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Abstract In this paper, we obtain some results on the existence of solutions for the system
(_A + ql)ul = pimiu; + fi($7u11 o 7un) in RN7 1= 1> ceey My

where each of the g; are positive potentials satisfying lim || 4 oo ¢: (z) = 400, each of the m; are bounded
positive weights and each of the u; are real parameters. Depending upon the hypotheses on f;, we use
either the method of sub- and supersolutions or a bifurcation method.
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1. Introduction

1.1. Definition of the problem
In this paper, we study the existence of solutions for the system
(=A + gi)ui = pmaui + fi(x,ur, .. u,) m RY ) i=1,... n, (1.1)
where, for each i = 1,...,n, yu; € R, and the following hypotheses hold:
(hl) ¢; € LE (RY), and lim ;| 40 ¢i(z) = +00, g; > const. > 0;

(h2) m; € L>°(RY), and there exists 3; > 0 such that 0 < m;(z) < 3;, for all z € RY.

Hypotheses on the functions f; are specified below.

The variational space is denoted by Vi, (RV) x --- x V, (RY), where, for each i =
1,...,n, V,(RY) is the completion of D(RY), the set of C> functions with compact
supports, with respect to the norm

Jull, = [ 9 + g

We recall that the embedding of each V,, (RY) into L?(R") is compact.
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We also define the norm
Jul2,, = / miu?  for u € L*(RY).
RN

Hypothesis (h2) ensures that || - ||, is a norm in L%(RY).
We denote by M; the operator of multiplication by m; in L?(R"). The operator

(=D +q:) 7 My = (LPRY), [ - llim,) = (L2RY), ] [lm,)

is positive self-adjoint and compact. Therefore, its spectrum is discrete and consists of a
positive sequence tending to 0. We denote by A; the inverse of the first eigenvalue and
by ¢; the corresponding eigenfunction that satisfies

(=A + q)pi = Aimip; in RN |y, = 1. (1.2)

We recall that A; is simple and that ¢; > 0 [1, Theorem 2.2]. By the Courant—Fischer
formulae, \; is given by

N v 2 7 2
/\iinf{fR Vel +2q¢
fRNmi¢

, p€ D(RN)}. (1.3)

1.2. Some previous results

The author has already studied the existence of solutions for the system (1.1) in dif-
ferent cases: linear or semilinear systems, cooperative or non-cooperative systems. We
recall here some of these earlier results.

For the linear case, we rewrite the system (1.1) in the following form:

—A+q)u; = agjui + f; inRY, i=1,...,n. 1.4
3 Uj
j=1

We denote by A(p) the first eigenvalue (which is positive and simple) of the operator
—A+p considered in L?(RY) for any potential p that satisfies (h1). We define by A = (I;;)
the diagonal matrix such that l;; = A(¢; —ay;) fori =1,...,nand by A = (a;-‘j) the nxn
matrix of the coefficients of the system (1.4) that is defined by

al; =0 and af; = |y =y for i # ;.

For a cooperative system, by using the maximum principle and the Lax—Milgram theo-
rem, Alziary et al. [2] obtained the following result.

Theorem 1.1 (a cooperative system with constant coefficients [2]). Assume
that (hl) is satisfied. Assume also that, for each i # j, a;; € R and a;; > 0, and, for
each i, f; € L*(RY).

If A — A is a non-singular M-matrix, then the system (1.4) has a unique solution.
Moreover, if f; > 0 for each i, then this solution is non-negative.
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This result has been extended for systems with bounded coefficients a;; € L°>°(RY)
either in the case of a cooperative system (i.e. a;; > 0 if ¢ # j) [4] or in the case of a
not necessarily cooperative system [5] using an approximation method and the Schauder
fixed point theorem.

Moreover, for the semilinear case (with weights)

(—A + g)u; = pymiu; + z": ai;uj + fi(z,ug, ..., uy,) in RN, i=1,...,n, (15)
=13 j#i
when each of the potentials ¢; satisfy (hl), under the assumptions of
(i) non-negativity and regularity for the weights m;,
0<m; € LN2RM)NLE,RY) N LYRY), m; #0,
(ii) relations between the coefficients and the weights,
i#j = 0<a;; < kijy/miy/m; with k;; € RT,

(iii) regularity for each of the f;: there exists a function #; € L?(RY) such that
|fi(m,ug,. .. u,)| < 6; for all uy, ..., u, € L*(RY) and f; is Lipschitz with respect
to u;, uniformly in x,

we recall from [6] the following result.

Let D = (d;;) be defined as the n x n matrix given by d;; = A\; — p; and d;; = —k;;
otherwise. If D is a non-singular M-matrix, then the system (1.5) has at least one solution.

Note that in all of these precedent results, we have assumed that either a;; < A(g;) or
i < A for each q.

In this paper, we study the existence of solutions for the system (1.1) in the case of
Wi > Ai, p; near \; for each i. (We recall that \; is defined by (1.3).)

1.3. Notation and main results

In §2, we will follow a method developed in [9] for the p-Laplacian in a bounded
domain of R™V. This method was adapted in [7] for an equation defined in RY, involving a
Schrodinger operator with a potential and a weight that satisfy hypotheses (h1) and (h2).
We write (1.1) in the form

(—A + gi)u; = pimiu; + Z aijufug + Z fijuﬁﬂ inRY, i=1,...,n, (1.6)

J=1; j#i j=1; 574
where
* 2N 2
N=34, ~=2 :m:6,4, (p,q) € N such that p+¢g <+, p>0, ¢ >0.
We define, for C' € R, C > 0 and C sufficiently large, the set
X, c={0eV,(RY), ¢; << Cae} (1.7)

(which is possible by the properties of ¢;).
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We use the following hypotheses.
(h3) For each i,j =1,...,n, a;; € L°(RY) and f;; € L>(RY).
(h4) For each i,j =1,...,n, f;; >0 ae.

