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Abstract In this paper, we obtain some results on the existence of solutions for the system

(−∆ + qi)ui = µimiui + fi(x, u1, . . . , un) in R
N , i = 1, . . . , n,

where each of the qi are positive potentials satisfying lim|x|→+∞ qi(x) = +∞, each of the mi are bounded
positive weights and each of the µi are real parameters. Depending upon the hypotheses on fi, we use
either the method of sub- and supersolutions or a bifurcation method.
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1. Introduction

1.1. Definition of the problem

In this paper, we study the existence of solutions for the system

(−∆ + qi)ui = µimiui + fi(x, u1, . . . , un) in R
N , i = 1, . . . , n, (1.1)

where, for each i = 1, . . . , n, µi ∈ R, and the following hypotheses hold:

(h1) qi ∈ L2
loc(R

N ), and lim|x|→+∞ qi(x) = +∞, qi � const. > 0;

(h2) mi ∈ L∞(RN ), and there exists βi > 0 such that 0 < mi(x) � βi, for all x ∈ R
N .

Hypotheses on the functions fi are specified below.
The variational space is denoted by Vq1(R

N ) × · · · × Vqn(RN ), where, for each i =
1, . . . , n, Vqi(R

N ) is the completion of D(RN ), the set of C∞ functions with compact
supports, with respect to the norm

‖u‖2
qi

=
∫

RN

|∇u|2 + qiu
2.

We recall that the embedding of each Vqi(R
N ) into L2(RN ) is compact.
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612 L. Cardoulis

We also define the norm

‖u‖2
mi

=
∫

RN

miu
2 for u ∈ L2(RN ).

Hypothesis (h2) ensures that ‖ · ‖mi
is a norm in L2(RN ).

We denote by Mi the operator of multiplication by mi in L2(RN ). The operator

(−∆ + qi)−1Mi : (L2(RN ), ‖ · ‖mi) → (L2(RN ), ‖ · ‖mi)

is positive self-adjoint and compact. Therefore, its spectrum is discrete and consists of a
positive sequence tending to 0. We denote by λi the inverse of the first eigenvalue and
by φi the corresponding eigenfunction that satisfies

(−∆ + qi)φi = λimiφi in R
N , ‖φi‖mi = 1. (1.2)

We recall that λi is simple and that φi > 0 [1, Theorem 2.2]. By the Courant–Fischer
formulae, λi is given by

λi = inf
{∫

RN |∇φ|2 + qiφ
2∫

RN miφ2 , φ ∈ D(RN )
}

. (1.3)

1.2. Some previous results

The author has already studied the existence of solutions for the system (1.1) in dif-
ferent cases: linear or semilinear systems, cooperative or non-cooperative systems. We
recall here some of these earlier results.

For the linear case, we rewrite the system (1.1) in the following form:

(−∆ + qi)ui =
n∑

j=1

aijuj + fi in R
N , i = 1, . . . , n. (1.4)

We denote by λ(ρ) the first eigenvalue (which is positive and simple) of the operator
−∆+ρ considered in L2(RN ) for any potential ρ that satisfies (h1). We define by Λ = (lij)
the diagonal matrix such that lii = λ(qi − aii) for i = 1, . . . , n and by A = (a∗

ij) the n×n

matrix of the coefficients of the system (1.4) that is defined by

a∗
ii = 0 and a∗

ij = ‖aij‖L∞(RN ) for i �= j.

For a cooperative system, by using the maximum principle and the Lax–Milgram theo-
rem, Alziary et al . [2] obtained the following result.

Theorem 1.1 (a cooperative system with constant coefficients [2]). Assume
that (h1) is satisfied. Assume also that, for each i �= j, aij ∈ R and aij > 0, and, for
each i, fi ∈ L2(RN ).

If Λ − A is a non-singular M -matrix, then the system (1.4) has a unique solution.
Moreover, if fi � 0 for each i, then this solution is non-negative.
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This result has been extended for systems with bounded coefficients aij ∈ L∞(RN )
either in the case of a cooperative system (i.e. aij � 0 if i �= j) [4] or in the case of a
not necessarily cooperative system [5] using an approximation method and the Schauder
fixed point theorem.

Moreover, for the semilinear case (with weights)

(−∆ + qi)ui = µimiui +
n∑

j=1; j �=i

aijuj + fi(x, u1, . . . , un) in R
N , i = 1, . . . , n, (1.5)

when each of the potentials qi satisfy (h1), under the assumptions of

(i) non-negativity and regularity for the weights mi,

0 � mi ∈ LN/2(RN ) ∩ L∞
loc(R

N ) ∩ L1(RN ), mi �= 0,

(ii) relations between the coefficients and the weights,

i �= j ⇒ 0 � aij � kij
√

mi
√

mj with kij ∈ R
+,

(iii) regularity for each of the fi: there exists a function θi ∈ L2(RN ) such that
|fi(x, u1, . . . , un)| � θi for all u1, . . . , un ∈ L2(RN ) and fi is Lipschitz with respect
to ui, uniformly in x,

we recall from [6] the following result.
Let D = (dij) be defined as the n × n matrix given by dii = λi − µi and dij = −kij

otherwise. If D is a non-singular M -matrix, then the system (1.5) has at least one solution.
Note that in all of these precedent results, we have assumed that either aii < λ(qi) or

µi < λi for each i.
In this paper, we study the existence of solutions for the system (1.1) in the case of

µi > λi, µi near λi for each i. (We recall that λi is defined by (1.3).)

1.3. Notation and main results

In § 2, we will follow a method developed in [9] for the p-Laplacian in a bounded
domain of R

N . This method was adapted in [7] for an equation defined in R
N , involving a

Schrödinger operator with a potential and a weight that satisfy hypotheses (h1) and (h2).
We write (1.1) in the form

(−∆ + qi)ui = µimiui +
n∑

j=1; j �=i

aiju
p
i u

q
j +

n∑
j=1; j �=i

fiju
p+q
j in R

N , i = 1, . . . , n, (1.6)

where

N = 3, 4, γ = 2∗ =
2N

N − 2
= 6, 4, (p, q) ∈ N

2 such that p + q < γ, p > 0, q > 0.

We define, for C ∈ R, C > 0 and C sufficiently large, the set

Xqi,C = {φ ∈ Vqi(R
N ), φi � φ � C a.e.} (1.7)

(which is possible by the properties of φi).
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We use the following hypotheses.

(h3) For each i, j = 1, . . . , n, aij ∈ L∞(RN ) and fij ∈ L∞(RN ).

(h4) For each i, j = 1, . . . , n, fij � 0 a.e.

(h5) For each i = 1, . . . , n, there exists ji ∈ {1, . . . , n} − {i} such that the following
items hold:

(a) if we define Ωi,+ := {x ∈ R
N , aiji > 0} and Ωi,− := {x ∈ R

N , aiji < 0}, then
meas(Ωi,+) �= 0 and meas(Ωi,−) �= 0;

(b) for each k ∈ {1, . . . , n} − {i, ji}, aik is a non-negative function, equal to 0
in Di, where Di is a measurable subset of Ωi,− with positive measure;

(c) for each k ∈ {1, . . . , n}, fik = 0 in Di.

(h6) There exist ε > 0 and l � 1 such that for each i = 1, . . . , n, aiji � −εmi and
ε < µi/p(lC)p+q−1.

(h7) For each i = 1, . . . , n, there exists a positive constant kiji such that

kiji � (p + q)
lq(lC)p+q−1 and aijj � −kijifijiφ

p+q−1
ji

a.e.

