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Abstract
Nitrate (NO3

−) is an ergogenic nutritional supplement that is widely used to improve physical performance. However, the effectiveness of NO3
−

supplementation has not been systematically investigated in individuals with different physical fitness levels. The present study analysed
whether different fitness levels (non-athletes v. athletes or classification of performance levels), duration of the test used to measure
performance (short v. long duration) and the test protocol (time trials v. open-ended tests v. graded-exercise tests) influence the effects of NO3

−

supplementation on performance. This systematic review and meta-analysis was conducted and reported according to the guidelines outlined
in the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement. A systematic search of electronic databases,
including PubMed, Web of Science, SPORTDiscus and ProQuest, was performed in August 2017. On the basis of the search and inclusion
criteria, fifty-four and fifty-three placebo-controlled studies evaluating the effects of NO3

− supplementation on performance in humans were
included in the systematic review and meta-analysis, respectively. NO3

− supplementation was ergogenic in non-athletes (mean effect size (ES)
0·25; 95% CI 0·11, 0·38), particularly in evaluations of performance using long-duration open-ended tests (ES 0·47; 95% CI 0·23, 0·71). In
contrast, NO3

− supplementation did not enhance the performance of athletes (ES 0·04; 95% CI −0·05, 0·15). After objectively classifying the
participants into different performance levels, the frequency of trials showing ergogenic effects in individuals classified at lower levels was
higher than that in individuals classified at higher levels. Thus, the present study indicates that dietary NO3

− supplementation improves physical
performance in non-athletes, particularly during long-duration open-ended tests.
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Nitrate (NO3
−) is an ergogenic nutritional supplement widely

consumed by exercise practitioners and athletes to improve
their health and physical performance(1). The widespread use
of NO3

− likely reflects its abundant availability in many vege-
tables, and its content ranges from <20mg/100 g in sweet
potato to >250mg/100 g in beetroot(2). Although oral bacteria
can reduce NO3

− to nitrite (NO2
−), the transit of these foods in the

mouth is short, and the resulting increase in NO3
− bioavailability

appears to be related to the intrinsic NO3
− content in the vege-

table or supplement. Indeed, increased NO3
− bioavailability

could favour nitric oxide (NO) synthesis(3). NO is a signalling
molecule associated with improved cardiovascular and
skeletal muscle functions that may potentially enhance physical

performance and even facilitate adaptations to exercise
training(4). Nevertheless, the scientific literature provides
controversial results regarding the performance-enhancing
effects induced by NO3

− supplementation.
Two systematic reviews and meta-analyses on this topic have

recently been published, establishing clear practical recom-
mendations and directions for future studies investigating
changes in performance induced by NO3

− supplementation(5,6).
Hoon et al.(5) and McMahon et al.(6) analysed data according to
the exercise protocol used (i.e. time trials, open-ended tests and
graded-exercise tests) and observed that dietary NO3

− supple-
mentation improved endurance only when performance was
evaluated using open-ended tests. Notably, none of these two

Abbreviation: PL, performance level.

* Corresponding author: C. C. Coimbra, fax +55 31 3409 2924, email coimbrac@icb.ufmg.br

† These authors contributed equally to this work.

British Journal of Nutrition (2018), 119, 636–657 doi:10.1017/S0007114518000132
© The Authors 2018

https://doi.org/10.1017/S0007114518000132  Published online by Cam
bridge U

niversity Press

mailto:coimbrac@icb.ufmg.br
http://crossmark.crossref.org/dialog/?doi=10.1017/S0007114518000132&domain=pdf
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0007114518000132&domain=pdf
https://doi.org/10.1017/S0007114518000132


meta-analyses divided and analysed separately the studies
conducted with athletes or non-athletes, as we are proposing
here. McMahon et al. performed a continuous variable meta-
regression analysis and reported that the fitness level did not
have an influence on the ergogenic effect of dietary NO3

−

supplementation(6). However, grouping the data according to
the exercise protocol may result in an important bias. In fact, the
studies using open-ended tests were mainly performed in
non-athletes. In contrast, most studies using time trials were
performed in athletes. This disparity might have led to a
misinterpretation of the results owing to an unintentional divi-
sion based on individuals’ physical fitness level. Interestingly,
neither of the two recent systematic reviews addressed the
following question raised by Jonvik et al.: ‘Can elite athletes
benefit from dietary nitrate supplementation?’(7–9). Therefore,
information regarding the effectiveness of NO3

− supplementa-
tion in individuals with different physical fitness levels is lack-
ing. Moreover, physical performance is modulated by various
mechanisms and depends on several factors, including the
duration of the test performed (i.e. short or long duration).
Thus, the influence of the test duration on the changes in
performance induced by NO3

− supplementation in individuals
with different fitness levels remains to be investigated.
Increased NO availability resulting from NO3

− supplementation
has beneficial effects on health and physical performance and
has been largely studied in humans and laboratory animals. In
the central nervous system, NO prevented exaggerated increases
in the core body temperature in rats subjected to exercise by
increasing cutaneous heat loss and decreasing the metabolic cost
of running(10–13). In these rat studies, the pharmacological
blockade of central NO synthesis markedly impaired endur-
ance(10,12), whereas an increased NO availability in the brain did
not affect endurance(13). In humans, the physical performance
benefits mediated by dietary NO3

− supplementation have been
attributed to peripheral effects, including reduced arterial pres-
sure and VO2. The latter effect leads to a reduced oxygen cost
during exercise that is most likely due to the reduced cost of ATP
for muscle force production, improved mitochondrial efficiency
and increased muscle oxygenation(14,15). In contrast, the adverse
events related to NO3

− supplementation are minor and restricted
to red urine (beeturia) and stool, which usually results from the
ingestion of beetroot in juice or meals(16,17).
Interestingly, both acute and chronic supplementations of

NO3
− have been shown to either improve(18–24) or have no

effect(14,25–29) on endurance performance. The uncertain efficacy
of NO3

− supplementation appears to be related to the fitness level
of the investigated population as demonstrated by a careful
evaluation of the cumulative number of trials reporting the per-
formance benefits or lack thereof in both non-athletes (healthy
individuals engaged in regular physical activity but not involved
in sports competitions) and athletes (Fig. 1). Notably, nearly 65%
of the publications on this topic did not report the benefits
resulting from NO3

− supplementation. However, if only those
studies performed in non-athletes are considered, approximately
45% of the publications show a supplementation-mediated
positive effect on physical performance, whereas the percentage
of papers showing beneficial effects in athletes is lower
than 30% (Fig. 1). Collectively, these observations reinforce the

relevance of the present systematic review and meta-analysis,
which help clarify the contradictory reports of the effects of
NO3

− supplementation on physical performance.
Therefore, the present study systematically analysed whether

different physical fitness levels (i.e. non-athletes v. athletes)
influence the effects of NO3

− supplementation on physical per-
formance. In addition, we also evaluated the influence of the
duration of the tests used to measure performance (i.e. short v.
long duration) and the test protocol used (i.e. time trials v. open-
ended tests v. graded-exercise tests) on the effect of NO3

− supple-
mentation on physical performance in individuals with different
physical fitness levels. Thus, the present analyses provide
information that is useful to exercise practitioners, athletes, coaches
and conditioning professionals who are interested in improving
physical performance and achieving health benefits.

Methods

Search strategy

This systematic review and meta-analysis was conducted and
reported according to the guidelines outlined in the Preferred
Reporting Items for Systematic Reviews and Meta-Analysis
(PRISMA) statement(30,31). A systematic search of electronic
databases, including PubMed, Web of Science, SPORTDiscus
and ProQuest, was performed in August 2017 without any date
restrictions. The search strategy was supplemented by manual
cross-matching of each publication reference list and key author
searches. Combinations of the following keywords were
used: effort, endurance, exercise, fatigue, nitrate, nitrate sup-
plementation, nitrite, nitrite supplementation, performance,
power, running, speed, sport and workload.