(h5) For each i = 1,...,n, there exists j; € {1,...,n} — {i} such that the following
items hold:

(a) if we define £2; + :={z € IR{N, aij, > 0} and §2; == {z € RV, a;;, < 0}, then
meas(£2; +) # 0 and meas({2; ) # 0;

(b) for each k € {1,...,n} — {Z,ji}, a;r is a non-negative function, equal to 0
in D;, where D; is a measurable subset of {2; _ with positive measure;

(c) for each k € {1,...,n}, fir =0 in D;.

(h6) There exist ¢ > 0 and [ > 1 such that for each i = 1,...,n, a;;; > —em,; and
e < pi/p(IC)PHIL

(h7) For each i =1,...,n, there exists a positive constant k;;, such that

. < Pta)

+q—1
LTRSS W and aijJ = kl];fl]b(bp q—

Note that (h5)-(h7) are technical hypotheses and allow (for each i) a function a;j, to
change sign. We define

Fi(uy,. .. up) .:/ [ Z aul M ul + (p+1) Z fijub e } (1.8)
J=1,j#i j=1,j%i

foralli=1,...,n and for all (u1,...,u,) € Vg (RY) x --- x V, (RY), and we also define

th (U) /]R va| + %U - ,U/zmz ] (19)
for alli = 1,...,n and for all v € V,, (R").
Let
Vu; -V iV
M= sup { inf {fRN - ¢+qv¢}} (1.10)
v; €Vg, (RN),v; >0 PePy,; fRN m;vi$
and
Vi - Vo + qiv;
AfF = sup { inf {fRN vi: V9 qu}}}, (1.11)
vi€Xgq,;,C €Dy, fRN m;viP
where

D, = {¢> € D(RY), ¢ >0, such that, for any j # i,

F;
there exists v; € V,,(RY), v; >0 and (?) (V1,..-,00) (@) = 0} (1.12)
u;
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and where OF;/0u; denotes the ith partial derivative of F;. Note that the existence of A}
and AM* is due to (h3)—(h5) and also note that Af* < Af.
We also use the following hypotheses for each i =1,... n:

(h8) AF* < o0
(h9) A < 0.
We obtain the main result of §2, as follows.
Theorem 1.2. Assume that (h1)-(h8) are satisfied. If \; + e(IC)PT9=1 < p; < \i*

for each i = 1,...,n, then the system (1.6) has at least one positive solution in X4, ¢ X
e >< Xq7L7C'

Recall that we have defined A; by (1.3), Af* by (1.11) and X, ¢ by (1.7).

Finally, in § 3, we obtain a result on the existence of solutions, by considering bifurca-
tion solutions from the zero solution, for the semilinear system (1.1).

We define V =[], V,,(RY) and denote by (-,-)y the inner product in V such that,
for all v = (vq,...,v,) € V and all w = (wy,...,w,) €V,

n

(v w)y =Y (v, wi)g,. (1.13)

i=1
We define the operator
T:R"xV =V, T=(T,...,T"), (1.14)
by ‘
T :R" x V — V,,(RY)
if = (p1,...,pn) €ERY, u=(ug,...,u,) €V, v; € V,(RY) and
(Ti(u,u), Vi)gs = / [Vu; - Vi + qiuivi — pimiuiv; — fi(, w)vg].
RN
We obtain the main result of §3 using the following hypothesis.

(h10) (i) For each i = 1,...,n, f; : RN x R® — R, defined by fi(z,y1,...,yn) with
r € RY and (y1,...,yn) € R", satisfies f;(,0,...,0) =0 for all z € RV.

(ii) For each i = 1,..., n, f; is Fréchet differentiable with respect to each vari-
able y; and each derivative Jf;(x, -)/0y; is continuous and bounded, uniformly
in z.

(iii) For each i,j =1,...,n, 0f;/0y;(x,0,...,0) =0.

Theorem 1.3. Assume that (h1), (h2) and (h10) are satisfied. There then exist a
constant €g > 0, a neighbourhood U of (A,0) (with A = (A1,...,Ay) and 0= (0,...,0) €
V) and a continuous function H : (—eg,e9) — U such that T(H(e)) = 0 for all € €
(—¢0, €0)-

Remark 1.4. Note that T(H(g)) = 0, with H(e) = (u,u) € U for = (p1,..., fin)
in a neighbourhood of A = (Ay,...,\,;) and v = (uy,...,u,) in a neighbourhood of
0=(0,...,0), signifies that (u, ) is a non-trivial solution for the system (1.1).
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2. Existence of positive solutions

2.1. Preliminary results

The aim of this section is to study the existence of positive solutions for the system (1.6)
when p; > \; for p; near \; for each 3.

Recall that we have defined the functions F; by (1.8) and H,,, by (1.9).

First, note the following lemma.

Lemma 2.1.

(i) Foralli=1,...,n and all € D(RY),

OF; ~
i (ul, C aun)(¢) = (p + 1) Z [aijufuqﬂs + fijup-l-qd)]
Ou; RN J J
' =14
and
L, (0)@) =2 [ [V0-Vo-+ g — pumvd].
(ii) (u1y...,up) € Vo (RN)x---xV, (RN) is a supersolution (respectively, subsolution)
of the system (1.6) if and only if, for all € D(RY), ¢ >0 and alli =1,...,n,
2 OF,
2 1 PR ’
| e 1))
H,,, (ui) ()
2O @)
Sp+10u s )
respectively.

(iii) Foralli=1,...,n, ¢ € D(RY) andt € R*, ¢ >0,

6F¢ an ! /
a—w(tul, e tug) (@) = thrq@—Ui(ul7 cooupn)(¢)  and H,, (tu;) (@) = tH,, (u;) ().

Proceeding as in [7,9] (see (1.3) and (1.11) for the definitions of A\; and A*), we obtain
the following lemma.

Lemma 2.2. We have \; < A\}* foreachi=1,...,n.