Note that (h5)–(h7) are technical hypotheses and allow (for each i) a function aiji
to

change sign. We define

Fi(u1, . . . , un) :=
∫

RN

[ n∑
j=1, j �=i

aiju
p+1
i uq

j + (p + 1)
n∑

j=1, j �=i

fiju
p+q
j ui

]
(1.8)

for all i = 1, . . . , n and for all (u1, . . . , un) ∈ Vq1(R
N )×· · ·×Vqn

(RN ), and we also define

Hµi(v) :=
∫

RN

[|∇v|2 + qiv
2 − µimiv

2] (1.9)

for all i = 1, . . . , n and for all v ∈ Vqi
(RN ).

Let

λ∗
i := sup

vi∈Vqi
(RN ), vi�0

{
inf

φ∈Φvi

{∫
RN ∇vi · ∇φ + qiviφ∫

RN miviφ

}}
(1.10)

and

λ∗∗
i := sup

vi∈Xqi,C

{
inf

φ∈Φvi

{∫
RN ∇vi · ∇φ + qiviφ∫

RN miviφ

}}
, (1.11)

where

Φvi :=
{

φ ∈ D(RN ), φ � 0, such that, for any j �= i,

there exists vj ∈ Vqj
(RN ), vj � 0 and

∂Fi

∂ui
(v1, . . . , vn)(φ) � 0

}
(1.12)
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and where ∂Fi/∂ui denotes the ith partial derivative of Fi. Note that the existence of λ∗
i

and λ∗∗
i is due to (h3)–(h5) and also note that λ∗∗

i � λ∗
i .

We also use the following hypotheses for each i = 1, . . . , n:

(h8) λ∗∗
i < ∞;

(h9) λ∗
i < ∞.

We obtain the main result of § 2, as follows.

Theorem 1.2. Assume that (h1)–(h8) are satisfied. If λi + ε(lC)p+q−1 < µi < λ∗∗
i

for each i = 1, . . . , n, then the system (1.6) has at least one positive solution in Xq1,C ×
· · · × Xqn,C .

Recall that we have defined λi by (1.3), λ∗∗
i by (1.11) and Xqi,C by (1.7).

Finally, in § 3, we obtain a result on the existence of solutions, by considering bifurca-
tion solutions from the zero solution, for the semilinear system (1.1).

We define V =
∏n

i=1 Vqi(R
N ) and denote by 〈· , ·〉V the inner product in V such that,

for all v = (v1, . . . , vn) ∈ V and all w = (w1, . . . , wn) ∈ V ,

〈v, w〉V =
n∑

i=1

〈vi, wi〉qi . (1.13)

We define the operator

T : R
n × V → V, T = (T 1, . . . , Tn), (1.14)

by
T i : R

n × V → Vqi
(RN )

if µ = (µ1, . . . , µn) ∈ R
n, u = (u1, . . . , un) ∈ V , vi ∈ Vqi(R

N ) and

〈T i(µ, u), vi〉qi =
∫

RN

[∇ui · ∇vi + qiuivi − µimiuivi − fi(x, u)vi].

We obtain the main result of § 3 using the following hypothesis.

(h10) (i) For each i = 1, . . . , n, fi : R
N × R

n → R, defined by fi(x, y1, . . . , yn) with
x ∈ R

N and (y1, . . . , yn) ∈ R
n, satisfies fi(x, 0, . . . , 0) = 0 for all x ∈ R

N .
(ii) For each i = 1, . . . , n, fi is Fréchet differentiable with respect to each vari-

able yi and each derivative ∂fi(x, ·)/∂yj is continuous and bounded, uniformly
in x.

(iii) For each i, j = 1, . . . , n, ∂fi/∂yj(x, 0, . . . , 0) = 0.

Theorem 1.3. Assume that (h1), (h2) and (h10) are satisfied. There then exist a
constant ε0 > 0, a neighbourhood U of (λ, 0) (with λ = (λ1, . . . , λn) and 0 = (0, . . . , 0) ∈
V ) and a continuous function H : (−ε0, ε0) → U such that T (H(ε)) = 0 for all ε ∈
(−ε0, ε0).

Remark 1.4. Note that T (H(ε)) = 0, with H(ε) = (µ, u) ∈ U for µ = (µ1, . . . , µn)
in a neighbourhood of λ = (λ1, . . . , λn) and u = (u1, . . . , un) in a neighbourhood of
0 = (0, . . . , 0), signifies that (µ, u) is a non-trivial solution for the system (1.1).
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2. Existence of positive solutions

2.1. Preliminary results

The aim of this section is to study the existence of positive solutions for the system (1.6)
when µi > λi for µi near λi for each i.

Recall that we have defined the functions Fi by (1.8) and Hµi
by (1.9).

First, note the following lemma.

Lemma 2.1.

(i) For all i = 1, . . . , n and all φ ∈ D(RN ),

∂Fi

∂ui
(u1, . . . , un)(φ) = (p + 1)

n∑
j=1, j �=i

∫
RN

[aiju
p
i u

q
jφ + fiju

p+q
j φ]

and

H ′
µi

(v)(φ) = 2
∫

RN

[∇v · ∇φ + qivφ − µimivφ].

(ii) (u1, . . . , un) ∈ Vq1(R
N )×· · ·×Vqn(RN ) is a supersolution (respectively, subsolution)

of the system (1.6) if and only if, for all φ ∈ D(RN ), φ � 0 and all i = 1, . . . , n,

H ′
µi

(ui)(φ)

⎧⎪⎪⎨
⎪⎪⎩

� 2
p + 1

∂Fi

∂ui
(u1, . . . , un)(φ),

� 2
p + 1

∂Fi

∂ui
(u1, . . . , un)(φ),

respectively.

(iii) For all i = 1, . . . , n, φ ∈ D(RN ) and t ∈ R
+, t > 0,

∂Fi

∂ui
(tu1, . . . , tun)(φ) = tp+q ∂Fi

∂ui
(u1, . . . , un)(φ) and H ′

µi
(tui)(φ) = tH ′

µi
(ui)(φ).

Proceeding as in [7,9] (see (1.3) and (1.11) for the definitions of λi and λ∗∗
i ), we obtain

the following lemma.

Lemma 2.2. We have λi � λ∗∗
i for each i = 1, . . . , n.

Proof. Suppose (for example) that λ1 > λ∗∗
1 . Because of the characterization of λ1,

we have Hλ1(φ1) = 0. By the definition of λ∗∗
1 (see (1.11)), we deduce the existence of

φ ∈ D(RN ), φ � 0, such that there exist

(v2, . . . , vn) ∈ Vq2(R
N ) × · · · × Vqn

(RN ), vi � 0,
∂F1

∂u1
(φ1, v2, . . . , vn)(φ) � 0

and ∫
RN [∇φ1 · ∇φ + q1φ1φ]∫

RN m1φ1φ
� λ∗∗

1 < λ1.

Therefore, H ′
λ1

(φ1)(φ) < 0.
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For all η ∈ R
+, η > 0, we have Hλ1(φ1 + ηφ) = Hλ1(φ1) + ηH ′

λ1
(φ1)(φ) + ‖ηφ‖h(ηφ)

with h(ηφ) → 0 as η → 0.
Therefore, for η sufficiently small, we have Hλ1(φ1 + ηφ) < 0, which contradicts the

definition of λ1. �

Proposition 2.3. Assume that (h1)–(h3) and (h9) are satisfied.
If there exists i′ ∈ {1, . . . , n} such that µi′ > λ∗

i′ , then the system (1.6) has no positive
solution.