Study selection

Studies that met the following criteria were included in this
systematic review and meta-analysis: (i) the participants were
healthy humans (either non-athletes or athletes), (ii) physical
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Fig. 1. Number of trials (%) reporting that dietary NO3
− supplementation had no

effect ( ) and/or a positive effect ( ) on physical performance in non-athletes
and athletes.
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performance was measured after the participants were
supplemented with NO3

− and (iii) the studies were placebo-
controlled trials. Furthermore, all included studies were written in
English. Reviews, summaries, case studies and letters were not
included, although this bibliography was consulted. Studies
involving hypoxic conditions, individuals with diseases, exercise
in the heat, children and elderly people, and laboratory animals
were excluded. On the basis of the search and inclusion/exclu-
sion criteria, fifty-four studies (106 trials) were selected for
inclusion in this systematic review, and fifty-three studies (104
trials) were included in the meta-analysis (Fig. 2). Notably, several
studies measured more than one physical performance para-
meter. The data addressing the effect of NO3

− supplementation on
each parameter were included, and therefore the number of trials
was greater than the number of studies. Only one study with one
trial(20) and one trial in a study with several trials(32) were exclu-
ded from the meta-analysis because they did not include the
standard deviation data needed to calculate the effect size.

Data grouping

The selected studies were divided into the following two groups
according to the physical fitness level of the individuals tested:
non-athletes (forty-three trials) and athletes (sixty-three trials).
The individuals were allocated into these two groups according
to the classification used by the authors of the research papers,
which were consulted. This strategy was efficient in dividing the
participants into two groups with different functional capacities
as demonstrated by the higher VO2max values in the athletes
than in the non-athletes (61·1 (SD 1·8) v. 50·5 (SD 1·8)ml/kg per
min; t-test, P< 0·05). Similarly, the studies selected for inclusion
in the meta-analysis were initially divided into the following two
groups: non-athletes (forty-three trials) and athletes (sixty-one
trials). The two groups were then subdivided according to
the duration of the test performed as follows: short duration
(non-athletes, eighteen trials; athletes, seventeen trials) or long
duration (non-athletes, twenty-five trials; athletes, forty-four
trials). Exercises lasting less than 180 s, thereby characterised by
a relevant anaerobic contribution to the energy expenditure,
were considered short-duration exercises. Alternatively,
exercise bouts lasting more than 180 s were considered long-
duration exercises(33). In addition, because NO3

− supplementation
has been shown to have a positive effect on physical perfor-
mance only in non-athletes during long-duration tests, this group
was further subdivided according to the test protocol used (open-
ended tests (constant power), fourteen trials; time trials, four
trials; and graded-exercise tests (incremental power), five trials).
Open-ended tests consist of exercising at a constant power until
the participant is volitionally fatigued; the time until fatigue,
which may be highly variable among subjects, is considered the
main measure of performance in this test. Finally, owing to the
large number of studies in cycling athletes, a specific analysis was
conducted for this sport (thirty-seven trials).

Analysis of the relationship between the performance level
and the response to NO3

− supplementation

Because the authors of the research papers may have been
imprecise in the classification of their subjects as athletes, we

decided to perform an objective analysis. Thus, the individuals
were grouped into different performance levels (PL) according to
the classification provided by De Pauw et al.(34). These authors
divided the participants in sport science studies into the following
five different levels: performance level 1 (PL1) included untrained
and sedentary subjects with a VO2max< 45·0ml/kg per min; per-
formance level 2 (PL2) included recreationally trained subjects
with a VO2max between 45·0 and 54·9ml/kg per min; perfor-
mance level 3 (PL3) included trained subjects with a VO2max

between 55·0 and 64·9ml/kg per min; performance level 4 (PL4)
included highly trained subjects with a VO2max between 65·0 and
71·0ml/kg per min; and performance level 5 (PL5) included
professional subjects with a VO2max> 71·0ml/kg per min. On the
basis of this study, we grouped the individuals into five levels and
then evaluated the relationship between the PL and the changes
in performance induced by NO3

− supplementation.

Risk of bias assessment

Two independent reviewers assessed the risk of bias using an
adapted Grading of Recommendations Assessment, Develop-
ment and Evaluation (GRADE) instrument(35). Discrepant eva-
luations were settled via discussion with a third reviewer. Using
this approach, it was possible to evaluate the risk of bias in each
study included in the present systematic review. Domains
reflecting sequence generation, allocation concealment, blinding
of participants and personnel, incomplete outcome data, selec-
tive outcome reporting and other sources of bias were evaluated.

Statistical analysis

The mean and standard deviation values of the performance
indexes in both the NO3

− supplementation and control trials
were obtained from the data provided in the consulted research
papers. Heterogeneity was evaluated using the χ2 test for
homogeneity and the I2 statistic. The effect size (Cohen’s d or
Hedges’ g) was calculated for the performance indexes in each
study. Then, a weighted-mean estimate of the effect size was
calculated to account for differences in the sample sizes. The
mean unweighted effect size and associated 95% CI were also
calculated. We used Cohen’s classification of the effect size
magnitude, where d< 0·20 for negligible effect; d= 0·20–0·49
for small effect; d= 0·50–0·79 for moderate effect; and d> 0·8
for large effect(36). The χ2 test was used to compare the
frequency of trials showing improved performance in response
to NO3

− supplementation among the different PL. Student’s t test
was used to compare the VO2max between the non-athletes and
athletes. Pearson’s correlations were performed to evaluate the
association between the supplementation parameters (dose,
number of days and total amount ingested) and the changes in
physical performance. Publication bias was assessed by a visual
inspection of funnel plots of the standard error v. effect size(37).

Results

Systematic review

In total, 4732 studies were identified through the database
and reference searches. After removing the duplicates and
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excluding papers that did not meet the eligibility criteria
according to a review of their titles, abstracts and full texts, fifty-
four studies (106 trials and 662 individuals) were selected for
inclusion in the systematic review (Fig. 2).
The characteristics of the subjects, including information

regarding the supplementation regimens and effects of NO3
−

supplementation on the physical performance of non-athletes
and athletes in each study, are summarised in Tables 1 and 2,
respectively. Notably, most studies used beetroot juice as a form
of NO3

− supplementation. However, these studies were hetero-
geneous in several supplementation features, including the
ingested volume (70, 140, 250, 280 or 500ml), dose (between
4·0 and 19·5mmol), days of supplementation (between 1 and
15 d), timing of supplementation before the trial (between
40 and 1440min) and the parameter measured to determine
physical performance.

Meta-analyses

In total, fifty-three studies (104 trials and 648 individuals) were
included in the meta-analysis.

Non-athletes. After pooling the data from forty-three trials, the
mean effect size was 0·25 (95% CI 0·11, 0·38), which indicates
that the dietary NO3

− supplementation had a small and
significant beneficial effect on physical performance (P< 0·05;
Fig. 3). According to a fixed-effects analysis, no heterogeneity

was observed among these studies (I2= 0%; Q= 15·26, df= 42,
P= 1·00).

Athletes. After pooling the data from sixty-one trials, the mean
effect size was 0·04 (95% CI −0·05, 0·15), which indicates that
the dietary NO3

− supplementation had a negligible and non-
significant effect on improving physical performance (P> 0·05;
Fig. 4). According to a fixed-effects analysis, no heterogeneity
was observed among these studies (I2= 0%; Q= 18·16, df= 60,
P= 1·00). The subsequent analysis consisted of subdividing
both the athletes and non-athletes into those performing short-
and long-duration tests.

Non-athletes subjected to short-duration tests. After pooling
the data from eighteen trials, the mean effect size was 0·12
(95% CI −0·07, 0·31), which indicates that the dietary NO3

−

supplementation had a negligible and non-significant effect
on physical performance (P> 0·05; Fig. 5). According to a
fixed-effects analysis, no heterogeneity was observed among
these studies (I2= 0%; Q= 4·43, df= 17, P= 0·99).