Proof. Suppose (for example) that A; > Ai*. Because of the characterization of Ap,
we have Hy, (¢1) = 0. By the definition of Aj* (see (1.11)), we deduce the existence of
# € D(RV), ¢ > 0, such that there exist

OF:
(Vay...,0n) € VZZQURN) X oo X an(RN), v; =0, 571(%’1]2"'"”")(@ >0

and

Jen Vo1 - Vo + q1619)]
fRN m1¢1¢

< )\ik* < M.

Therefore, Hy (¢1)(¢) < 0.
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For all n € R™, n > 0, we have Hx, (¢1 +1¢) = Hx, (¢1) + nH, (61)(¢) + [[ng]|h(ne)
with h(ng) — 0 as n — 0.

Therefore, for n sufficiently small, we have Hy, (¢1 + n¢) < 0, which contradicts the
definition of Aj. O

Proposition 2.3. Assume that (h1)-(h3) and (h9) are satisfied.
If there exists i’ € {1,...,n} such that p;; > A}, then the system (1.6) has no positive
solution.

Proof. We can write that, for all vy €V, (RM), vy >0, there exists ¢ € D(RY),
¢ > 0, such that for j # i’ there exists v; € Vg, (RY), v; > 0, which satisfies

OF;
8ui/

Jpn [Vvir - Vo + qirvi @]
Jpn mirvi @

(v1,..,Viry .oy 0n) (@) 20 and <AL < g

Then HJ, , (vi)(¢) <0 and we can deduce that the system (1.6) has no positive solution.
|

Now we can prove the main result of this section.

2.2. Proof of Theorem 1.2

The plan of this proof is as follows:
(i) we prove the existence of a supersolution for the system (1.6) (see Proposition 2.4);
(ii) we get a subsolution for the system (1.6) (see Proposition 2.5);

(iii) we use the Schauder fixed point theorem (see Proposition 2.6).

Proposition 2.4. Assume that (hl)-(h8) are satisfied and that p; < AJ* for each
i =1,...,n. Then the system (1.6) has a supersolution.

Proof. Since, for each i, p; < AF*, from the definition of \I* (see (1.11)) we deduce
the existence of
v; € X4, 0 which satisfies H), (v])(¢) > 0 for any ¢ € @,:. (2.1)
We want to show here that there exists t € (0,) such that (tv},...,v}) is a super-
solution of the system (1.6).
Suppose this were not the case. Then, for all t € (0,1), (tvf,...,tv}) is not a super-

solution of system (1.6).
So, for all t € (0,1), there exist i, € {1,...,n} and ;, > 0 such that

2 OF,

H! (tv}) (v
Nit( UH)(¢ t) < p+1 auit

(tvy, ... tun ) (W)
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Consider the sets
Ny = {z € {1,...,n}, there exists v € D(RY), v > 0 such that

2 3Fi(m;‘,...,m;)(¢)} (2.2)

H, (tv}) () >+ 10u

and, for i; € Ny,

i, = {we D@, w30, 1], (i) < 2
We can prove that the inequality

%(tvl, st () =0 (respectlvely, a—ui(tvl, o ton)(Y) < 0)

is not satisfied for all ¢ > 0, i € N; and ¢ € K;, (see Appendices A and B).
Therefore, there exist ¢t > 0, i; € N;, ¢ € K;, and ¢ € K;,, which satisfy

aFit * * 8F’Lt * *
s, (to],...,tv})(¢) <0 and s, (tv], ..., tv5) () > 0.
So we have
2 OF;
* +qg—1 Tt * *
H,, (v;)(¢) < mtp ! m(vlw"avn)(gb) <0 (2.4)
and
2 OF;
* +qg—1 (23 * *
0<H,, (v;)®)< pa L aTit(Ulw'-aUn)(w)' (2.5)
(Note that ¢ € Doy .)
Since OF;, (v§,...,v})/0u;, is a continuous function, there exists a constant a € (0, 1)

such that

oF;, , . .
Wit(vl’ s 7vn)(a¢+ (1 - 04)1/’) =0.

Thus, we deduce that a¢ + (1 — a)y € &y and so H),, (v;,)(a¢ + (1 —a)y) > 0. But,
using (2.4) and (2.5), we have /

0 <aHj, (v;)(¢)+ (1—a)H,, (v;)(¥)

< gt oG () + (1= ) G ) (0)| =0
and we obtain a contradiction.
Therefore, there exists ¢ € (0,1) such that (tv],...,tv%) is a supersolution of the
system (1.6).
So
H (t0)(@) > —— i wi)6) foralliz1,...nandé>0.  (2.6)
padT p+10u, "

Note that, for all i =1,...,n, tv] > s¢; if 0 <s < ¢t |
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Proposition 2.5. Assume that (h1)—(hS8) are satisfied. If \; +e(IC)PT9=1 < p; < \3*
for each i = 1,...,n, then the system (1.6) has a subsolution.

Proof. We show here that (s¢1,...,s¢,) is a subsolution of the system (1.6) with
s> 0 such that s <t <[ and 1/I < s?P*9~! (which is possible when [ > 1).
We recall that

(—A + ql)(s@) = )\imis@, 1= 1, o, N (27)

Moreover, from hypotheses (h4) and (h5), we have

n n
JF
pimisgi + Y aisPTINGT 4 Y fiystraght
7=1; j#i i=1; j#i

= s[pimid; + sp+q71aiji¢fq§g-i + R;] with R; > 0 a.e. (2.8)
So, combining (2.7) and (2.8),
(—A+qi)(s¢i) < pimisgi + Y agsPTQPeT + Y fijsPTIghte
J=Liii J=Lij#i
<— ()\l — ,ui)micﬁi < sp+q_1aiji¢f¢?i + R;. (2.9)
Since s < I, we have

)\i*M < Az‘*m

\i +esPte-torta—t « . and so
i Hi Sp""q_ld)?_l(;ﬁ? X (sCypta—1

< —€.