Proof. We can write that, for all vi′ ∈ Vqi′ (RN ), vi′ � 0, there exists φ ∈ D(RN ),
φ � 0, such that for j �= i′ there exists vj ∈ Vqj

(RN ), vj � 0, which satisfies

∂Fi′

∂ui′
(v1, . . . , vi′ , . . . , vn)(φ) � 0 and

∫
RN [∇vi′ · ∇φ + qi′vi′φ]∫

RN mi′vi′φ
� λ∗

i′ < µi′ .

Then H ′
µi′ (vi′)(φ) < 0 and we can deduce that the system (1.6) has no positive solution.

�

Now we can prove the main result of this section.

2.2. Proof of Theorem 1.2

The plan of this proof is as follows:

(i) we prove the existence of a supersolution for the system (1.6) (see Proposition 2.4);

(ii) we get a subsolution for the system (1.6) (see Proposition 2.5);

(iii) we use the Schauder fixed point theorem (see Proposition 2.6).

Proposition 2.4. Assume that (h1)–(h8) are satisfied and that µi < λ∗∗
i for each

i = 1, . . . , n. Then the system (1.6) has a supersolution.

Proof. Since, for each i, µi < λ∗∗
i , from the definition of λ∗∗

i (see (1.11)) we deduce
the existence of

v∗
i ∈ Xqi,C which satisfies H ′

µi
(v∗

i )(φ) > 0 for any φ ∈ Φv∗
i
. (2.1)

We want to show here that there exists t ∈ (0, l) such that (tv∗
1 , . . . , v∗

n) is a super-
solution of the system (1.6).

Suppose this were not the case. Then, for all t ∈ (0, l), (tv∗
1 , . . . , tv∗

n) is not a super-
solution of system (1.6).

So, for all t ∈ (0, l), there exist it ∈ {1, . . . , n} and ψit � 0 such that

H ′
µit

(tv∗
it

)(ψit) <
2

p + 1
∂Fit

∂uit

(tv∗
1 , . . . , tv∗

n)(ψit).
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Consider the sets

Nt :=
{

i ∈ {1, . . . , n}, there exists ψ ∈ D(RN ), ψ � 0 such that

H ′
µi

(tv∗
i )(ψ) <

2
p + 1

∂Fi

∂ui
(tv∗

1 , . . . , tv∗
n)(ψ)

}
(2.2)

and, for it ∈ Nt,

Kit =
{

ψ ∈ D(RN ), ψ � 0, H ′
µit

(tv∗
it

)(ψ) <
2

p + 1
∂Fit

∂uit

(tv∗
1 , . . . , tv∗

n)(ψ)
}

. (2.3)

We can prove that the inequality

∂Fi

∂ui
(tv∗

1 , . . . , tv∗
n)(ψ) � 0

(
respectively,

∂Fi

∂ui
(tv∗

1 , . . . , tv∗
n)(ψ) � 0

)

is not satisfied for all t > 0, i ∈ Nt and ψ ∈ Kit (see Appendices A and B).
Therefore, there exist t > 0, it ∈ Nt, φ ∈ Kit and ψ ∈ Kit

, which satisfy

∂Fit

∂uit

(tv∗
1 , . . . , tv∗

n)(φ) < 0 and
∂Fit

∂uit

(tv∗
1 , . . . , tv∗

n)(ψ) > 0.

So we have

H ′
µit

(v∗
it

)(φ) <
2

p + 1
tp+q−1 ∂Fit

∂uit

(v∗
1 , . . . , v∗

n)(φ) < 0 (2.4)

and

0 < H ′
µit

(v∗
it

)(ψ) <
2

p + 1
tp+q−1 ∂Fit

∂uit

(v∗
1 , . . . , v∗

n)(ψ). (2.5)

(Note that ψ ∈ Φv∗
it

.)
Since ∂Fit(v

∗
1 , . . . , v∗

n)/∂uit is a continuous function, there exists a constant α ∈ (0, 1)
such that

∂Fit

∂uit

(v∗
1 , . . . , v∗

n)(αφ + (1 − α)ψ) = 0.

Thus, we deduce that αφ + (1 − α)ψ ∈ Φv∗
it

and so H ′
µit

(v∗
it

)(αφ + (1 − α)ψ) > 0. But,
using (2.4) and (2.5), we have

0 < αH ′
µit

(v∗
it

)(φ) + (1 − α)H ′
µit

(v∗
it

)(ψ)

<
2

p + 1
tp+q−1

[
α

∂Fit

∂uit

(v∗
1 , . . . , v∗

n)(φ) + (1 − α)
∂Fit

∂uit

(v∗
1 , . . . , v∗

n)(ψ)
]

= 0

and we obtain a contradiction.
Therefore, there exists t ∈ (0, l) such that (tv∗

1 , . . . , tv∗
n) is a supersolution of the

system (1.6).
So

H ′
µi

(tv∗
i )(φ) � 2

p + 1
∂Fi

∂ui
(tv∗

1 , . . . , tv∗
n)(φ) for all i = 1, . . . , n and φ � 0. (2.6)

Note that, for all i = 1, . . . , n, tv∗
i � sφi if 0 < s � t. �
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Proposition 2.5. Assume that (h1)–(h8) are satisfied. If λi + ε(lC)p+q−1 < µi < λ∗∗
i

for each i = 1, . . . , n, then the system (1.6) has a subsolution.

Proof. We show here that (sφ1, . . . , sφn) is a subsolution of the system (1.6) with
s > 0 such that s � t � l and 1/l � sp+q−1 (which is possible when l � 1).

We recall that
(−∆ + qi)(sφi) = λimisφi, i = 1, . . . , n. (2.7)

Moreover, from hypotheses (h4) and (h5), we have

µimisφi +
n∑

j=1; j �=i

aijs
p+qφp

i φ
q
j +

n∑
j=1; j �=i

fijs
p+qφp+q

j

= s[µimiφi + sp+q−1aiji
φp

i φ
q
ji

+ Ri] with Ri � 0 a.e. (2.8)

So, combining (2.7) and (2.8),

(−∆ + qi)(sφi) � µimisφi +
n∑

j=1; j �=i

aijs
p+qφp

i φ
q
j +

n∑
j=1; j �=i

fijs
p+qφp+q

j

⇐⇒ (λi − µi)miφi � sp+q−1aijiφ
p
i φ

q
ji

+ Ri. (2.9)

Since s � l, we have

λi + εsp+q−1Cp+q−1 < µi and so
λi − µi

sp+q−1φp−1
i φq

ji

� λi − µi

(sC)p+q−1 < −ε.

Using (h6), we find that (λi − µi)miφi < sp+q−1aiji
φp

i φ
q
ji

and therefore (2.8) and (2.9)
imply that (sφ1, . . . , sφn) is a subsolution of the system (1.6). �

Now let
σ = [sφ1, tv

∗
1 ] × · · · × [sφn, tv∗

n]. (2.10)

Recall that (sφ1, . . . , sφn) is a subsolution of the system (1.6) (defined by Proposition 2.5)
and that (tv∗

1 , . . . , tv∗
n) is a supersolution of the system (1.6) (defined by Proposition 2.4).