Athletes subjected to short-duration tests. After pooling the
data from seventeen trials, the mean effect size was 0·03 (95%
CI −0·17, 0·23), which indicates that the dietary NO3

− supple-
mentation had a negligible and non-significant effect on
performance (P> 0·05; Fig. 6). According to a random-effects

Records identified through database
searching

PubMed (n 1020)
Web of Science (n 1213)
SPORTDiscus (n  374)

ProQuest (n  2125)
Total (n  4732)

Records after removing
duplicates (n 973)

Records excluded
(n 3759)

Records excluded
(n 866)

Records excluded
(n 53)

Diseases
Animal study

Hypoxic situations
Children and the elderly

Exercise in the heat

Records after reading titles (n 107)

Records after reading abstracts and
full texts (n 54)

Records eligible for inclusion
in systematic reviews (n 54) and

meta-analyses (n 53)

Fig. 2. Summary of the study selection process.
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Table 1. Study characteristics – non-athletes
(Mean values and standard deviations)

Nitrate supplementation

No. of
subjects Characteristics of

VO2peak/VO2max
(ml/kg per min)

Ingested fluid/ Dose Days of Time before
Variable of
physical

References (♂, ♀) subjects Mean SD volume (ml) (mmol) Placebo substance supplementation trial (min) Exercise protocol performance Results

Aucouturier
et al. (1)(38)

12 (♂) Healthy 46·6 3·4 BJ/500 5·4 Apple blackcurrant
juice

3 90 Supramaximal
intermittent exercise
test

Work (kJ) S= 168·1 (SD 60·2)
NS= 142·0 (SD 46·8)
D= no

Aucouturier
et al. (2)(38)

12 (♂) Healthy 46·6 3·4 BJ/500 5·4 Apple blackcurrant
juice

3 90 Supramaximal
intermittent exercise
test

Time (min) S= 19·6 (SD 8·1)
NS= 16·4 (SD 6·0)
D= yes

Bailey
et al.(18)

8 (♂) Healthy 49 5 BJ/500 5·5 Blackcurrant cordial
without nitrate

6 NR Severe-intensity
exercise

Time (s) S= 675 (SD 203)
NS= 583 (SD 145)
D= yes

Bailey
et al. (19)

7 (♂) Healthy, recreationally
active

– BJ/500 5·1 Low-energy
blackcurrant juice

cordial

6 NR High-intensity exercise Time (s) S= 734 (SD 288)
NS= 586 (SD 211)
D= no

Bailey
et al. (1)(39)

7 (♂) Healthy – BJ/70 6·2 Sodium chloride 9 150 Cycling at 35 rpm Time (s) S= 344 (SD 74)
NS= 341 (SD 99)
D= no

Bailey
et al. (2)(39)

7 (♂) Healthy – BJ/70 6·2 Sodium chloride 9 150 Cycling at 115 rpm Time (s) S= 362 (SD 137)
NS= 297 (SD 79)
D= yes

Breese
et al.(40)

9 (4 ♂
and
5 ♀)

Healthy, physically
active

♂=3·73
♀= 2·69

♂=0·46*
♀= 0·52*

BJ/140 8·0 BJ negligible nitrate
content

6 120 Step exercise tests until
fatigue

Time (s) S= 635 (SD 258)
NS= 521 (SD 158)
D= yes

Buck et al.(41) 13 (♀) Amateur team-sport
participants

– BJ/70 6·0 BJ negligible nitrate
content

1 180 3 sessions of
6 × 20m sprints

Total sprint
time (s)

S= 69·8 (SD 4·9)
NS= 69·9 (SD 4·1)
D= no

Christensen
et al. (1)(42)

8 (♂) Recreationally active 46 3 BJ/150 9 Blackcurrant citrus
with 0·2mmol
nitrate

1 180–249 Incremental leg exercise Peak power
output (W)

S= 304 (SD 34)
NS= 310 (SD 47)
D= no

Christensen
et al. (2)(42)

8 (♂) Recreationally active 46 3 BJ/150 9 Blackcurrant citrus
with 0·2mmol
nitrate

1 180–249 Incremental arm
exercise

Peak power
output (W)

S= 121 (SD 13)
NS= 117 (SD 14)
D= no

Coggan et al.
(1)(43)

12 (7 ♂
and
5 ♀)

Healthy – BJ/140 11·2 BJ negligible nitrate
content

1 120 Knee extensor
contractile function
(1·57 rad/s)

Peak power
output
(W/kg)

S= 3·31 (SD 0·55)
NS= 3·38 (SD 0·72)
D= no

Coggan
et al. (2)(43)

12 (7 ♂
and
5 ♀)

Healthy – BJ/140 11·2 BJ negligible nitrate
content

1 120 Knee extensor
contractile function
(3·14 rad/s)

Peak power
output
(W/kg)

S= 5·38 (SD 1·10)
NS= 5·48 (SD 1·31)
D= no

Coggan
et al. (3)(43)

12 (7 ♂
and
5 ♀)

Healthy – BJ/140 11·2 BJ negligible nitrate
content

1 120 Knee extensor
contractile function
(4·17 rad/s)

Peak power
output
(W/kg)

S= 6·76 (SD 1·59)
NS= 6·67 (SD 1·73)
D= no

Coggan
et al. (4)(43)

12 (7 ♂
and
5 ♀)

Healthy – BJ/140 11·2 BJ negligible nitrate
content

1 120 Knee extensor
contractile function
(6·28 rad/s)

Peak power
output
(W/kg)

S= 7·64 (SD 1·80)
NS= 7·34 (SD 1·87)
D= yes

Corry
et al.(44)

10 (♂) Recreationally active – BJ/140 8·0 Low-energy
blackcurrant juice
with negligible
NO3

−

2 40 Wingate test Mean power
output
(W/kg)

S= 7·95 (SD 0·55)
NS= 7·63 (SD 0·91)
D= no

Fulford
et al. (1)(45)

8 (♂) Healthy, physically
active

– BJ/250 10·2 BJ negligible nitrate
content

1 150 Isometric maximum
voluntary contraction
protocol

Mean force
of peak
contraction (N)

S= 368 (SD 90)
NS= 382 (SD 143)
D= no

Fulford et al.
(2)(45)

8 (♂) Healthy, physically
active

– BJ/250 10·2 BJ negligible nitrate
content

5 (2×/d) 150 Isometric maximum
voluntary contraction
protocol

Mean force
of peak
contraction (N)

S= 380 (SD 65)
NS= 387 (SD 119)
D= no

Fulford et al.
(3)(45)

8 (♂) Healthy, physically
active

– BJ/250 10·2 BJ negligible nitrate
content

15 (2×/d) 150 Isometric maximum
voluntary contraction
protocol

Mean force
of peak
contraction (N)

S= 408 (SD 110)
NS= 365 (SD 115)
D= no
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Table 1. Continued

Nitrate supplementation

No. of
subjects Characteristics of

VO2peak/VO2max
(ml/kg per min)

Ingested fluid/ Dose Days of Time before
Variable of
physical

References (♂, ♀) subjects Mean SD volume (ml) (mmol) Placebo substance supplementation trial (min) Exercise protocol performance Results

Kelly et al.
(1)(46)

9 (♂) Recreationally active 54·5 7·5 BJ/500 (250 +250) 8·2 BJ negligible nitrate
content

7–12 150 Severe-intensity
exercise (60% peak
power output)

Time (s) S= 696 (SD 120)
NS=593 (SD 68)
D= yes

Kelly et al.
(2)(46)

9 (♂) Recreationally active 54·5 7·5 BJ/500 (250 +250) 8·2 BJ negligible nitrate
content

7–12 150 Severe-intensity
exercise (70% peak
power output)

Time (s) S= 452 (SD 106)
NS=390 (SD 86)
D= yes

Kelly et al.
(3)(46)

9 (♂) Recreationally active 54·5 7·5 BJ/500 (250 +250) 8·2 BJ negligible nitrate
content

7–12 150 Severe-intensity
exercise (80% peak
power output)

Time (s) S= 294 (SD 50)
NS=263 (SD 50)
D= yes

Kelly et al.
(4)(46)

9 (♂) Recreationally active 54·5 7·5 BJ/500 (250 +250) 8·2 BJ negligible nitrate
content

7–12 150 Severe-intensity
exercise (100% peak
power output)

Time (s) S= 182 (SD 37)
NS=166 (SD 26)
D= no

Kokkinoplitis
and
Chester(47)

7 (♂) Healthy – BJ/70 6·4 Blackcurrant juice 1 180 Repeated high-intensity
sprints (5 × 6 s)

Mean peak
power
output (W)

