in Lemma 5.1.

Proof. The Corollary follows immediately from Lemmas 5.1 and 5.2 by [7, Theorem 4.1].

We have thus established that the finite-dimensional distributions of Yn( · ; Xn) converge to
the finite-dimensional distributions of Y ( · ; x). The next step is to show that {Yn( · ; Xn)} is
tight. Then, for T > 0, by defining Y ( · ; x) and Yn( · ; Xn) (n ≥ 1) on D[0, T ] endowed with
the Skorokhod topology, we will be able to show that Yn( · ; Xn) ⇒ Y ( · ; x) on D[0, T ], where
‘⇒’ denotes convergence of the stochastic process.
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Lemma 5.3. For any y = {y(s) : s ≥ 0} and L > 0 such that sups≥0 |y(s)| ≤ L, and any s, t ,
and u with 0 ≤ s ≤ t ≤ u, there exists a finite constant DL, independent of s, t , and u, such
that

E[(Yn(t; y) − Yn(s; y))2(Yn(u; y) − Yn(t; y))2] ≤ DL(u − s)2

for all n ≥ 1.

Proof. For n ≥ 1 and 1 ≤ i ≤ n, let θ̃i (t; y) = θi(t; y) − E[θi(t; y)]. Since E[θ̃i (t; y)] = 0
and the distinct households are conditionally independent given y, we have

E[(Yn(t; y) − Yn(s; y))2(Yn(u; y) − Yn(t; y))2]

≤ 1

n2

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

E[{θ̃i (t; y) − θ̃i (s; y)}{θ̃j (t; y) − θ̃j (s; y)}

× {θ̃k(u; y) − θ̃k(t; y)}{θ̃l(u; y) − θ̃l(u; y)}]

≤ 1

n2

n∑
i=1

E[(θ̃i(t; y) − θ̃i (s; y))2]
n∑

j=1

E[(θ̃j (u; y) − θ̃j (t; y))2]

+ 2

n2

{ n∑
i=1

E[(θ̃i(t; y) − θ̃i (s; y))(θ̃i(u; y) − θ̃i (t; y))]
}2

+ 1

n2

n∑
i=1

E[(θ̃i(t; y) − θ̃i (s; y))2(θ̃i(u; y) − θ̃i (t; y))2]. (5.3)

Note that

E[(θ̃i(t; y) − θ̃i (s; y))2] = var(θi(t; y) − θi(s; y))

≤ E[(θi(t; y) − θi(s; y))2]
≤ h2

i P(θi(t; y) �= θi(s; y)). (5.4)

Now, P(θi(t; y) �= θi(s; y)) is less than the probability that there are no infections or removals
within household i in the time interval (s, t]. Infections take place within household i at the
points of an inhomogeneous Poisson point process with rate (hi−θi(s; y)){βGy(s)+βLθi(s; y)}.
Therefore, the probability that there are no infections in household i in the interval (s, t] is greater
than or equal to exp(− 1

4 {4βGhiL+βLh2
i }(t − s)) since supr≥0 |y(r)| ≤ L. A similar argument

shows that the probability that there are no removals within household i in the interval (s, t]
is greater than or equal to {1 − α(t − s)}hi , where α = supx≥0 fQ(x) and fQ(·) denotes the
probability density function of Q.

Thus, it follows from (5.4) that

E[(θ̃i(t; y) − θ̃i (s; y))2] ≤ h2
i

{
1 − exp

(− 1
4 {4βGhiL + βLh2

i }(t − s)
)}

+ h2
i {1 − (1 − α(t − s))hi }

≤ h2
i

( 1
4 {4βGhiL + βLh2

i }(t − s)
) + h2

i (hiα(t − s)).