Let the operator T ∗ be defined by T ∗(u1, . . . , un) = (v1, . . . , vn) with (v1, . . . , vn) the
solution of

(−∆ + qi)vi = µimiui +
n∑

j=1; j �=i

aiju
p
i u

q
j +

n∑
j=1; j �=i

fiju
p+q
j in R

N , i = 1, . . . , n. (2.11)

Proposition 2.6. Assume that (h1)–(h8) are satisfied and that λi + ε(lC)p+q−1 <

µi < λ∗∗
i for each i = 1, . . . , n. Then the operator T ∗ has a fixed point in σ, which is a

positive solution of the system (1.6).
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Proof. First, we must prove that T ∗(σ) ⊂ σ.
Let (u1, . . . , un) ∈ σ and T ∗(u1, . . . , un) = (v1, . . . , vn). By (2.7) and (2.11), for each

i = 1, . . . , n, we can write

(−∆ + qi)(vi − sφi) = µimiui +
n∑

j=1; j �=i

aiju
p
i u

q
j +

n∑
j=1; j �=i

fiju
p+q
j − sλimiφi.

Since uk � sφk for each k, using (h6), aiji � −εmi, we can deduce that

(−∆ + qi)(vi − sφi) � [µi − λi − εsp+q−1φp−1
i φq

ji
]misφi. (2.12)

But φp−1
i φq

ji
� Cp+q−1, sp+q−1 � lp+q−1 and λi + ε(lC)p+q−1 � µi so we obtain

(−∆ + qi)(vi − sφi) � 0.

By the maximum principle (see Theorem 1.1 for one equation), we deduce that vi � sφi

for all i = 1, . . . , n.
Moreover, for each i = 1, . . . , n, we have

(−∆ + qi)(tv∗
i − vi) � µimi(tv∗

i − ui)

+
n∑

j=1; j �=i

aij [(tv∗
i )p(tv∗

j )q − up
i u

q
j ] +

n∑
j=1; j �=i

fij [(tv∗
j )p+q − up+q

j ]. (2.13)

So we can rewrite (2.13) as

(−∆ + qi)(tv∗
i − vi)

� µimi(tv∗
i − ui) +

n∑
j=1; j �=i

aij [(tv∗
i )p((tv∗

j )q − uq
j) + ((tv∗

i )p − up
i )u

q
j ]

+
n∑

j=1; j �=i

fij(tv∗
j − uj)

[ p+q−1∑
k=0

(tv∗
j )kup+q−1−k

j

]

and as

(−∆ + qi)(tv∗
i − vi)

� µimi(tv∗
i − ui) +

n∑
j=1; j �=i

aij(tv∗
i − ui)u

q
j

[ p−1∑
k=0

(tv∗
i )kup−1−k

i

]

+
n∑

j=1; j �=i

(tv∗
j − uj)

[
aij(tv∗

i )p

( q−1∑
k=0

(tv∗
j )kuq−1−k

j

)
+ fij

( p+q−1∑
k=0

(tv∗
j )kup+q−1−k

j

)]
.
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Since (u1, . . . , un) ∈ σ, we get

(−∆ + qi)(tv∗
i − vi) � (tv∗

i − ui)
[
µimi + aijiu

q
ji

( p−1∑
k=0

(tv∗
i )kup−1−k

i

)]

+ (tv∗
ji

− uji)
[
aiji

(tv∗
i )p

( q−1∑
k=0

(tv∗
ji

)kuq−1−k
ji

)

+ fiji

( p+q−1∑
k=0

(tv∗
ji

)kup+q−1−k
ji

)]
. (2.14)

Since

uq
ji

( p−1∑
k=0

(tv∗
i )kup−1−k

i

)
� p(lC)p+q−1,

using (h6) we can deduce that

µimi + aijiu
q
ji

( p−1∑
k=0

(tv∗
i )kup−1−k

i

)
� 0. (2.15)

By the same method, using (h7) and sp+q−1 � 1/l, we get

fiji(
∑p+q−1

k=0 (tv∗
ji

)kup+q−1−k
ji

)

(tv∗
i )p(

∑q−1
k=0(tv

∗
ji

)kuq−1−k
ji

)
� (p + q)fiji(sφji)

p+q−1

q(lC)p+q−1

and so

aiji(tv
∗
i )p

( q−1∑
k=0

(tv∗
ji

)kuq−1−k
ji

)
+ fiji

( p+q−1∑
k=0

(tv∗
ji

)kup+q−1−k
ji

)
� 0. (2.16)

Therefore, by (2.14)–(2.16), we obtain (−∆ + qi)(tv∗
i − vi) � 0 and so, by the maximum

principle (see Theorem 1.1 for one equation), we deduce that vi � tv∗
i for all i = 1, . . . , n.

We conclude that (v1, . . . , vn) ∈ σ and so T ∗(σ) ⊂ σ.
Now we prove that T ∗ is a continuous operator. Let (u1,k, . . . , un,k)k be a convergent

sequence in σ, with limit (u1, . . . , un) in the sense that (ui,k)k converges to ui for the
norm ‖ · ‖qi . Let T ∗(u1,k, . . . , un,k) = (v1,k, . . . , vn,k) and T ∗(u1, . . . , un) = (v1, . . . , vn).
(Recall that T ∗ is defined by (2.11).)

For each i and k, we have

‖vi,k − vi‖2
qi

=
∫

RN

µimi(vi,k − vi)(ui,k − ui)

+
∑

j=1; j �=i

∫
RN

aij(vi,k − vi)(u
p
i,kuq

j,k − up
i u

q
j)

+
∑

j=1; j �=i

∫
RN

fij(vi,k − vi)(u
p+q
j,k − up+q

j ).
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So

‖vi,k − vi‖2
qi

=
∫

RN

µimi(vi,k − vi)(ui,k − ui)

+
∑

j=1; j �=i

∫
RN

aij(vi,k − vi)[u
p
i,k(uq

j,k − uq
j) + uq

j(u
p
i,k − up

i )]

+
∑

j=1; j �=i

∫
RN

fij(vi,k − vi)(u
p+q
j,k − up+q

j ). (2.17)

Since ui,k, ui, uj,k, uj , mi, aij , fij are bounded, noting that

|up
i,k − up

i | � const. |ui,k − ui| and |up+q
j,k − up+q

j | � const. |uj,k − uj | (2.18)

and using the Cauchy–Schwartz inequality, by (2.17) and (2.18) we obtain

‖vi,k − vi‖qi
� const.

n∑
j=1

‖uj,k − uj‖qj
.

Therefore, T ∗ is a continuous operator.
We finish this proof by showing that T ∗ is compact. Let (u1,k, . . . , un,k)k be a bounded

sequence in σ ⊂ Vq1(R
N ) × · · · × Vqn(RN ) and let T ∗(u1,k, . . . , un,k) = (v1,k, . . . , vn,k).

Since the embedding of Vqi
(RN ) into L2(RN ) is compact, there exists a convergent

subsequence, also denoted by (u1,k, . . . , un,k)k, in (L2(RN ))n. For each i, m, k, we have

‖vi,m − vi,k‖2
qi

=
∫

RN

µimi(ui,m − ui,k)(vi,m − vi,k)

+
∑

j=1; j �=i

∫
RN

aij(vi,m − vi,k)[up
i,muq

j,m − up
i,kuq

j,k]

+
∑

j=1; j �=i

∫
RN

fij(vi,m − vi,k)(up+q
j,m − up+q

j,k ). (2.19)

Since up
i,muq

j,m − up
i,kuq

j,k = up
i,m[uq

j,m − uq
j,k] + [up

i,m − up
i,k]uq

j,k,

|up
i,m − up

i,k| � const. |ui,m − ui,k| and |up+q
j,m − up+q

j,k | � const. |uj,m − uj,k| (2.20)

and, using the Cauchy–Schwartz inequality, by (2.19) and (2.20) we obtain

‖vi,m − vi,k‖qi
� const.

n∑
j=i

‖uj,m − uj,k‖L2(RN ).