Using (h6), we find that (A — pi)midi < sP79 ;5,47 ¢4, and therefore (2.8) and (2.9)
imply that (s¢1,...,sd,) is a subsolution of the system (1.6). |

Now let
o = [$¢1,tv]] X -+ X [$p, tV}]. (2.10)

Recall that (s¢1,. .., s¢y) is a subsolution of the system (1.6) (defined by Proposition 2.5)
and that (tv],...,tv}) is a supersolution of the system (1.6) (defined by Proposition 2.4).

Let the operator T* be defined by T*(u1,...,u,) = (v1,...,v,) with (vy,...,v,) the
solution of

n n
(—A 4 gi)vi = pimiu; + Z agjuguf + Z fij'U;?Jrq inRY, i=1,...,n (2.11)
i=Lij#i =15 j#i

Proposition 2.6. Assume that (h1)-(h8) are satisfied and that \; + e(IC)PT9—1 <
pi < A7* for each i = 1,...,n. Then the operator T has a fixed point in o, which is a
positive solution of the system (1.6).
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Proof. First, we must prove that T*(¢) C o.
Let (u1,...,un) € o and T*(uq,...,up) = (v1,...,0,). By (2.7) and (2.11), for each
t=1,...,n, we can write

(A + q;) (v — s¢i) = pimu,; + Z a;jut'u + Z f” uP T — shimyd.
J=1; 74 J=1;#4
Since uy > s¢y, for each k, using (h6), a;;, > —em;, we can deduce that
(—A+q)(vi — s6i) > [ — N —esPTa Lol 4 Imise;. (2.12)

But qﬁf_lqb?i < opta—l gpta=l L pta=1 and \; + ¢(IC)PT9~1 < u; so we obtain

(—A+qi)(v; —s¢;) =0

By the maximum principle (see Theorem 1.1 for one equation), we deduce that v; > s¢;
foralli=1,...,n
Moreover, for each i = 1,...,n, we have

(—A+ q;)(tv] —v;) = pm,(tv] — u;)

+ > aglte))P ()T — ubul j{: Fil(tos)PHe — a9, (2.13)

j=1;j#i J=1;75#1

So we can rewrite (2.13) as

(=B + @) (tv] — i)

J=1; j#i
n p+q—1
1—k
£OX fit - w)| 3 Gt
Jj=1;j#i k=0
and as
(—A+q)( v;)
n P*l
pimi(to] —ui) D, ai(te] u»ug[Z(tv:)kuf*-k
J=1;57#4 k=0
- a—l p+q—1
* —1—k k
+ > (] uj)[a”(tvz)f’< (tof)Fud ™! )—i—f”( S (o) ulte? )]
j=1;j5#1 k—0 P
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Since (u1,...,u,) € o, we get
p—1
(A + ;) (tv] —v;) = (tv] — ;) {Mimi + aijud, <Z(tv;)kuf1k>}
q—1
| A O AR

p+q—1
+f¢ji< (toy,)FubTamt™ ’“)} (2.14)

k=0

Since )
p—
af (St ) < ey,
k=0

using (h6) we can deduce that

p—1
pimi + aijug, (Z(tv YeuP =1 k> > 0. (2.15)
k=0

By the same method, using (h7) and sP*9=1 > 1/, we get

f”l (ZP‘H} 1( )kuﬁjqilik) (p + q)fz_h (3¢ji)p+Q7l
(to; )P (f o (¢ 'Uj,-)ku?,:lik) ~ q(ilC)pta=t

and so

g—1 pt+g—1

ag, (tv) ”(Z toy ) uf ’“) + fi ( S () kb ’“) > 0. (2.16)
=0 k=0

Therefore, by (2.14)—(2.16), we obtain (—A + ¢;)(tv} —v;) > 0 and so, by the maximum

principle (see Theorem 1.1 for one equation), we deduce that v; < tvf foralli=1,...,n

We conclude that (vy,...,v,) € 0 and so T*(0) C 0.

Now we prove that 7™ is a continuous operator. Let (ui g, ..., un ) be a convergent
sequence in o, with limit (uy,...,u,) in the sense that (u;y)r converges to u; for the
norm || - ||g;- Let T*(u1 ks -+, Unk) = (V1ky - -+ Une) and T*(ug, ..., up) = (v1,...,0p).
(Recall that T™* is defined by (2.11).)

For each ¢ and k, we have

||7Ji,k -

villg, :/ i (Vi — ) (Ui i — u;)
RN
D IR C AT RS

J=1;57#4

+ Z / fzg Uik — )( p+q U§+q)~

J=1;j#i
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So
ok =l = [ pmi(vis = v i~ )
RN
+ 30 [l = o et = ) bl — o)

J=1;#4
ED O RIS 21
J=15j7#4
Since w; i, Us, W)k, Uj, Mi, G5, fi; are bounded, noting that
‘“f,k —u?| < const. |u;, —u;|  and |up+q §-’+q| < const. |ujk — ujl (2.18)

and using the Cauchy—Schwartz inequality, by (2.17) and (2.18) we obtain

[vir, = villg; < const. leug, = Ujllq;-

Therefore, T* is a continuous operator.
We finish this proof by showing that T* is compact. Let (u1 g, ..., Un x)x be a bounded

sequence in o C Vo, (RY) x -+ x V, (RY) and let T* (w1 k, - -, Unk) = (Viky-- - Vnk)-
Since the embedding of V,,(RY) into L*(RY) is compact, there exists a convergent
subsequence, also denoted by (uyk, ..., Un )k, in (L?(RY))™. For each i, m, k, we have
Hvi,m - (211. = / Mimi(ui,m - ui,k)(vi,m - Uz',k)
RN
+ Z / G’Z] Vi,m Uiyk)[uf,mu?,m - uf,kug,k}
J=1 574
+ 0y / Fii Wim — vige) (WS — ub ). (2.19)
J=1;j#1
Since uf,mu?,m - u?,k“;l‘,k = “im[u;{m - u?,k] + [uf,m - “ik]u?,k’
|uf,m — ufk| < const. |, — uix| and \u?j?f — up+q| < const. |ujm —ujr|  (2.20)

and, using the Cauchy—Schwartz inequality, by (2.19) and (2.20) we obtain

n
||'Ui,m (% k”ql const. Z ||uJ m u]7k||L2(RN)
Jj=i
We can deduce that (v; ) is a Cauchy sequence for each ¢ = 1,...,n and so T* is a

compact operator.
By the Schauder fixed point theorem, we deduce the existence of at least one positive
solution for the system (1.6). O
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2.3. Other results

To finish this section, we obtain some results ensuring the validity of (h9). First, we
recall the following lemma (obtained in [7] by using a method developed in [9]).