S= 4133·5 (SD 674·4)
NS=3938·3

(SD 603·1)
D= no

Lansley
et al.(23)

9 (♂) Physically active 55 7 BJ/500 6·2 BJ negligible nitrate
content

6 180 Severe-intensity running Time (min) S= 8·7 (SD 1·8)
NS=7·6 (SD 1·5)
D= yes

Larsen
et al.(15)

9 (7 ♂
and
2 ♀)

Healthy 3·72 0·33* Sodium nitrate 0·033mmol/kg
body mass

Sodium chloride 2 (3 × /d) 40 Incremental exercise on
ergometers

Time (s) S= 563 (SD 90)
NS=524 (SD 93)
D= no

Mosher
et al.(48)

12 (♂) Recreationally active – BJ/70 6·4 Blackcurrant placebo
drink

6 NR Bench press exercise
3 sets until failure –
60% 1RM

Total weight
lifted (kg)

S= 2582·8 (SD 863·9)
NS=2171·5

(SD 720·5)
D= yes

Murphy
et al.(49)

11 (5 ♂
and
6 ♀)

Recreationally fit – Baked beetroot 8·0 Cranberry relish 1 60 Time trial 5 km Running
speed (km/h)

S= 12·3 (SD 9·0)
NS=11·9 (SD 8·6)
D= no

Nyakayiru
et al.(50)

32 (♂) Soccer players – BJ/140 12·9 BJ negligible nitrate
content

6 240 Yo-Yo test Distance (m) S= 1623 (SD 48)
NS=1574 (SD 47)
D= yes

Porcelli et al.
(1)(51)

8 (♂) Healthy individuals
with a low aerobic
capacity

28·2–44·1 Sodium nitrate 5·5 Sodium chloride 6 210 Time trial 3 km Time (s) S= 886 (SD 74)
NS=910 (SD 82)
D= yes

Porcelli et al.
(2)(51)

7 (♂) Healthy individuals
with a moderate
aerobic capacity

45·5–57·1 Sodium nitrate 5·5 Sodium chloride 6 210 Time trial 3 km Time (s) S= 723 (SD 90)
NS=734 (SD 93)
D= yes

Porcelli et al.
(3)(51)

6 (♂) Healthy individuals
with a high aerobic
capacity

63·9–81·7 Sodium nitrate 5·5 Sodium chloride 6 210 Time trial 3 km Time (s) S= 627 (SD 30)
NS=629 (SD 28)
D= no

Rienks
et al.(52)

10 (♀) Healthy 37·1 5·3 BJ/140 12·9 BJ negligible nitrate
content

1 150 20min of cycling
exercise at RPE 13

Total mechanical
work (kJ)

S= 30·3 (SD 5·3)
NS=29·8 (SD 6·1)
D= no

Thompson
et al.(53)

16 (♂) Healthy, recreationally
active

47·3 6·3 BJ/500 5·0 BJ negligible nitrate
content

1 90 Continuous cycle
exercise test until
volitional exhaustion

Exercise
tolerance (s)

S= 185 (SD 122)
NS=160 (SD 109)
D= yes

Thompson
et al.(54)

16 (♂) Recreational team-
sport players

50 7 BJ/70 6·4 BJ negligible nitrate
content

7 (2 × /d) 150 Intermittent-sprint test Total work done
during the
sprints (kJ)

S= 123 (SD 19)
NS=119 (SD 17)
D= yes

Vanhatalo
et al.(16)

8 (5 ♂
and
3 ♀)

Healthy – BJ/500 5·2 Low-energy
blackcurrant juice
cordial with low
nitrate

15 (2 × /d) 150–180 Incremental cycling test Peak power
output (W)

S= 323 (SD 68)
NS=331 (SD 68)
D= yes

Vasconcellos
et al.(55)

25 (14 ♂
and
11 ♀)

Healthy ♂= 64·31
♀= 52·79

♂=4·71
♀= 4·57

Two beetroot gels with
50 g each and
300ml of water

9·92 (SD 1·97) Placebo gel 1 90 Severe-intensity running Time (s) S= 395·4 (SD 179·6)
NS=390·9 (SD 158·5)
D= no
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Table 1. Continued

Nitrate supplementation

No. of
subjects Characteristics of

VO2peak/VO2max
(ml/kg per min)

Ingested fluid/ Dose Days of Time before
Variable of
physical

References (♂, ♀) subjects Mean SD volume (ml) (mmol) Placebo substance supplementation trial (min) Exercise protocol performance Results

Wylie et al.
(1)(17)

10 (♂) Healthy, recreationally
active

– BJ/70 4·2 Water 1 150 Severe-intensity cycling
exercise

Time (s) S= 508 (SD 102)
NS= 470 (SD 81)
D= no

Wylie et al.
(2)(17)

10 (♂) Healthy, recreationally
active

– BJ/140 8·4 Water 1 150 Severe-intensity cycling
exercise

Time (s) S= 570 (SD 153)
NS= 498 (SD 113)
D= yes

Wylie et al.
(3)(17)

10 (♂) Healthy, recreationally
active

– BJ/280 12·8 Water 1 150 Severe-intensity cycling
exercise

Time (s) S= 552 (SD 117)
NS= 493 (SD 114)
D= yes

Wylie et al.(56) 14 (♂) Recreational
team-sport players

52 7 BJ/140 4·1 BJ negligible nitrate
content

2 150 Yo-Yo IR1 Distance covered
(m)

S= 1704 (SD 304)
NS= 1636 (SD 288)
D= yes

Wylie et al.
(1)(57)

10 (♂) Recreational
team-sport players

58 8 BJ/140 8·2 BJ negligible nitrate
content

3 150 Maximal efforts (24 ×6-s
protocol)

Mean power
output (W)

S= 568 (SD 136)
NS= 539 (SD 136)
D= yes

Wylie et al.
(2)(57)

10 (♂) Recreational team-
sport players

58 8 BJ/140 8·2 BJ negligible nitrate
content

4 150 Maximal efforts (7 × 30-s
protocol)

Mean power
output (W)

S= 558 (SD 95)
NS= 562 (SD 94)
D= no

Wylie et al.
(3)(57)

10 (♂) Recreational team-
sport players

58 8 BJ/140 8·2 BJ negligible nitrate
content

5 150 Maximal efforts (6 × 60-s
protocol)

Mean power
output (W)

S= 374 (SD 57)
NS= 375 (SD 59)
D= no

♂, Male; ♀, female; BJ, beetroot juice; NR, not reported; S, supplemented; NS, no supplementation; D, statistical difference.
* Absolute VO2 data in l/min.
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Table 2. Study characteristics – athletes
(Mean values and standard deviations)

Nitrate supplementation

No. of
subjects

VO2peak/
VO2max (ml/kg

per min)
Ingested fluid/ Days of Time before

Measure of
physical

References (♂, ♀) Characteristics of subjects Mean SD volume (ml) Dose (mmol) Placebo substance supplementation trial (min) Exercise protocol performance Results

Bescós
et al.(26)

11 (♂) Cyclists and triathletes 65·1 6·2 Sodium nitrate/250 11·8 Sodium chloride 1 180 Incremental exercise Time (s) S=416 (SD 32)
NS= 409 (SD 27)
D=no

Bescós et al.
(1)(25)

13 (♂) Cyclists and triathletes – Sodium nitrate/250 11·6 Sodium chloride 3 180 Distance trial (40min)
in cycle ergometer

Distance (km) S=26·4 (SD 1·1)
NS= 26·3 (SD 1·2)
D=no

Bescós et al.
(2)(25)

13 (♂) Cyclists and triathletes – Sodium nitrate/250 11·6 Sodium chloride 3 180 Distance trial (40min)
in cycle ergometer

Mean power
output (W)

S=258 (SD 28)
NS= 257·3 (SD 28)
D=no

Bond et al.(20) 14 (♂) Rowers – BJ/500 (250+250) 5·0 Blackcurrant juice 6 NR 6×500m rowing –
ergometer repetitions
at maximal intensity

Time (s) S=89·4
NS= 90·1
D=no

Boorsma et al.
(1)(58)

8 (♂) Distance runners 80 5 BJ/210 (on the
test day) and 140
(other days)