We can deduce that (vi,k)k is a Cauchy sequence for each i = 1, . . . , n and so T ∗ is a
compact operator.

By the Schauder fixed point theorem, we deduce the existence of at least one positive
solution for the system (1.6). �
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2.3. Other results

To finish this section, we obtain some results ensuring the validity of (h9). First, we
recall the following lemma (obtained in [7] by using a method developed in [9]).

Lemma 2.7. For all i = 1, . . . , n, all u ∈ Vqi(R
N ), u > 0, all φ ∈ Vqi(R

N ), φ � 0 and
all µi ∈ R,

H ′
µi

(u)
((

φ

u

)α

φ

)
− H ′

µi
(φ)

((
φ

u

)α

u

)
� 0

with α ∈ N, α > 0.

Proof. We set

A = H ′
µi

(u)
((

φ

u

)α

φ

)
− H ′

µi
(φ)

((
φ

u

)α

u

)
.

We then have

A = 2
∫

RN

[
∇u · ∇

((
φ

u

)α

φ

)
− ∇φ · ∇

((
φ

u

)α

u

)]

= 2
∫

RN

[
φ∇u · ∇

((
φ

u

)α)
− u∇φ · ∇

((
φ

u

)α)]
.

Since

∇
((

φ

u

)α)
= α

(
φ

u

)α−1[ 1
u

∇φ − φ

u2 ∇u

]
,

we get

A = 2α

∫
RN

(
φ

u

)α−1[
2
φ

u
∇u · ∇φ −

(
φ

u

)2

|∇u|2 − |∇φ|2
]

� 0.

�

Therefore, we get the last results of this section, as follows.

Proposition 2.8. Assume that (h1)–(h5) are satisfied. For each i = 1, . . . , n, if
Ωi,+ = {x ∈ R

N , aiji
(x) > 0} is a non-empty, bounded domain of R

N with a smooth
boundary ∂Ωi,+, then λ∗

i < +∞.

Proof. For i = 1, . . . , n consider the following equation (−∆ + qi)u = λimiu defined
in Ωi,+ with Dirichlet condition on ∂Ωi,+. We denote by λi+ the first eigenvalue (which
is simple and positive) and by φi+ the first eigenfunction associated with it, i.e.

(−∆ + qi)φi+ = λi+miφi+ in Ωi,+, φi+ > 0 in Ωi+, φi+ = 0 on ∂Ωi+. (2.21)

Since suppφi+ ⊂ Ωi+, by the above lemma 2.7, we get

H ′
λi+

(ui)
((

φi+

ui

)α

φi+

)
� 0 for all ui ∈ D(RN ),
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i.e. for all ui ∈ D(RN ), ui � 0,

∫
RN

[
∇ui · ∇

((
φi+

ui

)α

φi+

)
+ qiui

(
φi+

ui

)α

φi+

]

×
( ∫

RN

miui

(
φi+

ui

)α

φi+

)−1

� λi+ < ∞. (2.22)

Moreover, for all u1, . . . , ui−1, ui+1, . . . , un � 0,

∂Fi

∂ui
(u1, . . . , un)

((
φi+

ui

)α

φi+

)

= (p + 1)
∑

j=1; j �=i

∫
RN

[
aiju

p
i u

q
j

(
φi+

ui

)α

φi+ + fiju
p+q
j

(
φi+

ui

)α

φi+

]
� 0 (2.23)

by suppφi+ ⊂ Ωi+ and hypotheses (h4) and (h5).
So, by (2.22) and (2.23), for all ui ∈ Vqi

(RN ), ui � 0,

inf
φ∈D(RN )

{∫
RN ∇ui · ∇φ + qiuiφ∫

RN miuiφ
, φ � 0 such that, for j = 1, . . . , n, j �= i,

∃vj ∈ Vqj
(RN ), vj � 0 and

∂Fi

∂ui
(v1, . . . , ui, . . . , vn)(φ) � 0

}

�
∫

RN

[
∇ui · ∇

((
φi+

ui

)α

φi+

)
+ qiui

(
φi+

ui

)α

φi+

]( ∫
RN

miui

(
φi+

ui

)α

φi+

)−1

� λi+ < ∞.

Therefore, λ∗
i � λi+ < ∞. �

Proposition 2.9. Assume that (h1)–(h3) are satisfied.

(i) We assume here that for all i, j, fij = 0. If there exists i ∈ {1, . . . , n} such that for
j �= i, there exist uj � 0 which satisfy Fi(u1, . . . , ui−1, φi, ui+1, . . . , un) � 0, then
λ∗

i � λi and, since λ∗
i � λi is always satisfied, λ∗

i = λi < ∞.

(ii) If there exists u1 � 0, . . . , un � 0, such that Fi(u1, . . . , ui−1, φi, ui+1, . . . , un) < 0,
then λi < λ∗

i .

Note that the condition in Proposition 2.9 (ii) is verified if we assume also that (h4)
and (h5) are satisfied and if we take uj � 0 such that suppuj ⊂ Di.

Proof. For proposition 2.9 (i), we assume that fij = 0 for each i and j. So we have

Fi(u1, . . . , un) =
n∑

j=1; j �=i

∫
RN

aiju
p+1
i uq

j for all u1, . . . , un, (2.24)
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and

∂Fi

∂ui
(u1, . . . , un)(φ) = (p + 1)

n∑
j=1; j �=i

∫
RN

aiju
p
i u

q
jφ for all φ. (2.25)

We suppose here that

for j �= i, there exists uj � 0, Fi(u1, . . . , ui−1, φi, ui+1, . . . , un) � 0. (2.26)

We must prove that λ∗
i � λi. To do this we use lemma 2.7, with α = p.

We have

H ′
λi

(φi)
((

φi

ui

)p

ui

)
= 0 for all ui > 0.

So, for all ui � 0,

H ′
λi

(ui)
((

φi

ui

)p

φi

)
� 0.

i.e.
∫

RN

[
∇ui · ∇

((
φi

ui

)p

φi

)
+ qiui

(
φi

ui

)p

φi

]( ∫
RN

miui

(
φi

ui

)p

φi

)−1

� λi < ∞. (2.27)

Moreover, using (2.24)–(2.26), for all ui > 0 and j �= i, there exists uj � 0,

∂Fi

∂ui
(u1, . . . , ui−1, ui, ui+1, . . . , un)

((
φi

ui

)p

φi

)

= (p + 1)
∑

j=1; j �=i

∫
RN

aiju
p
i u

q
j

(
φi

ui

)p

φi

= (p + 1)Fi(u1, . . . , ui−1, φi, ui+1, . . . , un)

� 0. (2.28)

Since

inf
φ∈D(RN )

{∫
RN ∇ui · ∇φ + qiuiφ∫

RN miuiφ
, φ � 0 such that

for j �= i, ∃uj ∈ Vqj (R
N ), uj � 0 and

∂Fi

∂ui
(u1, . . . , un)(φ) � 0

}

�
∫

RN

[
∇ui · ∇

((
φi

ui

)p

φi

)
+ qiui

(
φi

ui

)p

φi

]( ∫
RN

miui

(
φi

ui

)p

φi

)−1

� λi < ∞,

by (2.27) and (2.28), we get λ∗
i � λi and therefore λ∗

i = λi.
For the second claim, we assume that there exist

u1 � 0, . . . , un � 0, Fi(u1, . . . , ui−1, φi, ui+1, . . . , un) < 0. (2.29)
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We define

λ−
i = inf

φ∈D(RN ),
φ�0

{∫
RN [|∇φ|2 + qi|φ|2]∫

RN mi|φ|2 , φ such that Fi(u1, . . . , ui−1, φ, ui+1, . . . , un) > 0
}

.