Lemma 2.7. Foralli=1,...,n, allu € V,,(RY), u >0, all p € V,,(RY), ¢ > 0 and

all u; € R, ) X
wo(2J2) oo (5] <
e of(9F) oo (2

with € N, a > 0.

Proof. We set

We then have

Since "
((2))-o(0) [ve-uv
u u u u
a—1 2
= 2a (¢> {2 Vu-Ve¢ — (¢> |Vu|* — |v¢2} <0
U u

RN

we get

Therefore, we get the last results of this section, as follows.

Proposition 2.8. Assume that (hl)—(h5) are satisfied. For each i = 1,...,n, if
2; + ={z eRY, a;;,(z) > 0} is a non-empty, bounded domain of RY with a smooth
boundary 02; ;, then A} < +oo0.

Proof. For ¢ = 1,...,n consider the following equation (—A + g;)u = A\;m;u defined
in £2; + with Dirichlet condition on 0¢2; . We denote by A;4 the first eigenvalue (which
is simple and positive) and by ¢;; the first eigenfunction associated with it, i.e.

(—A+qi)dir = Nigmidiy in 254, ¢ip >01in 254, diq =0 on 924 (2.21)

Since supp ¢;+ C 2,4, by the above lemma 2.7, we get

Hj,. (ui)<(¢l+) ¢Z+> <0 forall u; € D(RY),
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i.e. for all u; € D(RY), u; > 0,

[ lses((S) o) an(o:

Moreover, for all wy, ..., ui—1,Uip1, ..., Uy = 0,

gi‘:(ula'“aun)(<¢z+) ¢l+)

=(p+1) ) / {aw (QSH) Piy + fiju p+q<¢z+> ¢z+} >0 (2.23)

Jj=1;j#i

by supp ¢;+ C §2;4 and hypotheses (h4) and (h5).
So, by (2.22) and (2.23), for all u; € Vg, (RY), u; >0,

Vu; - Vo + qu; . . .
inf {fRN us - Vo qud),¢>Osuchthat,for]:1,...,n,j;éz,
E€D(RY) fRN miu;®
E;
Jv; € qu(RN), v; 2 0 and gu (V1. y Uiy ey 0n) (D) 2 O}
-1
< [ lmen () o) v (e o (Lo (i) )
RN RN
< )‘i-‘r < 0.
Therefore, A} < A4 < o0. O

Proposition 2.9. Assume that (h1)—(h3) are satisfied.

(i) We assume here that for all i, j, f;; = 0. If there exists i € {1,...,n} such that for
J # i, there exist u; > 0 which satisfy F;(u1, ..., ui—1, @, Uit1,...,Un) = 0, then
A7 < \; and, since A} > \; is always satisfied, \} = \; < 00.

(ii) If there exists u; > 0,...,u, = 0, such that F;(u1,...,ui—1, i, Uit1,- -, Up) < 0,
then \; < A\}.

Note that the condition in Proposition 2.9 (ii) is verified if we assume also that (h4)
and (h5) are satisfied and if we take u; > 0 such that suppu; C D;.

Proof. For proposition 2.9 (i), we assume that f;; = 0 for each ¢ and j. So we have

Fi(ui,. .., uy Z / a;jus e uf for all ug, ..., uy, (2.24)
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and
OF;
au-(uh“" ) (@) =(p+1) Z / aijujuie for all . (2.25)
‘ J=1;j#i
We suppose here that
for j #14, thereexists u; >0, Fi(ui, ..., ui—1,0i,Uit1,...,Up) = 0. (2.26)

We must prove that A} < A;. To do this we use lemma 2.7, with a = p.

We have
H,, (¢l)((3l> ) =0 forall u; >0.

So, for all u; > 0,

i.e.

/RN {Vui <<¢Z) (bi) + qiui(@) ‘14 </RN miui<2j)p¢i>l <A <oo. (2.27)

Moreover, using (2.24)-(2.26), for all u; > 0 and j # 4, there exists u; > 0,

OF; i\
(Uh e ,ui,l,ui,qu, e ,un) <<¢> ¢2

8ui (173
¢ 4
~o+0) X [ (2o
=11V RY i
:(p+1>Fz(ula- Uq 17¢27uz+1a 7un)
> 0. (2.28)
Since
~ Vu; -V iU
inf {IR ! ¢+qu¢,¢>OSuchtha‘u
¢EeD(RN) Jan miui
F;
for j # 14, Ju; € Vg, (RY), u; >0 and gu (Ug,...,up)(d) = 0}
RN
< / {Vui <<¢1) ¢z) + Qzu1(¢z> ¢z:| (/ mzuz<¢z) @')
RN (173 RN (173
<A< o0,

by (2.27) and (2.28), we get A} < A; and therefore Af = \;.
For the second claim, we assume that there exist

up =2 0,...,u, =20, Fi(ul,...,ui_l,@,ui_,_l,...,un)<O. (229)
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We define
_ . ~[IVe 2 +qi|¢ 2
A, = ¢€[1)I(1]£N)’{IR HfRN mi|¢)|2| | ], @ such that Fy(ug, ..., 01,0, Uit1, .., Up) > 0}.
¢=0
(2.30)
Let
W, = {¢ € VI(RN), ¢) >0, Fi(ul,. .. ,Ui,1,¢,ui+1, .. .,un) > 0} (231)

Since W; C V,, (RY), we have \; < \; . Since ¢; ¢ W;, by the continuity of the function
F;, we deduce that A\; < A; .
We now have to prove that A, < A7,
First we prove that
-2 -2
there exists u; € W;, such that A\, = Jos (V07 +imui | ] (2.32)
fRN m|u; |2

Suppose that
= e [IVul? + gilul’]
< 2
e il
Let v € W; such that Fj(ui,...,%i—1,V,%is1,...,Uy) > 0. Then H,-(v) > 0.
Since \; < A;, we have H,-(¢;) <0 and so H,—(n¢;) <0 for all > 0. Since the

A for all u € W;.

i

7 7

function H,- is continuous, we obtain the existence of a constant a € (0,1) such that

i

HA; (ang; + (1 — a)v) = 0.