19·5 BJ negligible nitrate
content

1 150 Time trial 1500m Time (s) S=250·7 (SD 4·3)
NS= 250·4 (SD 7·0)
D=no

Boorsma et al.
(2)(58)

8 (♂) Distance runners 80 5 BJ/210 (on the
test day) and 140
(other days)

19·5 (on the
test day) and 13
(other days)

BJ negligible nitrate
content

8 150 Time trial 1500m Time (s) S=250·5 (SD 6·2)
NS= 251·4 (SD 7·6)
D=no

Callahan et al.
(1)(59)

8 (♂) Endurance-trained cyclists 65·2 4·2 Gelatine
capsules +water
(400ml)

5·0 Gelatine capsules (90%
BeetEssence and
10% Black Cherry
cool-aid)

3 60 Time trial 4000m Mean power
output (W)

S=388 (SD 54)
NS= 386 (SD 56)
D=no

Callahan et al.
(2)(59)

8 (♂) Endurance-trained cyclists 65·2 4·2 Gelatine
capsules +water
(400ml)

5·0 Gelatine capsules (90%
Beet Essence and
10% Black Cherry
cool-aid)

3 60 Time trial 4000m Time (s) S=337·4 (SD 17·1)
NS= 338·1 (SD

18·0)
D=no

Cermak et al.
(1)(21)

12 (♂) Cyclists and triathletes 58 2 BJ/140 (70+ 70) 8·0 BJ negligible nitrate
content

6 150 Time trial 10 km Time (s) S=953 (SD 72·5)
NS= 965 (SD 72·5)
D= yes

Cermak et al.
(2)(21)

12 (♂) Cyclists and triathletes 58 2 BJ/140 (70+ 70) 8·0 BJ negligible nitrate
content

6 150 Time trial 10 km Mean power
output (W)

S=294 (SD 41·5)
NS= 288 (SD 41·5)
D= yes

Cermak et al.
(1)(27)

20 (♂) Cyclists or triathletes 60 1 BJ/140 8·7 BJ negligible nitrate
content

1 150 Time trial approximately
1073 kJ

Time (min) S=65·5 (SD 4·8)
NS= 65·0 (SD 4·8)
D=no

Cermak et al.
(2)(27)

20 (♂) Cyclists or triathletes 60 1 BJ/140 8·7 BJ negligible nitrate
content

1 150 Time trial approximately
1073 kJ

Mean power
output (W)

S=275 (SD 30·9)
NS= 278 (SD 30·9)
D=no

Christensen
et al. (1)(32)

10 (♂) Cyclists 72·1 4·5 BJ/500 8·0 Apple and blackcurrant
juice

4 180 Repeated sprint test
(6, 20 s)

Mean power
output (W)

S=630 (SD 84)
NS= 630 (SD 92)
D=no

Christensen
et al. (2)(32)

10 (♂) Cyclists 72·1 4·5 BJ/500 8·0 Apple and blackcurrant
juice

6 180 Time trial 1677 kJ
(400 kcal)

Time (min) S=18·33
NS= 18·61
D=no

Christensen
et al. (3)(32)

10 (♂) Cyclists 72·1 4·5 BJ/500 8·0 Apple and blackcurrant
juice

6 180 Time trial 1677 kJ
(400 kcal)

Mean power
output (W)

S=290 (SD 43
NS= 285 (SD 44)
D=no

Christensen
et al. (3)(42)

9 (♂) Endurance-trained cyclists 64 3 BJ/150 9 Blackcurrant citrus with
0·2mmol nitrate

1 180–249 Incremental leg exercise Peak power
output (W)

S=418 (SD 47)
NS= 406 (SD 46)
D= yes

Christensen
et al. (4)(42)

9 (♂) Endurance-trained cyclists 64 3 BJ/150 9 Blackcurrant citrus with
0·2mmol nitrate

1 180–249 Incremental arm exercise Peak power
output (W)

S=140 (SD 17)
NS= 141 (SD 20)
D=no

Glaister
et al.(60)

14 (♀) Cyclists and triathletes 52·3 4·9 BJ/70 7·3 BJ negligible nitrate
content

1 150 Time trial 20 km Time (min) S=35·3 (SD 1·5)
NS= 35·3 (SD 1·7)
D=no

Hoon et al.
(1)(61)

28 (♂) Cyclists – BJ/70 4·1 BJ negligible nitrate
content

1 75 Time trial 4min Mean power
output (W)

S=403 (SD 52)
NS= 396 (SD 57)
D=no
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Table 2. Continued

Nitrate supplementation

No. of
subjects

VO2peak/
VO2max (ml/kg

per min)
Ingested fluid/ Days of Time before

Measure of
physical

References (♂, ♀) Characteristics of subjects Mean SD volume (ml) Dose (mmol) Placebo substance supplementation trial (min) Exercise protocol performance Results

Hoon et al.
(2)(61)

28 (♂) Cyclists – BJ/70 4·1 BJ negligible nitrate
content

1 150 Time trial 4min Mean power
output (W)

S=402 (SD 47
NS= 396 (SD 57)
D=no

Hoon et al.
(1)(62)

10 (♂) Rowers – BJ/70 4·2 BJ negligible nitrate
content

1 120 Time trial 2000m Time (s) S=383·4 (SD 8·7)
NS= 383·5 (SD 9)
D=no

Hoon et al.
(2)(62)

10 (♂) Rowers – BJ/140 8·4 BJ negligible nitrate
content

1 120 Time trial 2000m Time (s) S=381·9 (SD 9)
NS= 383·5 (SD 9)
D= yes

Kramer et al.
(1)(63)

12 (♂) CrossFit 48·5 7·0 Potassium nitrate 8·0 Nitrate-free
potassium chloride

6 1440 Wingate test Wingate peak S=948·0 (SD 186·8)
NS= 905·0

(SD 157·2)
D= yes

Kramer et al.
(2)(63)

12 (♂) CrossFit 48·5 7·0 Potassium nitrate 8·0 Nitrate-free
potassium chloride

6 1440 Time trial 2 km Time (s) S=459·7 (SD 23·9)
NS= 459·8

(SD 24·8)
D=no

Lane et al.
(1)(64)

12 (♂) Cyclists and triathletes 71·6 4·6 BJ/70 8·4 BJ negligible nitrate
content

2 130 Time trial 43·83 km Time (min) S=64·0 (SD 2·8)
NS= 63·5 (SD 3·2)
D=no

Lane et al.
(2)(64)

12 (♂) Cyclists and triathletes 71·6 4·6 BJ/70 8·4 BJ negligible nitrate
content

2 130 Time trial 43·83 km Power output
(W)

S=298 (SD 35
NS= 303 (SD 41)
D=no

Lane et al.
(3)(64)

12 (♀) Cyclists and triathletes 59·9 5·1 BJ/70 8·4 BJ negligible nitrate
content

2 130 Time trial 29·35 km Time (min) S=51·6 (SD 2·6)
NS= 51·6 (SD 2·5)
D=no

Lane et al.
(4)(64)

12 (♀) Cyclists and triathletes 59·9 5·1 BJ/70 8·4 BJ negligible nitrate
content

2 130 Time trial 29·35 km Power output
(W)

S=207 (SD 31
NS= 207 (SD 29)
D=no

Lansley et al.
(1)(22)

9 (♂) Cyclists 56·0 5·7 BJ/500 6·2 BJ negligible nitrate
content

1 120 Time trial 4 km Time (min) S=6·27 (SD 0·35)
NS= 6·45 (SD 0·42)
D= yes

Lansley et al.
(2)(22)

9 (♂) Cyclists 56·0 5·7 BJ/500 6·2 BJ negligible nitrate
content

1 120 Time trial 4 km Mean power
output (W)

S=292 (SD 44)
NS= 279 (SD 51)
D= yes

Lansley et al.
(3)(22)

9 (♂) Cyclists 56·0 5·7 BJ/500 6·2 BJ negligible nitrate
content

1 120 Time trial 16·1 km Time (min) S=26·9 (SD 1·8)
NS= 27·7 (SD 2·1)
D= yes

Lansley et al.
(4)(22)