(2.30)
Let

Wi = {φ ∈ Vqi(R
N ), φ � 0, Fi(u1, . . . , ui−1, φ, ui+1, . . . , un) > 0}. (2.31)

Since Wi ⊂ Vqi(R
N ), we have λi � λ−

i . Since φi �∈ Wi, by the continuity of the function
Fi, we deduce that λi < λ−

i .
We now have to prove that λ−

i � λ∗
i .

First we prove that

there exists u−
i ∈ Wi, such that λ−

i =

∫
RN [|∇u−

i |2 + qi|u−
i |2]∫

RN mi|u−
i |2

. (2.32)

Suppose that

λ−
i <

∫
RN [|∇u|2 + qi|u|2]∫

RN mi|u|2 for all u ∈ Wi.

Let v ∈ Wi such that Fi(u1, . . . , ui−1, v, ui+1, . . . , un) > 0. Then Hλ−
i
(v) > 0.

Since λi < λ−
i , we have Hλ−

i
(φi) < 0 and so Hλ−

i
(ηφi) < 0 for all η > 0. Since the

function Hλ−
i

is continuous, we obtain the existence of a constant α ∈ (0, 1) such that
Hλ−

i
(αηφi + (1 − α)v) = 0.

Then αηφi + (1 − α)v /∈ Wi and so

Fi(u1, . . . , ui−1, αηφi + (1 − α)v, ui+1, . . . , un) � 0.

However, since Fi(u1, . . . , ui−1, (1 − α)v, ui+1, . . . , un) > 0, there exists η > 0 small
enough such that Fi(u1, . . . , ui−1, αηφi + (1 − α)v, ui+1, . . . , un) > 0. Therefore, we get
a contradiction and therefore we can deduce the existence of u−

i .
Finally, we prove that λ−

i � λ∗
i . Suppose that λ−

i > λ∗
i . Then

there exists φ ∈ Φu−
i
,

∫
RN [∇u−

i · ∇φ + qiu
−
i φ]∫

RN miu
−
i φ

� λ∗
i < λ−

i . (2.33)

Therefore, H ′
λ−

i

(u−
i )(φ) < 0.

Since Fi(u1, . . . , ui−1, u
−
i , ui+1, . . . , un) > 0, by continuity we have

Fi(u1, . . . , ui−1, u
−
i + ηφ, ui+1, . . . , un) > 0

for sufficiently small η > 0.
Moreover, by (2.32) and (2.33) we have H ′

λ−
i

(u−
i )(φ) < 0 and Hλ−

i
(u−

i ) = 0, so we can
choose η > 0 small enough that Hλ−

i
(u−

i + ηφ) < 0.
Therefore, we obtain that∫

RN [|∇(u−
i + ηφ)|2 + qi(u−

i + ηφ)2]∫
RN mi(u−

i + ηφ)2
< λ−

i

and this contradicts the definition of λ−
i (see (2.30)). Hence, λ−

i � λ∗
i . �
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3. A bifurcation result

3.1. Preliminary results

In this section, we obtain a result on existence of solutions for the semilinear system (1.1)
by considering bifurcating solutions from the zero solution. We suppose that (h1), (h2)
and (h10) are satisfied throughout this section.

Note that, for each i, fi is Lipschitz in (y1, . . . , yn) uniformly in x.

Proposition 3.1. The operator T (see (1.14)) is well defined.

Proof. Let µ = (µ1, . . . , µn) ∈ R
n and u = (u1, . . . , un) ∈ V . For all vi ∈ Vqi(R

N ), we
introduce

Gi(vi) =
∫

RN

[∇ui · ∇vi + qiuivi − µimiuivi − fi(x, u)vi].

Since mi is bounded, fi is Lipschitz in u uniformly in x and fi(x, 0, . . . , 0) = 0, we deduce
that

|Gi(vi)| � const.
[ n∑

j=1

‖uj‖qj

]
‖vi‖qi

for all vi ∈ Vqi
(RN ).

The operator Gi is linear and continuous. By the Riesz theorem, the operator T i is well
defined for all i and so T is well defined. �

Proposition 3.2. For all i, the operator T i is continuous, Fréchet differentiable with
continuous derivatives given by the following formulae (for all φ, ψ ∈ Vqi

(RN )):

if j �= i, T i
µj

= 0, 〈T i
uj

(µ, u)φ, ψ〉qi
= −

∫
RN

∂fi

∂yj
(x, u)φψ,

if j = i, 〈T i
µi

(µ, u), φ〉qi = −
∫

RN

miuiφ,

if j = i, 〈T i
ui

(µ, u)φ, ψ〉qi =
∫

RN

[
∇φ · ∇ψ + qiφψ − µimiφψ − ∂fi

∂yi
(x, u)φψ

]

if j �= i, T i
µjui

= 0 = T i
µiuj

,

if j = i, 〈T i
µiui

(µ, u)φ, ψ〉qi = −
∫

RN

miφψ and T k
µiui

= 0 if k �= i.

Proof. Proceeding as in [7], we do not give the details of the proof here, which is
technical but simple. Since mi is bounded and fi is Lipschitz in u uniformly in x, we
obtain the continuity of T i and T i

µi
. By using the hypothesis that ∂fi(x, ·)/∂yj is bounded

uniformly in x and using the Lebesgue dominated convergence theorem, we get the
continuity of T i

ui
and T i

uj
. �

Recall that, for each i = 1, . . . , n, (−∆+ qi)φi = λimiφi in R
N , λi > 0 and φi > 0 (see

(1.2) and (1.3)).
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Proposition 3.3. The operator Tu(λ, 0) is a continuous self-adjoint operator with λ =
(λ1, . . . , λn). The kernel of Tu(λ, 0), denoted by N(Tu(λ, 0)) is generated by {Φ1, . . . , Φn},
where, for each i = 1, . . . , n, Φi = (0, . . . , 0, φi, 0, . . . , 0).

Moreover, if we denote by R(Tu(λ, 0)) the range of the operator Tu(λ, 0), we have

(i) codim(R(Tu(λ, 0))) = n,

(ii) Tµiu(λ, 0)Φi /∈ R(Tu(λ, 0)) for each i,

(iii) dim(span{Tµiu(λ, 0)Φi, 1 � i � n}) = n.

Proof. First note that we have Tu(λ, 0) = (T 1
u(λ, 0), . . . , Tn

u (λ, 0)).
Then, using hypothesis (h10) (iii), we find that, for each i = 1, . . . , n, T i

u(λ, 0) is a con-
tinuous self-adjoint operator. Therefore, Tu(λ, 0) is also a continuous self-adjoint opera-
tor. Indeed, for v = (v1, . . . , vn) ∈ V and w = (w1, . . . , wn) ∈ V ,

〈Tu(λ, 0)v, w〉V =
n∑

i=1

〈T i
u(λ, 0)v, wi〉qi

=
n∑

i,j=1

〈T i
uj

(λ, 0)vj , wi〉qi

=
n∑

i=1

∫
RN

[∇vi · ∇wi + qiviwi − λimiviwi]

= 〈v, Tu(λ, 0)w〉V .