Therefore, there exists a constant CL < ∞, independent of t , s, and hi , such that

E[(θ̃i(t; y) − θ̃i (s; y))2] ≤ CLh4
i (t − s). (5.5)
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Similarly, we can show that

|E[{θ̃i (t; y) − θ̃i (s; y)}{θ̃i (u; y) − θ̃i (t; y)}]| ≤ 2h4
i CL(u − s) (5.6)

and
E[{θ̃i (t; y) − θ̃i (s; y)}2{θ̃i (u; y) − θ̃i (t; y)}2] ≤ 6C2

Lh8
i (u − s)2. (5.7)

Therefore, it follows from (5.3)–(5.7) that

E[(Yn(t; y) − Yn(s; y))2(Yn(u; y) − Yn(t; y))2]

≤
{

1

n

n∑
i=1

CLh4
i (u − s)

}2

+ 2

{
1

n

n∑
i=1

2CLh4
i (u − s)

}2

+ 1

n2

n∑
i=1

6C2
Lh8

i (u − s)2

≤ 11C2
L(u − s)2

∞∑
k=1

k4ωn
k .

Thus, if DL = 11C2
L(E[H 4] + 1) then 0 < DL < ∞ and there exists an n0 ∈ N such that,

for all n ≥ n0,

E[(Yn(t; y) − Yn(s; y))2(Yn(u; y) − Yn(t; y))2] ≤ DL(u − s)2,

as required.

The following corollary is an immediate consequence of Lemma 5.3.

Corollary 5.2. Let A = E[H ]. Then, for any s, t , and u (0 ≤ s ≤ t ≤ u), there exists an
n0 ∈ N such that, for all n ≥ n0,

E[(Yn(t; Xn) − Yn(s; Xn))
2(Yn(u; Xn) − Yn(t; Xn))

2] ≤ DA(u − s)2. (5.8)

Hence, for any T > 0,
Yn( · ; Xn) ⇒ Y ( · ; x)

on D[0, T ] as n → ∞.

Proof. For r > 0, let Gr = {y = {|y(s)| : s ≥ 0} : sups≥0 y(s) ≤ r} and note that Xn ∈ GA

almost surely. Therefore, by Lemma 5.3,

E[(Yn(t; Xn) − Yn(s; Xn))
2(Yn(u; Xn) − Yn(t; Xn))

2]
= E[E[(Yn(t; Xn) − Yn(s; Xn))

2(Yn(u; Xn) − Yn(t; Xn))
2 | Xn]]

≤ sup
y∈GA

E[(Yn(t; y) − Yn(s; y))2(Yn(u; y) − Yn(t; y))2]

≤ DA(u − s)2.

Thus (5.8) is proved and, by [7, Theorem 15.6], the result follows immediately from Corol-
lary 5.1 and (5.8).

The final step in the analysis of {Yn( · ; Xn)} before returning to {Vn(·)} is to show that the
limiting Gaussian process Y ( · ; x) has almost surely continuous sample paths.

Lemma 5.4. The Gaussian process Y ( · ; x) has a continuous version (see [15, p. 59]) and,
hence, for T > 0, Y ( · ; x) has almost surely continuous sample paths on D[0, T ].
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Proof. Fix a T > 0. By arguments similar to those employed in Lemma 5.3, it is straight-
forward to show that there exists a constant C < ∞ such that, for all s and t (0 ≤ s, t ≤ T ),

| E[Y (s; x)Y (t; x)] − E[Y (t; x)Y (t; x)]|

=
∣∣∣∣

∞∑
i=1

ωi

i∑
l=0

ζil{cov(χil(s; x) − χil(t; x), χil(t; x))}
∣∣∣∣

≤ C|s − t |.
The lemma then follows by [15, Chapter 1, Corollary 25.6].

The following theorem utilises Corollary 5.2 and Lemma 5.4 to show that, for all T > 0,
Vn is stochastically bounded on [0, T ]. We shall then focus on the case Q ∼ Exp(γ ), where
an explicit Gaussian limit for Vn can be obtained.

Theorem 5.1. For any T > 0, {sup0≤s≤T Vn(s) : n ≥ 1} is stochastically bounded.

Proof. Note that, for all t ≥ 0,

Vn(t) = Yn(t; Xn) + √
n

{
1

n

n∑
i=1

(E[θi(t; Xn) | Xn] − E[θi(t; x)])
}
.

Now using arguments identical to those employed in Lemma 3.1,

E[θi(t; Xn) | Xn] − E[θi(t; x)] ≤ hi

∫ t

0
hiβG|Xn(s) − x(s)| ds.