Then ang; + (1 — a)v ¢ W; and so
Fi(ul, cey Uis1, Qg + (]. — Oé)’U, Uig1y - ,un) <0.

However, since F;(ui,...,ui—1,(1 — @)v,uit1,...,u,) > 0, there exists n > 0 small
enough such that Fj(uy,...,u;—1,an¢; + (1 — a@)v,wiy1,...,u,) > 0. Therefore, we get
a contradiction and therefore we can deduce the existence of u; .

Finally, we prove that A, < A}. Suppose that A, > A. Then

Jan [Vu; - Vo + qiu; ¢

there exists ¢ € @, -, — <A <A (2.33)
K fRN miui ¢
Therefore, H _(u; )(¢) < 0.
Since Fj(uq, ..., u 1, Uy Wit 1, - -+, Up) > 0, by continuity we have
Fi(ul, .. .,ui_l,u; —+ nd),ui_H, e ,Un) >0

for sufficiently small n > 0.

Moreover, by (2.32) and (2.33) we have H! _(u; )(¢) < 0 and H,- (u; ) =0, so we can
choose 7 > 0 small enough that H,- (u; + ng) < 0.

Therefore, we obtain that '

Jan IV (ui” +09)P° + giu +09)°] _ |
IRN mz(uz_ + 77¢)2 !
and this contradicts the definition of A; (see (2.30)). Hence, A, < A}, O
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3. A bifurcation result

3.1. Preliminary results

In this section, we obtain a result on existence of solutions for the semilinear system (1.1)
by considering bifurcating solutions from the zero solution. We suppose that (hl), (h2)
and (h10) are satisfied throughout this section.

Note that, for each 4, f; is Lipschitz in (y1,...,¥y,) uniformly in z.

Proposition 3.1. The operator T (see (1.14)) is well defined.

Proof. Let t = (pt1,..., pn) € R® and u = (uy,...,u,) € V. For all v; € V,,(RY), we

introduce
Gi(v;) = / [Vu; - Vv; + qiuv; — pimiugv; — fi(x, uw)vg].
RN
Since m; is bounded, f; is Lipschitz in u uniformly in z and f;(z,0,...,0) = 0, we deduce
that

n
|G;(v;)| < const. {Z |uj|qj} |villg; for all v; € V, (RY).

j=1
The operator G; is linear and continuous. By the Riesz theorem, the operator T? is well

defined for all 7 and so T is well defined. O

Proposition 3.2. For all i, the operator T is continuous, Fréchet differentiable with
continuous derivatives given by the following formulae (for all ¢, € V,, (RN)):

4 , df;
Ifj 7é Z.a TZ’] = 07 <TZJ (,U/,’U,)¢7’¢>ql = - R a; (%U)@/}a

N J
If.] = Z.v <T7LL (ﬂ’u)7¢>qi = - /I;N miui¢a
if j =1, (T3, (1, w)d, ¥) g, = / [W VY + g — pimidp — ——(z,u)yp

RN 6y1
if j #1i, Tpw, =0="T.,.,
if j =1, (T3 (11 w) ) g, = —/ mi¢tp and Ty, =0 if k #i.
]RN

Proof. Proceeding as in [7], we do not give the details of the proof here, which is
technical but simple. Since m; is bounded and f; is Lipschitz in w uniformly in x, we
obtain the continuity of 7% and TZ By using the hypothesis that 0f;(x, -)/0y; is bounded
uniformly in z and using the Lebesgue dominated convergence theorem, we get the
continuity of T, and Ty, . O

Recall that, for each i = 1,...,n, (=A+¢q)¢; = \im;d; in RV \; > 0 and ¢; > 0 (see
(1.2) and (1.3)).
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Proposition 3.3. The operator T,, (), 0) is a continuous self-adjoint operator with A\ =
(A, - ..y An). The kernel of T, (X, 0), denoted by N (T, (A,0)) is generated by {®1, ..., P, },
where, for eachi=1,...,n, ®; = (0,...,0,¢;,0,...,0).

Moreover, if we denote by R(T, (A, 0)) the range of the operator T, (), 0), we have

(i) codim(R(T,(),0))) =
(i) Tpyu(X,0)P; ¢ R(Tw(X,0)) for each i,
(iii) dim(span{T aXN0)8;, 1<i<n}) =n.
Proof. First note that we have T,,(\,0) = (T1(\,0),...,T™(X,0)).
Then, using hypothesis (h10) (iii), we find that, for each i = 1,...,n, T%(),0) is a con-
tinuous self-adjoint operator. Therefore, T, (A, 0) is also a continuous self-adjoint opera-
tor. Indeed, for v = (vq,...,v,) € V and w = (wy,...,w,) € V,

(Tu()\,O)v,w>V = <T1’i(>"0)vawi>%

I

N
Il
-

<T'l/,ibj ()‘7 O)Uj7 wl>qL

|
IM:

1

=
S
Il

= / [Vl}i -Vw; + qvw; — /\imiviwi]
RN

1=

[

= (v, T,(A\, 0)w)y
We study here the kernel of T}, (A, 0), denoted by N (T, (A,0)). For v = (v1,...,v,) € V,

we have
v € N(T,(\,0))
— forallweV, (Tu(\0)v,w)yy =0
— forallweV, Z/ [Vv; - Vw; + givjw; — \imiv;w;] =0
) N
<= for all i and all w; € V, RM), / [Vv; - Vw; + qu;w; — Aymv;w;] = 0
RN
< foralli, wv; €span{¢;}
< v € span{®dy,...,P,}, where P; =(0,...,0,¢;,0,...,0). (3.1)

Therefore, codim R(T,,(),0)) =
Now we prove that, for each i, T),,, (X, 0)®; ¢ R(T,(X,0)). Note that we have identified
Thiu(X,0) - (1, P;) with T,Liu(A,O)sI),. For each i = 1,...,n, we have

(Thiu(A, 0)®i, i)y = <Ti w(X 0)Pi; di)g,
= (T (X, 0)0i, D),

/ mig? £ 0.
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Therefore, T),,,(X, 0)®; is not orthogonal to @;. Since N(T,(),0)) = span{P4,...,P,}
(see (3.1)) and R(T,(A,0)) = N(Ty(),0))1v, we deduce that

Finally, let (a1,...,a,) € R™ be such that
> aiT,u(X0)8; = 0.
j=1

For each i = 1,...,n, we have

< > aTu(A 0);, ¢i> =0,
=1 v

so that
n .
Z Qi <T:L]u()‘7 O)dsja ¢i>qi =0.
j=1
Therefore,
—q migi)? =0 andso «; =0.
RN
So dim(span{T},,,(A,0)P;, 1 < i< n}) =n. 0
Remark 3.4. Note that
Thu(N0)P; =0 if 4 # 5. (3.2)

3.2. Proof of Theorem 1.3

Although we cannot apply directly the results obtained in [8, Theorem 1.7], we follow
its proof to obtain the result developed in Theorem 1.3.

As in [8], we introduce the function h : R x R" x V' — V defined for « € R, p € R
and w € V by

1
—T(pu,aP1+ -+ ad, + oaw) if a #£0,

h(a, p,w) =4 (3.3)
Tu(p, 0) (D1 4+ -+ Py, + w) if a =0.

Recall that
&, =(0,...,0,¢;,0,...,0) € V.

We have h(0,A,0) = T, (1, 0)P1 + -+ + Ty (1, 0)P,,. Since, for each i = 1,...,n, §; €
N(Ty(X,0)), we deduce that h(0,,0) = 0.
Moreover, let g : R™ x V' — V be defined for 4 € R™ and w € V by

g, w) = Ty (1, 0)(P1 + - -+ + D, + w). (3.4)
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For p = (p1,...,pn) € R" and v = (v1,...,v,) € V, we have
Dyg(, w)(p,0) = Y piTpu (2, 0)(@1 + -+ + By + w) + Tu(p, 00,
i=1
where Dg is the Fréchet derivative of g. Therefore, for p € R™ and v € V, we get

Dg(A, 0)(p,v) = > piTpuu(X, 0)®; + Tu (A, 0)v, (3.5)

i=1

since T}, (A, 0)®; =0 if j # i (see (3.2)).

Using Proposition 3.3, we deduce that Dg(A, 0) is a linear homeomorphism from R™ x V'
onto V. Indeed, note that V/R(T,(A,0)) is isomorphic to N(T,(A,0)). So, for each i =
1,...,n, there exist a ¢; € N(Ty,(),0)) and an w; = T, (A, 0)¢; € R(T,(A,0)) such that

Thiu(A, 0)P; = ;4 w;. (3.6)
Since dimspan{T},,,(\,0)®;, 1 < i < n} =n, we deduce that

N(T, (A 0)) =span{t, ..., ¥}

Therefore, for all w € V, there exist a v € V and a v = (v4,...,v,) € R™ such that
w="T,(\,0)v+ > vith (3.7)
i=1

and so, by (3.5)—(3.7), we have

w = T,(),0) (1} -3 VZ-Q) + ) viTu(X,0)®; = Dg(A,0) (u, v=Y yig).
=1

i=1 i=1

We recall that g(p, w) = h(0, g, w) (see (3.3) and (3.4)).

The implicit function theorem implies the existence of a neighbourhood U’ of (X, 0), of
g0 > 0 and of a function K : (—eg,g9) — U’ such that h(e, u,w) = 0 with e € (—¢¢, o)
and K(e) = (p, w) = (Kqe, Kae) € U'. Therefore, for € € (—¢eq,e0), T(K16,6(P1 + -+ +
&, + Koe)) = 0 and if we define H(e) := (Kyg,e(P1 + - - - + P, + Ka¢)), we have

T(H(e)) =0 forall e € (—ep,ep).

3.3. Other results

Finally, we study the global nature of the continuum of solutions obtained by bifurca-
tion from the (A, 0) solution in a particular case. As in [7], we follow a method developed
in [3] using [10, theorems 1.3 and 1.4]. We obtain the following result.
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Theorem 3.5. Assume that (h1), (h2) and (h10) are satisfied. Assume also that, for
all i and j, \; = \; := Ao (which is satisfied if ¢; = ¢ and m; =m for eachi=1,...,n).
Then, there exists a continuum C' of non-trivial solutions for the system (1.1) obtained
by bifurcation form the (Ao, 0) solution, which is either unbounded or contains a point
(11,0), where u # Ao is the inverse of an eigenvalue of the operator A = (L1,...,Ly)
(where L; is defined by (Liu,¢)q, = [pnmiui¢, for all u = (uy,...,u,) € V and all
b € Vi, (RY)).

Since \g is simple, the continuum C has two connected subsets, C* and C~, which
also satisfy the above alternatives.