We study here the kernel of Tu(λ, 0), denoted by N(Tu(λ, 0)). For v = (v1, . . . , vn) ∈ V ,
we have

v ∈ N(Tu(λ, 0))

⇐⇒ for all w ∈ V, 〈Tu(λ, 0)v, w〉V = 0

⇐⇒ for all w ∈ V,

n∑
i=1

∫
RN

[∇vi · ∇wi + qiviwi − λimiviwi] = 0

⇐⇒ for all i and all wi ∈ Vqi(R
N ),

∫
RN

[∇vi · ∇wi + qiviwi − λimiviwi] = 0

⇐⇒ for all i, vi ∈ span{φi}

⇐⇒ v ∈ span{Φ1, . . . , Φn}, where Φi = (0, . . . , 0, φi, 0, . . . , 0). (3.1)

Therefore, codim R(Tu(λ, 0)) = n.
Now we prove that, for each i, Tµiu(λ, 0)Φi /∈ R(Tu(λ, 0)). Note that we have identified

Tµiu(λ, 0) · (1, Φi) with Tµiu(λ, 0)Φi. For each i = 1, . . . , n, we have

〈Tµiu(λ, 0)Φi, Φi〉V = 〈T i
µiu(λ, 0)Φi, φi〉qi

= 〈T i
µiui

(λ, 0)φi, φi〉qi

= −
∫

RN

miφ
2
i �= 0.
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Therefore, Tµiu(λ, 0)Φi is not orthogonal to Φi. Since N(Tu(λ, 0)) = span{Φ1, . . . , Φn}
(see (3.1)) and R(Tu(λ, 0)) = N(Tu(λ, 0))⊥V , we deduce that

Tµiu(λ, 0)Φi /∈ R(Tu(λ, 0)).

Finally, let (α1, . . . , αn) ∈ R
n be such that

n∑
j=1

αjTµju(λ, 0)Φj = 0.

For each i = 1, . . . , n, we have
〈 n∑

j=1

αjTµju(λ, 0)Φj , Φi

〉
V

= 0,

so that
n∑

j=1

αj〈T i
µju(λ, 0)Φj , φi〉qi = 0.

Therefore,

−αi

∫
RN

miφ
2
i = 0 and so αi = 0.

So dim(span{Tµiu(λ, 0)Φi, 1 � i � n}) = n. �

Remark 3.4. Note that

Tµiu(λ, 0)Φj = 0 if i �= j. (3.2)

3.2. Proof of Theorem 1.3

Although we cannot apply directly the results obtained in [8, Theorem 1.7], we follow
its proof to obtain the result developed in Theorem 1.3.

As in [8], we introduce the function h : R × R
n × V → V defined for α ∈ R, µ ∈ R

n

and w ∈ V by

h(α, µ, w) =

⎧⎪⎨
⎪⎩

1
α

T (µ, αΦ1 + · · · + αΦn + αw) if α �= 0,

Tu(µ, 0)(Φ1 + · · · + Φn + w) if α = 0.

(3.3)

Recall that
Φi = (0, . . . , 0, φi, 0, . . . , 0) ∈ V.

We have h(0, λ, 0) = Tu(µ, 0)Φ1 + · · · + Tu(µ, 0)Φn. Since, for each i = 1, . . . , n, Φi ∈
N(Tu(λ, 0)), we deduce that h(0, λ, 0) = 0.

Moreover, let g : R
n × V → V be defined for µ ∈ R

n and w ∈ V by

g(µ, w) = Tu(µ, 0)(Φ1 + · · · + Φn + w). (3.4)

https://doi.org/10.1017/S0013091504001531 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504001531


630 L. Cardoulis

For ρ = (ρ1, . . . , ρn) ∈ R
n and v = (v1, . . . , vn) ∈ V , we have

Dg(µ, w)(ρ, v) =
n∑

i=1

ρiTµiu(µ, 0)(Φ1 + · · · + Φn + w) + Tu(µ, 0)v,

where Dg is the Fréchet derivative of g. Therefore, for ρ ∈ R
n and v ∈ V , we get

Dg(λ, 0)(ρ, v) =
n∑

i=1

ρiTµiu(λ, 0)Φi + Tu(λ, 0)v, (3.5)

since Tµiu(λ, 0)Φj = 0 if j �= i (see (3.2)).
Using Proposition 3.3, we deduce that Dg(λ, 0) is a linear homeomorphism from R

n×V

onto V . Indeed, note that V/R(Tu(λ, 0)) is isomorphic to N(Tu(λ, 0)). So, for each i =
1, . . . , n, there exist a ψi ∈ N(Tu(λ, 0)) and an ωi = Tu(λ, 0)ζi ∈ R(Tu(λ, 0)) such that

Tµiu(λ, 0)Φi = ψi + ωi. (3.6)

Since dim span{Tµiu(λ, 0)Φi, 1 � i � n} = n, we deduce that

N(Tu(λ, 0)) = span{ψ1, . . . , ψn}.

Therefore, for all w ∈ V , there exist a v ∈ V and a ν = (ν1, . . . , νn) ∈ R
n such that

w = Tu(λ, 0)v +
n∑

i=1

νiψi (3.7)

and so, by (3.5)–(3.7), we have

w = Tu(λ, 0)
(

v −
n∑

i=1

νiζi

)
+

n∑
i=1

νiTµiu(λ, 0)Φi = Dg(λ, 0)
(

ν, v −
n∑

i=1

νiζi

)
.

We recall that g(µ, w) = h(0, µ, w) (see (3.3) and (3.4)).
The implicit function theorem implies the existence of a neighbourhood U ′ of (λ, 0), of

ε0 > 0 and of a function K : (−ε0, ε0) → U ′ such that h(ε, µ, w) = 0 with ε ∈ (−ε0, ε0)
and K(ε) = (µ, w) = (K1ε, K2ε) ∈ U ′. Therefore, for ε ∈ (−ε0, ε0), T (K1ε, ε(Φ1 + · · · +
Φn + K2ε)) = 0 and if we define H(ε) := (K1ε, ε(Φ1 + · · · + Φn + K2ε)), we have

T (H(ε)) = 0 for all ε ∈ (−ε0, ε0).

3.3. Other results

Finally, we study the global nature of the continuum of solutions obtained by bifurca-
tion from the (λ, 0) solution in a particular case. As in [7], we follow a method developed
in [3] using [10, theorems 1.3 and 1.4]. We obtain the following result.
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Theorem 3.5. Assume that (h1), (h2) and (h10) are satisfied. Assume also that, for
all i and j, λi = λj := λ0 (which is satisfied if qi = q and mi = m for each i = 1, . . . , n).
Then, there exists a continuum C of non-trivial solutions for the system (1.1) obtained
by bifurcation form the (λ0, 0) solution, which is either unbounded or contains a point
(µ, 0), where µ �= λ0 is the inverse of an eigenvalue of the operator A = (L1, . . . , Ln)
(where Li is defined by 〈Liu, φ〉qi

=
∫

RN miuiφ, for all u = (u1, . . . , un) ∈ V and all
φ ∈ Vqi(R

N )).
Since λ0 is simple, the continuum C has two connected subsets, C+ and C−, which

also satisfy the above alternatives.