9 (♂) Cyclists 56·0 5·7 BJ/500 6·2 BJ negligible nitrate
content

1 120 Time trial 16·1 km Mean power
output (W)

S=247 (SD 44
NS= 233 (SD 43)
D= yes

Lowings
et al.(65)

10 (5 ♂
and
5 ♀)

Swimmers – BJ/140 (70+ 70) 12·5 BJ negligible nitrate
content

1 180 Swim time trial
168m

Time (s) S=130·3 (SD 8·1)
NS= 131·5 (SD 9·0)
D= yes

Martin et al.
(1)(66)

16 (9 ♂
and
7 ♀)

Team-sport players 47·2 8·5 BJ/70 4·83 BJ negligible nitrate
content

1 120 8-s bouts of high-intensity
intermittent-sprint test

No. of sprints
completed

S=13 (SD 5)
NS= 15 (SD 6)
D= yes

Martin et al.
(2)(66)

16 (9 ♂
and
7 ♀)

Team-sport players 47·2 8·5 BJ/70 4·83 BJ negligible nitrate
content

1 120 8-s bouts of high-intensity
intermittent-sprint test

Work (kJ) S=49·2 (SD 24·2)
NS= 57·8 (SD 34·0)
D= yes

Martin et al.
(3)(66)

16 (9 ♂
and
7 ♀)

Team-sport players 47·2 8·5 BJ/70 4·83 BJ negligible nitrate
content

1 120 8-second bouts of high-
intensity intermittent-
sprint test

Mean power
output (W)

S=447 (SD 104)
NS= 444 (SD 117)
D=no

McQuillan
et al. (1)(67)

9 (♂) Cyclists 68 3 BJ/140 8·0 BJ negligible nitrate
content

4 150 Time trial 1 km Time (s) S=79·6 (SD 3·5)
NS= 79·2 (SD 2·9)
D=no

McQuillan
et al. (2)(67)

9 (♂) Cyclists 68 3 BJ/140 8·0 BJ negligible nitrate
content

4 150 Time trial 1 km Mean power
output (W)

S=495 (SD 61
NS= 503 (SD 51)
D=no
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Table 2. Continued

Nitrate supplementation

No. of
subjects

VO2peak/
VO2max (ml/kg

per min)
Ingested fluid/ Days of Time before

Measure of
physical

References (♂, ♀) Characteristics of subjects Mean SD volume (ml) Dose (mmol) Placebo substance supplementation trial (min) Exercise protocol performance Results

McQuillan
et al. (3)(67)

9 (♂) Cyclists 68 3 BJ/140 8·0 BJ negligible nitrate
content

7 150 Time trial 1 km Time (s) S=79·3 (SD 3·3)
NS= 79·0 (SD 3·0)
D=no

McQuillan
et al. (4)(67)

9 (♂) Cyclists 68 3 BJ/140 8·0 BJ negligible nitrate
content

7 150 Time trial 1 km Mean power
output (W)

S=501 (SD 59)
NS= 505 (SD 52)
D=no

McQuillan
et al. (5)(67)

9 (♂) Cyclists 68 3 BJ/140 8·0 BJ negligible nitrate
content

3 150 Time trial 4 km Time (s) S=341 (SD 12)
NS= 340 (SD 10)
D=no

McQuillan
et al. (6)(67)

9 (♂) Cyclists 68 3 BJ/140 8·0 BJ negligible nitrate
content

3 150 Time trial 4 km Mean power
output (W)

S=390 (SD 45)
NS= 393 (SD 37)
D=no

McQuillan
et al. (7)(67)

9 (♂) Cyclists 68 3 BJ/140 8·0 BJ negligible nitrate
content

6 150 Time trial 4 km Time (s) S=340 (SD 10)
NS= 340 (SD 11)
D=no

McQuillan
et al. (8)(67)

9 (♂) Cyclists 68 3 BJ/140 8·0 BJ negligible nitrate
content

6 150 Time trial 4 km Mean power
output (W)

S=394 (SD 38)
NS= 393 (SD 37)
D=no

McQuillan
et al. (1)(68)

8 (♂) Cyclists 63 4 BJ/70 4·0 BJ negligible nitrate
content

8 120 Time trial 4 km Time (s) S=343·6 (SD 14·3)
NS= 344·8 (SD

14·0)
D=no

McQuillan
et al. (2)(68)

8 (♂) Cyclists 63 4 BJ/70 4·0 BJ negligible nitrate
content

8 120 Time trial 4 km Mean power
output

S=380 (SD 41)
NS= 375 (SD 40)
D=no

Muggeridge
et al. (1)(69)

8 (♂) Kayakers 49·0 6·1 BJ/70 5·0 Tomato juice 1 180 Steady-state paddling at
60% of WRmax (15min)

Mean power
output (W)

S=108 (SD 64·8)
NS= 108 (SD 62·0)
D=no

Muggeridge
et al. (2)(69)

8 (♂) Kayakers 49·0 6·1 BJ/70 5·0 Tomato juice 1 180 Time trial 1 km Time (s) S=276 (SD 14·1)
NS= 277 (SD 14·1)
D=no

Nyakayiru
et al.(70)

17 (♂) Cyclists and triathletes 65·0 4·0 Sodium nitrate/140 12·9 Sodium chloride 6 240 Time trial 10 km Time (s) S=1004 (SD 67)
NS= 1017 (SD 71)
D=no

Peacock
et al.(28)

10 (♂) Elite cross-country skiers 69·6 5·1 1 g of potassium
nitrate in a capsule

9·9 1 g of maltodextrin in a
capsule

1 150 Time trial 5 km Time (s) S=1005 (SD 53)
NS= 996 (SD 49)
D=no

Peeling et al.
(1)(71)

6 (♂) Kayakers 57·15 2·77 BJ/70 4·8 BJ negligible nitrate
content

1 150 4-min all-out maximal effort
on the stationary kayak
ergometer

Power output
(W)

S=319 (SD 35)
NS= 318 (SD 42)
D=no

Peeling et al.
(2)(71)

6 (♂) Kayakers 57·15 2·77 BJ/70 4·8 BJ negligible nitrate
content

1 150 4-min all-out maximal
effort on the stationary
kayak ergometer

Distance
covered (m)

S=989 (SD 31)
NS= 982 (SD 36)
D=no

Peeling et al.
(3)(71)

5 (♀) Kayakers 47·8 3·7 BJ/70 9·6 BJ negligible nitrate
content

1 120 Time trial 500m Time (s) S=114·6 (SD 1·5)
NS= 116·7 (SD 2·2)
D= yes

Peeling et al.
(4)(71)

5 (♀) Kayakers 47·8 3·7 BJ/70 9·6 BJ negligible nitrate
content

1 120 Time trial 500m Velocity in 100–
400m (m/s)

S=4·4 (SD 0·03)
NS= 4·3 (SD 0·05)
D= yes

Rimer et al.
(1)(72)

13 (11 ♂
and
2 ♀)

Tennis, Alpine Ski, American
Football, Cycling, Triathlon

– BJ/140 (70+ 70) 11·2 BJ negligible nitrate
content

1 150 4×, maximal inertial-load
cycling trial

(3-4 s)

Maximal power
output (W)

S=1229 (SD 317)
NS= 1213 (SD 300)
D= yes

Rimer et al.
(2)(72)

13 (11 ♂
and
2 ♀)

Tennis, Alpine Ski, American
Football, Cycling, Triathlon

– BJ/140 (70+ 70) 11·2 BJ negligible nitrate
content

1 150 Maximal isokinetic cycling
trial, 120 rpm (30 s)

Total work (kJ) S=22·8 (SD 4·8)
NS= 23·0 (4·4)
D=no

Rimer et al.(73) 13 (11 ♂
and
2 ♀)

Tennis, Alpine Ski, American
Football, Cycling, Triathlon

– BJ/140 (70+ 70) 11·2 BJ negligible nitrate
content

1 150 Maximal isokinetic
cycling trial,
120 rpm (30 s)