Proof. First we define an operator S by setting
S(u,u):ufT(u,u), S:(S17~'~7Sn)v

ie. for u € R, for u= (uy,...,u,) €V and for v; € V,, (RV),

(S* (1), vi)q, = /RN [umiuv; + fi(x, w)v;]. (3.8)
So u = (uy,...,uy,) is a solution of the system (1.1) if and only if u = S(u,u). For each
i=1,...,n, S'(u,u) = pL;u+ H;u, where v; € V,,(RY), we write

<Liu, Ui>qi = mi;u;v; and <H2’UJ, Ui>qi = fz ($, u)vi. (39)
RN RN

So
S(p,u) = pAu+ Hu (3.10)

with Au = (L1u,...,Lyu) and Hu = (Hyu, ..., Hyu).

To apply the results in [10], we must prove that S*: R x V — V,(RY) is continuous
and compact, that L; : V — V,, (RY) is linear and compact, that H;u = O(||u||y) for
u = (u1,...,up) near 0 = (0,...,0) uniformly on bounded intervals of y and that
1/Xo is a simple eigenvalue of A (which is true because it is a simple eigenvalue of
(—A + qi)_lMZ‘).

We first show that S? is continuous and compact. Note that S? is continuous since 7%
is continuous. Let ((up, up))p be a bounded sequence in R x V, with u, = (w1p, ..., Unp).
Since the embedding of each V, (RY) into L?(RY) is compact, there exists a convergent
subsequence, denoted also by ((f1p, 1)), in R x (L2(RY))™.

By (3.8), for all v; € V, (RY), we have

<Si(,upvup) - Si(ﬂmaum); [

v >q
= Mp/ miUipti — Mm/ M Uim Vs +/ [fi(x?up) - fi($7um)]vi~
RN RN RN
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So

1t ) = 5 G ), = Gt = ) [ "t 1) = 5t )]
) R LU A B )
[ ) = 52100 S Gt ) = 5t )]

By (h2) and (h10) we deduce that (S%(up,up)), is a Cauchy sequence and therefore a
convergent sequence. So S* is compact for all i = 1,...,n, and S = (S1,...,S") is also
compact.

We next show that L; is linear and compact. The operator L; is obviously linear and
continuous. Therefore, the operator A, defined by (3.10), is also linear and continuous.

Let (up)p, 4p = (U1p,-..,Unp), be a bounded sequence in V. Since the embedding
of each V,,(RY) into L?(RY) is compact, there exists a convergent subsequence, also
denoted by (up)p, in (L2(RY))". By the Cauchy-Schwartz inequality, using (3.9), for
each 7 we obtain

| Liup — Lium |7, = /N M (Wip — Wi ) [ Littp — Lity,]
R
and so
| Litty — Livm |lq < const. [[wip — Wiml L2 @)

Therefore, (L;up), is a Cauchy sequence, so L; is compact and A is also compact.
Finally, we have

il = [ i) Hyu < const. uly | Hiull.
R
So H;u = O(||u]lv) and therefore Hu = O(||ul|v ). O

Appendix A.

Assume that, for all t > 0, all ¢ € N; and all ¥ € K,

oF; , y
8U1' (tvl yoee Jtvn)(d}) > 0.
We shall prove that, for all $ > 0 and all i = 1,...,n, H, (v})(¢) > 0.

Step 1. Let ¢ > 0 be such that there exists
oF;
8ui

(This is possible by (h4) and (h5).) Let ¢t € (0,1). Recall that IV, is defined by (2.2) and
K;, is defined by (2.3).

ie{l,...,n},

(v1,...,un)(¢) <O.
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If ¢ € N¢, then ¢ ¢ K;,, and so

2 OF,

Hj,, (tv7)(¢) > (o1, ... tvy)(9)-

If i ¢ Ny, then
2 OF;

H,,(tv7)(¢) > (tv, ... top) ().
Therefore, for all ¢ € (0,1), we have

2 OF;
p+10u;

Hj, (tv7)(¢) > (o1, ..t ) (@),

i.e. for all ¢t € (0,1),
SIS [ et sy < [ 90 oraniopmoidl. (A1
J=1;j#4 RY

Note that 4 is independent of ¢. So, taking the limit in (A1), as ¢t — 0, we get
0 < Hy, (v])(9)- (A2)
Step 2. Now, let ¢ > 0 be such that there exists

OF;

1e{l,...,n}, .

~(vf,.,vp)(9) > 0.

(This is also possible by (h4) and (h5).)
Since ¢ € @+ (see (1.12)), and by the characterization of v (see (2.1)), we can conclude
that

Hj,, (v7)(6) > 0. (A3)

Step 3. In conclusion, by (A 2) and (A 3), we obtain

H' (v))(¢) =0 forall ¢ € D(RY), $>0, and for alli =1,...,n.

i

In particular, for ¢ = ¢;, we get
(Ai — Mz)/ miv; ¢; =0
]RN
Since \; < p; and

mlvr(bl > Oa
RN

we get a contradiction.
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Appendix B.

Assume that for all ¢t > 0, all i € N; and all ¥ € K;,,

(tvg, ..., 1)) () < 0.

Let ¢ > 0 be such that there exists

OF;

1e€{l,...,n}, .

(V1,5 0p)(0) > 0.

(This is possible by (h4) and (h5).) Note that ¢ € @, and so, by the characterization of
vy (see (2.1)), we have H,, (v;)(¢) > 0.

% 7

Let ¢t € (0,1). If i € Ny, then ¢ ¢ K;,, and so

2 OF;
H! (tvy > ——— (o}, ... toF )
i (tvz )(¢) P +1 aul (tU17 7tvn)(¢)
If i ¢ N;, then
. 2 0F;, . ., .
HL(00)0) > =5 i ) 0),
Therefore, for all ¢ € (0,1), we have
N 2 0F,, ., N
Hllh (tvi )(¢) 2 P +1 aui (tvh R 7tvn)(¢)7

i.e. for all t € (0,1),

0 < pral i: / lai; (V)P (W) + fi3 (v7)7 )¢
. JRN

=15 j#i

< / [VoF - Vo + g7 — pimyvl 6. (B1)
RN

Note that ¢ is still independent of ¢. Therefore, taking account of (B 1), we get a contra-
diction for sufficiently large ¢ (because we can take a bigger ).
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