Proof. First we define an operator S by setting

S(µ, u) = u − T (µ, u), S = (S1, . . . , Sn),

i.e. for µ ∈ R, for u = (u1, . . . , un) ∈ V and for vi ∈ Vqi(R
N ),

〈Si(µ, u), vi〉qi
=

∫
RN

[µmiuivi + fi(x, u)vi]. (3.8)

So u = (u1, . . . , un) is a solution of the system (1.1) if and only if u = S(µ, u). For each
i = 1, . . . , n, Si(µ, u) = µLiu + Hiu, where vi ∈ Vqi

(RN ), we write

〈Liu, vi〉qi =
∫

RN

miuivi and 〈Hiu, vi〉qi =
∫

RN

fi(x, u)vi. (3.9)

So

S(µ, u) = µAu + Hu (3.10)

with Au = (L1u, . . . , Lnu) and Hu = (H1u, . . . , Hnu).
To apply the results in [10], we must prove that Si : R × V → Vqi(R

N ) is continuous
and compact, that Li : V → Vqi(R

N ) is linear and compact, that Hiu = O(‖u‖V ) for
u = (u1, . . . , un) near 0 = (0, . . . , 0) uniformly on bounded intervals of µ and that
1/λ0 is a simple eigenvalue of A (which is true because it is a simple eigenvalue of
(−∆ + qi)−1Mi).

We first show that Si is continuous and compact. Note that Si is continuous since T i

is continuous. Let ((µp, up))p be a bounded sequence in R × V , with up = (u1p, . . . , unp).
Since the embedding of each Vqi(R

N ) into L2(RN ) is compact, there exists a convergent
subsequence, denoted also by ((µp, up))p in R × (L2(RN ))n.

By (3.8), for all vi ∈ Vqi(R
N ), we have

〈Si(µp, up) − Si(µm, um), vi〉qi

= µp

∫
RN

miuipvi − µm

∫
RN

miuimvi +
∫

RN

[fi(x, up) − fi(x, um)]vi.
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So

‖Si(µp, up) − Si(µm, um)‖2
qi

= (µp − µm)
∫

RN

miuip[Si(µp, up) − Si(µm, um)]

+ µm

∫
RN

mi(uip − uim)[Si(µp, up) − Si(µm, um)]

+
∫

RN

[fi(x, up) − fi(x, um)][Si(µp, up) − Si(µm, um)].

By (h2) and (h10) we deduce that (Si(µp, up))p is a Cauchy sequence and therefore a
convergent sequence. So Si is compact for all i = 1, . . . , n, and S = (S1, . . . , Sn) is also
compact.

We next show that Li is linear and compact. The operator Li is obviously linear and
continuous. Therefore, the operator A, defined by (3.10), is also linear and continuous.

Let (up)p, up = (u1p, . . . , unp), be a bounded sequence in V . Since the embedding
of each Vqi(R

N ) into L2(RN ) is compact, there exists a convergent subsequence, also
denoted by (up)p, in (L2(RN ))n. By the Cauchy–Schwartz inequality, using (3.9), for
each i we obtain

‖Liup − Lium‖2
qi

=
∫

RN

mi(uip − uim)[Liup − Lium]

and so

‖Liup − Lium‖q � const. ‖uip − uim‖L2(RN ).

Therefore, (Liup)p is a Cauchy sequence, so Li is compact and A is also compact.
Finally, we have

‖Hiu‖2
qi

=
∫

RN

fi(x, u)Hiu � const. ‖u‖V ‖Hiu‖qi .

So Hiu = O(‖u‖V ) and therefore Hu = O(‖u‖V ). �

Appendix A.

Assume that, for all t > 0, all i ∈ Nt and all ψ ∈ Kit ,

∂Fi

∂ui
(tv∗

1 , . . . , tv∗
n)(ψ) � 0.

We shall prove that, for all φ � 0 and all i = 1, . . . , n, H ′
µi

(v∗
i )(φ) � 0.

Step 1. Let φ � 0 be such that there exists

i ∈ {1, . . . , n},
∂Fi

∂ui
(v∗

1 , . . . , v∗
n)(φ) < 0.

(This is possible by (h4) and (h5).) Let t ∈ (0, l). Recall that Nt is defined by (2.2) and
Kit is defined by (2.3).

https://doi.org/10.1017/S0013091504001531 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504001531


Solutions for a system involving Schrödinger operators with weights 633

If i ∈ Nt, then φ /∈ Kit
, and so

H ′
µi

(tv∗
i )(φ) � 2

p + 1
∂Fi

∂ui
(tv∗

1 , . . . , tv∗
n)(φ).

If i /∈ Nt, then

H ′
µi

(tv∗
i )(φ) � 2

p + 1
∂Fi

∂ui
(tv∗

1 , . . . , tv∗
n)(φ).

Therefore, for all t ∈ (0, l), we have

H ′
µi

(tv∗
i )(φ) � 2

p + 1
∂Fi

∂ui
(tv∗

1 , . . . , tv∗
n)(φ),

i.e. for all t ∈ (0, l),

tp+q−1
n∑

j=1; j �=i

∫
RN

[aij(v∗
i )p(v∗

j )q+fij(v∗
j )p+q]φ �

∫
RN

[∇v∗
i ·∇φ+qiv

∗
i φ−µimiv

∗
i φ]. (A 1)

Note that i is independent of t. So, taking the limit in (A 1), as t → 0, we get

0 � H ′
µi

(v∗
i )(φ). (A 2)

Step 2. Now, let φ � 0 be such that there exists

i ∈ {1, . . . , n},
∂Fi

∂ui
(v∗

1 , . . . , v∗
n)(φ) � 0.

(This is also possible by (h4) and (h5).)
Since φ ∈ Φv∗

i
(see (1.12)), and by the characterization of v∗

i (see (2.1)), we can conclude
that

H ′
µi

(v∗
i )(φ) > 0. (A 3)

Step 3. In conclusion, by (A 2) and (A 3), we obtain

H ′
µi

(v∗
i )(φ) � 0 for all φ ∈ D(RN ), φ � 0, and for all i = 1, . . . , n.

In particular, for φ = φi, we get

(λi − µi)
∫

RN

miv
∗
i φi � 0.

Since λi < µi and ∫
RN

miv
∗
i φi > 0,

we get a contradiction.
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Appendix B.

Assume that for all t > 0, all i ∈ Nt and all ψ ∈ Kit ,

∂Fi

∂ui
(tv∗

1 , . . . , tv∗
n)(ψ) � 0.

Let φ � 0 be such that there exists

i ∈ {1, . . . , n},
∂Fi

∂ui
(v∗

1 , . . . , v∗
n)(φ) > 0.

(This is possible by (h4) and (h5).) Note that φ ∈ Φv∗
i

and so, by the characterization of
v∗

i (see (2.1)), we have H ′
µi

(v∗
i )(φ) > 0.

Let t ∈ (0, l). If i ∈ Nt, then φ /∈ Kit
, and so

H ′
µi

(tv∗
i )(φ) � 2

p + 1
∂Fi

∂ui
(tv∗

1 , . . . , tv∗
n)(φ).

If i /∈ Nt, then

H ′
µi

(tv∗
i )(φ) � 2

p + 1
∂Fi

∂ui
(tv∗

1 , . . . , tv∗
n)(φ).

Therefore, for all t ∈ (0, l), we have

H ′
µi

(tv∗
i )(φ) � 2

p + 1
∂Fi

∂ui
(tv∗

1 , . . . , tv∗
n)(φ),

i.e. for all t ∈ (0, l),

0 < tp+q−1
n∑

j=1; j �=i

∫
RN

[aij(v∗
i )p(v∗

j )q + fij(v∗
j )p+q]φ

�
∫

RN

[∇v∗
i · ∇φ + qiv

∗
i φ − µimiv

∗
i φ]. (B 1)

Note that i is still independent of t. Therefore, taking account of (B 1), we get a contra-
diction for sufficiently large t (because we can take a bigger l).
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