Hence,

√
n

{
1

n

n∑
i=1

(E[θi(t; Xn) | Xn] − E[θi(t; x)])
}

≤ √
n

{
1

n

n∑
i=1

h2
i βG

∫ t

0
|Xn(s) − x(s)| ds

}

= βG

∞∑
k=1

k2ωn
k

∫ t

0
|Vn(s)| ds.

Thus,

sup
0≤s≤T

|Vn(s)| ≤ sup
0≤s≤T

|Yn(s; Xn)| + βG

∞∑
k=1

k2ωn
k sup

0≤s≤T

∫ s

0
|Vn(u)| du

≤ sup
0≤s≤t

|Yn(s; Xn)| + βG

∞∑
k=1

k2ωn
k

∫ T

0
sup

0≤u≤s

|Vn(u)| du

and, hence, by Gronwall’s inequality and Corollary 5.2,

sup
0≤s≤T

|Vn(s)| ≤ sup
0≤s≤T

|Yn(s; Xn)| exp

(
TβG

∞∑
k=1

k2ωn
k

)

d−→ sup
0≤s≤T

|Y (s; x)| exp

(
TβG

∞∑
k=1

k2ωk

)
as n → ∞.

The theorem now follows since Y ( · ; x) is continuous (see Lemma 5.4).
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5.1. Exponential infectious periods

For k ≥ 1, let Bk denote a (k + 1) × (k + 1) matrix with typical entries bk
ij (0 ≤ i,j ≤ k),

where bk
i(i+1) = k − i, bk

ii = −(k − i) (0 ≤ i ≤ k − 1), and bk
ij = 0 otherwise. It then follows

that √
n

∫ t

0
{Gk(Xn(s)) − Gk(x(s))} ds = βG

∫ t

0
Vn(s) dsBk.

We shall require that there exists an a > 0 such that E[exp(aH)] < ∞.
Note that

√
n

∞∑
k=1

ωkk({ζ n
k Sk(0, t; Xn)}� − {ζkSk(0, t; x)}�)

= √
n

∞∑
k=1

ωkk{(ζ n
k − ζk)Sk(0, t; Xn)}� + √

n

∞∑
k=1

ωkk{Sk(0, t; Xn) − Sk(0, t; x)}�ζ�
k

= ε1
n(t) + √

n

∞∑
k=1

ωkk{Sk(0, t; Xn) − Sk(0, t; x)}�ζ�
k , say.

Therefore, provided that

√
n

∞∑
k=1

ωkk

k∑
l=0

|ζ n
kl − ζkl | → 0 as n → ∞,

it will follow that ε1
n ⇒ 0 as n → ∞ on [0, T ], for all T ≥ 0.

Lemma 5.5. Suppose that there exists an a > 0 such that E[exp(aH)] < ∞. For all n ≥ 1
and t ≥ 0, let

√
n

∞∑
k=1

ωkk{Sk(0, t; Xn)
� − Sk(0, t; x)�}ζ�

k

= βG

∫ t

0
Vn(s) ds

∞∑
k=1

ωkkB�
k Sk(0, t; x)�ζ�

k + ε2
n(t),

where

ε2
n(t) = √

n

∞∑
k=1

ωkkCn
k (t)Sk(0, t; x)�ζ�

k

with

Cn
k (t) = exp

(
βG√
n

∫ t

0
Vn(s) dsBk

)�
− Ik+1 − βG√

n

∫ t

0
Vn(s) dsB�

k

for k ≥ 1, Ik+1 denoting the (k + 1)-dimensional identity matrix.
Then, for all T ≥ 0, ε2

n ⇒ 0 as n → ∞ on [0, T ].
Proof. For all k ≥ 1,

|kCn
k (t)Sk(0, t; x)�ζ�

k | ≤
∞∑

j=2

1

j !
∣∣∣∣k

(
βG√
n

∫ t

0
Vn(s) ds

)j

(B
j
k )�Sk(0, t; x)�ζ�

k

∣∣∣∣.
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For j ≥ 1, the maximum element of Sk(0, t; x)B
j
k is less than or equal to (2k)j , since Sk(0, t; x)

is a stochastic matrix. Therefore,

|k(B
j
k )�Sk(0, t; x)�ζ�

k | ≤ k(2k)j = 2j kj+1.