Peak Power (W) S=1173 (SD 255)
NS= 1185 (SD 249)
D=no

https://doi.org/10.1017/S0007114518000132 Published online by Cambridge University Press

https://doi.org/10.1017/S0007114518000132


Table 2. Continued

Nitrate supplementation

No. of
subjects

VO2peak/
VO2max (ml/kg

per min)
Ingested fluid/ Days of Time before

Measure of
physical

References (♂, ♀) Characteristics of subjects Mean SD volume (ml) Dose (mmol) Placebo substance supplementation trial (min) Exercise protocol performance Results

Shannon et al.
(1)(74)

8 (♂) Runners or triathletes 62·3 8·1 BJ/140 12·5 BJ negligible nitrate
content

1 180 Time trial 1·500m Time (s) S=319·6 (SD 36·2)
NS= 325·7 (SD

38·8)
D= yes

Shannon et al.
(2)(74)

8 (♂) Runners or triathletes 62·3 8·1 BJ/140 12·5 BJ negligible nitrate
content

1 180 Time trial 10·000m Time (s) S=2643·1 (SD
324·1)

NS= 2649·9 (SD
319·8)

D=no
Thompson

et al. (1)(75)
36 (♂) Team-sport players – BJ/70 6·4 BJ negligible nitrate

content
5 150 Sprints (5 × 20m) Time (s) at 20m S=3·98 (SD 0·18)

NS= 4·03 (SD 0·19)
D= yes

Thompson
et al. (2)(75)

36 (♂) Team-sport players – BJ/70 6·4 BJ negligible nitrate
content

5 150 Teste Yo-Yo IR1
(2 ×20m)

Distance
covered (m)

S=1422 (SD 502)
NS= 1369 (SD 505)
D= yes

Wilkerson
et al. (1)(76)

8 (♂) Cyclists 63 8 BJ/500 6·2 BJ negligible nitrate
content

1 150 Time trial 50 miles Time (min) S=136·7 (SD 5·6)
NS= 137·9 (SD 6·4)
D=no

Wilkerson
et al. (2)(76)

8 (♂) Cyclists 63 8 BJ/500 6·2 BJ negligible nitrate
content

1 150 Time trial 50 miles Mean power
output (W)

S=238 (SD 22)
NS= 235 (SD 27)
D=no

♂, Male; ♀, female; BJ, beetroot juice; NR, not reported; S, supplemented; NS, no supplementation; D, statistical difference.
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analysis, heterogeneity was observed among these studies
(I2= 0%; Q= 13·31, df= 16, P= 0·65).

Non-athletes subjected to long-duration tests. After pooling
the data from twenty-five trials, the mean effect size was 0·33
(95% CI 0·15, 0·51), which indicates that the dietary NO3

− sup-
plementation had a small and significant beneficial effect on
physical performance (P< 0·05; Fig. 7). According to a fixed-
effects analysis, no heterogeneity was observed among these
studies (I2= 0%; Q= 8·01, df= 24, P= 0·99).

Athletes subjected to long-duration tests. After pooling the
data from forty-four trials, the mean effect size was 0·05
(95% CI −0·07, 0·17), which indicates that the dietary NO3

− sup-
plementation had a negligible and non-significant effect on phy-
sical performance (P> 0·05; Fig. 8). According to a fixed-effects
analysis, no heterogeneity was observed among these studies
(I2= 0%; Q= 4·82, df= 43, P= 1·00). The subsequent analysis
consisted of subdividing the non-athletes that performed long-
duration tests according to the test protocol used.

Non-athletes subjected to long-duration, open-ended tests.
After pooling the data from fourteen trials, the mean effect
size was 0·47 (95% CI 0·23, 0·71), which indicates that the
dietary NO3

− supplementation had a small and significant ben-
eficial effect on physical performance (P< 0·05; Fig. 9).
According to a fixed-effects analysis, no heterogeneity was
observed among these studies (I2= 0%; Q= 3·77, df= 13,
P= 0·99).

Non-athletes subjected to long-duration time trials. After
pooling the data from four trials, the mean effect size was 0·12
(95% CI −0·37, 0·61), which indicates that the dietary NO3

−

supplementation had a negligible and non-significant effect on
physical performance (P> 0·05; Fig. 10). According to a fixed-
effects analysis, no heterogeneity was observed among these
studies (I2= 0%; Q= 0·16, df= 3, P= 0·98).

Non-athletes subjected to long-duration, graded-exercise
tests. After pooling the data from five trials, the mean effect size
was 0·20 (95% CI −0·18, 0·59), which indicates that the dietary
NO3

− supplementation had a small but non-significant effect on
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physical performance (P> 0·05; Fig. 11). According to a fixed-
effects analysis, no heterogeneity was observed among these
studies (I2= 0%; Q= 1·38, df= 4, P= 0·84).

Cyclists. Most tested athletes were cyclists; therefore, this sub-
group was subjected to a special analysis in which they were
evaluated alone without the inclusion of athletes engaged in other
sports. After pooling the data from thirty-seven trials, the effect size
mean was 0·04 (95% CI −0·09, 0·17), which indicates that the
dietary NO3

− supplementation had a negligible and non-significant
effect on physical performance (P>0·05; Fig. 12). According to a
fixed-effects analysis, heterogeneity was observed among these
studies (I2= 0%; Q= 4·90, df=36, P=1·00).

Analysis of the relationship between the performance level
and the ergogenic response to the NO3

− supplementation

By analysing the percentage of trials reporting increased per-
formance in individuals classified into different PL, we observed
numerous trials, that is, 50 and 56·5%, showing increased
performance in individuals with PL1 and PL2, respectively.
In contrast, approximately 37% of the trials involving indivi-
duals with PL3 showed an increased performance following
the NO3

− supplementation, whereas in trials involving indivi-
duals with PL4 and PL5 no improvement in performance
was observed following the NO3

− supplementation (Fig. 13). The
χ2 test showed a different distribution among the PL (P= 0·002).
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Association between supplementation features and
changes in physical performance

Pearson’s correlation analyses were performed to verify the
association between these variables, including the association
between changes in physical performance and the dose of
NO3

− (non-athletes: r 0·351, P> 0·05; athletes: r 0·099, P> 0·05),

the number of days of supplementation (non-athletes:
r 0·166, P> 0·05; athletes: r 0·114, P> 0·05) and the total
amount ingested (dose multiplied by days under supplementa-
tion) (non-athletes: r 0·112, P> 0·05; athletes: r 0·088, P> 0·05).
No significant correlations were observed between the supple-
mentation features evaluated and changes in physical
performance.
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Publication bias

Publication bias was assessed by a visual inspection of the funnel
plot for all subgroups analysed: non-athletes (online Supple-
mentary Fig. S2(a)), athletes (online Supplementary Fig. S1(a)),
non-athletes subjected to short-duration tests (online Supple-
mentary Fig. S2(b)), athletes subjected to short-duration tests
(online Supplementary Fig. S1(b)), non-athletes subjected to
long-duration tests (online Supplementary Fig. S2(c)), athletes
subjected to long-duration tests (online Supplementary Fig. S1
(c)), non-athletes subjected to long-duration, open-ended tests
(online Supplementary Fig. S3(a)), non-athletes subjected to
long-duration time trials (online Supplementary Fig. S3(b)) and
non-athletes subjected to long-duration, graded-exercise tests
(online Supplementary Fig. S3(c)). These analyses revealed
minor asymmetrical inverted distributions that were prominent
in all plots, suggesting the presence of a small publication bias.

Risk of bias

The risk of bias was assessed in fifty-four studies (twenty-six
and twenty-eight conducted with non-athletes and athletes,
respectively) in the systematic review. One study(71) was sub-
jected to two independent evaluations because it presented
independent experimental trials. Out of fifty-five evaluations,
forty-eight did not present any major risk of bias. Approximately
13% (non-athletes, two studies; athletes, five studies) of the
studies did not blind the participants or researchers. In general,
the studies evaluated in the present systematic review showed

consistent control of the risk of bias and were deemed to be
good-quality studies (online Supplementary Tables S3 and S4).