Thus, if An(t) = 2βG| ∫ t

0 Vn(s) ds|, by Theorem 5.1 we have P(An(t) < ∞) = 1 and, so,

√
n

∞∑
k=1

ωk

∞∑
j=2

∣∣∣∣ 1

j !
(

βG√
n

∫ t

0
Vn(s) ds

)j ∣∣∣∣2j kj+1

≤ √
n

∞∑
k=1

kωk

∣∣∣∣exp

(
k

1√
n

An(t)

)
− 1 − k

1√
n

An(t)

∣∣∣∣. (5.9)

Then, since there exists an a > 0 such that E[exp(aH)] < ∞, it is straightforward to show
that the right-hand side of (5.9) converges in probability to 0 as n → ∞.

Thus, for all t ≥ 0, ε2
n(t)

p−→ 0 as n → ∞, and the lemma follows.

For t ≥ 0, let

r(t; x) =
∞∑

k=1

ωkkB�
k Sk(0, t; x)�ζ�

k .

It follows that r(t; x) < ∞ since E[H 2] < ∞.

Theorem 5.2. Suppose that there exists an a > 0 such that E[exp(aH)] < ∞. For all T ≥ 0,
Vn ⇒ V as n → ∞ on [0, T ], where V satisfies

V (t) = Y (t; x) + βGr(t; x)

∫ t

0
V (s) ds

Proof. By Lemma 5.5, for all t ≥ 0,

Vn(t) = Yn(t; Xn) + ε1
n(t) + ε2

n(t) + βGr(t; x)

∫ t

0
Vn(s) ds.

For m ≥ 0 and 0 ≤ s ≤ t , define Cm(s, t; x) as follows. Let C0(s, t; x) = 1 and, for m ≥ 1, let

Cm(s, t; x) =
∫ t

s

βGr(u; x)Cm−1(u, t; x) du.

Following [17], if we let

K(s, t; x) =
∞∑

m=0

Cm(s, t; x)

then, for all s and t (0 ≤ s ≤ t), K(s, t; x) < ∞ and

Vn(t) = Yn(t; Xn) + ε1
n(t) + ε2

n(t) + βGr(t; x)

∫ t

0
K(s, t; x){Yn(s; Xn) + ε1

n(s) + ε2
n(s)} ds.

Then J : D → D defined by

Jy(t) = y(t) + βGr(t; x)

∫ t

0
K(s, t; x)y(s) ds

is continuous. Also, Vn(t) = J (Yn + ε1
n + ε2

n) and V (t) = J (Y ). Therefore, by the continuous
mapping theorem [8, Theorem 25.7, Corollary 1], Vn ⇒ V as n → ∞ on [0, T ].
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6. Summary

We here give a brief summary of the main results of this paper and suggest possible avenues
for future work. The results are divided into two categories, those for general infectious periods
and those for exponentially distributed infectious periods.

For general infectious periods, we have proved a weak law of large numbers for the conver-
gence of the mean number of infectives over time to a suitably defined deterministic trajectory,
in Theorem 3.1. Moreover, in Theorem 5.1, bounds for the fluctuations of the stochastic model
about the deterministic trajectory were derived. These bounds are of the order of magnitude
that one would expect.

For exponentially distributed infectious periods an explicit equation for the deterministic
model is easily derived and was given in (4.1). This explicit expression allows us to go further
with this model than we can using Theorems 3.1 and 5.1. In particular, it enabled us to derive
the asymptotic behaviour as t → ∞, in Theorem 4.1, showing that if R∗ ≤ 1 the epidemic
goes extinct, while if R∗ > 1 then the epidemic settles down to an endemic equilibrium
which is easily obtained from the stationary distributions of suitably defined Markov chains.
Furthermore, in Theorem 5.2, we derived the limiting stochastic process for the fluctuations of
the stochastic model about the deterministic trajectory.

Finally the SIS epidemic model is the simplest epidemic model to exhibit endemic behaviour.
It would be interesting to extend the above analysis to other endemic household epidemic models
such as SIRS and open-population SIR models.
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