Discussion

The present systematic review and meta-analysis demonstrated
that the level of physical fitness is a determining factor in the
performance-enhancing effects associated with NO3

− supple-
mentation. Although athletes are usually less prone to benefit
from NO3

− supplementation, non-athletes can experience small
but significant advantages in their physical performance, parti-
cularly in performance evaluations using long-duration, open-
ended tests. Interestingly, this effect is not observed using time
trials, which is the most ecologically valid exercise protocol(77).
These findings regarding the beneficial effects induced by NO3

−

supplementation in non-athletes are supported by the analysis
in which the participants were subdivided according to their PL,
and those classified at the lower levels (less conditioned)
showed more improvements. This information is very important
for exercise practitioners and athletes and provides support in
decisions regarding whether to use this potential ergogenic aid
to improve physical performance and health.

In the present meta-analysis, we observed that individuals with
higher fitness levels benefit less from NO3

− supplementation
(Fig. 13). Consistently, the effect size of NO3

− supplementation-
mediated changes on performance in athletes was mostly irre-
levant (Fig. 4). In contrast, non-athletes can benefit from NO3

−

supplementation (Fig. 3). This was the first study to systematically
show the importance of characterising the fitness levels of
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Fig. 7. Forest plot of physical performance during a long-duration test following dietary NO3
− supplementation in non-athletes. SMD, standardised mean difference.
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individuals before adopting a nutritional NO3
− supplementation

ergogenic strategy. Similarly, Porcelli et al.(51) assessed athletic
performance in subjects with three aerobic fitness levels after 6 d
of supplementation with 5·5mmol per d of NO3

−. The authors
observed that individuals with lower and moderate aerobic
capacities performed better during the time trial after the NO3

−

supplementation. However, the performance during the time trial
was not improved in individuals with a higher aerobic capacity.
Several mechanisms may act collectively to improve perfor-

mance following NO3
− supplementation in non-athletes,

including beneficial effects of an increased NO bioavailability in
the skeletal muscles, blood vessels and even in the brain
(Fig. 14). In contrast, the mechanisms underlying the limited
ergogenic effects of NO3

− supplementation in high-performance
athletes have not been well elucidated. The ergogenic effects of
NO3

− supplementation are related to enhanced NO bioavail-
ability, and athletes probably already have optimal levels of
NO(51). Highly trained subjects are likely to have high NOS
activity(83), which might render the NO3

−
–NO2

−
–NO pathway less

important for NO production. Therefore, the resulting increase

in NO bioavailability due to supplementation does not appear
to be relevant in athletes. In addition to these factors, Porcelli
et al.(51) suggested that high-performance athletes have a high
daily energy expenditure and possibly an enriched diet.
Therefore, a diet consisting of a higher intake of NO3

− in these
subjects should be considered. Furthermore, recent evidence
that NO3

− supplementation may preferentially alter contractile
function in type II fibres(79) suggests that endurance athletes,
who typically have a low proportion of such fibres in their
musculature(84), might experience a blunted physiological
response to NO3

− supplementation.
The effects of NO3

− supplementation on exercise performance in
non-athletes appear to be more robust in evaluations using long-
duration, open-ended tests rather than time trials. Time-trial tests
are the most ecologically valid options to assess performance(6,85).
Compared with time trials, constant-power (open-ended) tests are
more influenced by psychological factors, such as boredom and
motivation(86,87). In addition, open-ended tests are more efficient
in measuring endurance capacity rather than exercise perfor-
mance, which is best measured by time-trial protocols(6,88).
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Although the dietary NO3
− supplementation did not exert

positive effects on the performance of athletes as previously
described, the use of this supplement in sports competitions
may still be applicable. During competitions, the winner is often
determined by narrow differences between athletes, thus
creating opportunities for the implementation of practices that
may have subtle improvements in performance. Therefore, the
distinct sensitivity of different athletes to supplementation
should not be disregarded(7,76) and further research on this
topic is warranted.
It is important to understand the physiological meaning of the

doses that were supplemented in the included studies. These
doses ranged from 4·0 to 19·5mmol (Tables 1 and 2). Con-
sidering that the daily ingestion of NO3

− corresponds on average
to 91mg (1·5mmol) in people from the UK(89), the supple-
mentation would increase the daily ingestion of nitrate by 3- to
13-fold in this population. However, the dose of the NO3

− sup-
plementation, the number of days of supplementation and the
total amount ingested do not appear to influence the effects of
NO3

− supplementation on physical performance in non-athletes
and athletes as shown by the lack of significant associations
between these parameters. Studies using a single dose showed
that NO3

− supplementation had either no effects(41,43,45,47) or
positive effects(17,53,56) on exercise performance. Likewise,

studies using several days (≥5 d) of supplementation showed
that NO3

− supplementation had either no effects(19,39,45,57) or
positive effects(18,22,40,46) on exercise performance. A similar
rationale can be applied to the supplementation dose,
which does not appear to influence physical performance.
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For example, studies using low doses (4–5·5mmol) showed that
NO3

− supplementation had either no effects(17,19,38,51) or positive
effects(16,51,53,56) on exercise performance. Finally, studies using
high doses (>10mmol) also showed that NO3

− supplementation
had no effects(43,45,52) or positive effects(17,43) on exercise
performance.
Despite the high variability in the experimental protocols

used in the studies analysed in the present review, the analysed
subgroups did not include heterogeneous samples. Therefore,
the data homogeneity, the quality of the studies assessed by the
risk of bias and the absence of publication bias in the studies
used in this systematic review and meta-analysis are sufficient to
draw conclusions.
A major limitation of this review is related to the wide variation

in the methods (differences in the dose of NO3
−, number of days

of supplementation, total amount ingested and mode of NO3
−

delivery) used in the analysed studies. This methodological
diversity complicates the interpretation of the results and
precludes clear conclusions regarding certain features of

supplementation, such as those listed above. In addition, most
studied individuals were men, and whether a sex-related
sensitivity to the enhancing effects of nitrate exists in non-
athletes is unclear. Thus, future studies should include women
as participants.

Practical applications

The present results may encourage coaches, athletes and
exercise practitioners to consider the following: (1) NO3

−

supplementation appears to be more effective in non-athletes
than in athletes, particularly in performance evaluations
using long-duration, open-ended tests; (2) the ergogenic
effects mediated by NO3

− supplementation do not affect physical
performance in athletes, including cyclists, which are the
most studied athletic population; and (3) subjects classified at a
lower PL (i.e. less conditioned) are more responsive to the
effects of NO3

− supplementation than are subjects classified
at a higher PL.

Diet

NO3
–

NO2
–

NO

Skeletal muscles

Reduces the oxygen cost of
exercise(14)

• • •

• •

•

•

•

•

Increases cutaneous heat
loss(81)

Reduces the oxygen cost of
exercise(10)

Reduces blood pressure(82) Attenuates exercise-induced
hyperthermia(11, 13)

Increases cutaneous heat
loss(13)

Improves mitochondrial
efficiency(78)

Improves Ca2+ handling(79)

Increases local blood flow(80)

Blood vessels

Physical performance

Non-athletes during prolonged, open-ended tests

Brain

Fig. 14. Mechanisms underlying improved physical performance induced by nitrate (NO3
−) supplementation in non-athletes subjected to prolonged, open-ended tests.

Through a series of reduction reactions along the gastrointestinal tract and at target tissues, NO3
− acts as the main nitric oxide (NO) donor. Increased NO bioavailability

promotes beneficial effects on performance through effects in skeletal muscles, blood vessels and likely in the brain. To date, no study has provided direct evidence showing
that NO3

− supplementation increases brain NO levels (this is the reason why a dashed line is connecting NO to the brain in the schematic). In the skeletal muscles, NO
reduces the oxygen cost of exercise(14), improves mitochondrial efficiency(78) and Ca2+ handling(79) and increases local blood flow(80). In the blood vessels, NO increases
cutaneous heat loss(81) and reduces blood pressure(82). Experiments conducted in rats showed that NO in the brain reduces the oxygen cost of exercise(10), attenuates
exercise-induced hyperthermia(11,13) and increases cutaneous heat loss(13). Collectively, these physiological responses induced by NO3

− supplementation improve
performance in the conditions mentioned above.
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Conclusion

The present systematic review and meta-analysis indicates that
dietary NO3

− supplementation improves physical performance
in non-athletes, particularly in performance evaluations using
long-duration, open-ended tests. In contrast, dietary NO3

−

supplementation does not appear to benefit the performance of
athletes.
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