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Affine Lines on Affine Surfaces

and the Makar–Limanov Invariant

R. V. Gurjar, K. Masuda, M. Miyanishi, and P. Russell

Abstract. A smooth affine surface X defined over the complex field C is an ML0 surface if the Makar–

Limanov invariant ML(X) is trivial. In this paper we study the topology and geometry of ML0 surfaces.

Of particular interest is the question: Is every curve C in X which is isomorphic to the affine line a fiber

component of an A1-fibration on X? We shall show that the answer is affirmative if the Picard number

ρ(X) = 0, but negative in case ρ(X) ≥ 1. We shall also study the ascent and descent of the ML0

property under proper maps.

1 Preliminaries

Let X be a smooth affine surface defined over the complex field C, which we can

replace in most arguments by an algebraically closed field of characteristic zero. The

Makar–Limanov invariant ML(X) is defined as
⋂
σ Aσ , whereσ runs over all algebraic

actions of the additive group Ga and Aσ is the invariant subring of the coordinate

ring A of X under the Ga-action σ. We call X an MLi surface (i = 0, 1, 2) if the

transcendence degree of the quotient field of ML(X) over C is equal to i. Thus, ML2

surfaces have no nontrivial Ga-actions. In the present article, we are mostly interested

in ML0 surfaces and the geometry of curves on such surfaces.

The simplest example of an ML0 surface is the affine plane A2, and we have the

well-known theorem of Abhyankar, Moh, and Suzuki (AMS theorem, for future use)

which states that any curve in A2 isomorphic to the affine line A1 is a fiber of an

A1-fibration. This easily implies that there exists a system of coordinates {x, y} on

A2 such that the given curve is defined by x = 0. On the other hand, the affine plane

A2 is characterized as an ML0 surface with Pic(X) = 0. We define ρ(X) to be the rank

of Pic(X)Q and γ(X) to be the rank of Γ(X,O)∗/C∗, which is a finitely generated free

abelian group.

We are interested in the following.

Question Let X be an ML0 surface and let C be a curve on X isomorphic to the affine

line A1. Does there exist an A1-fibration f : X → B such that C is a fiber-component

of f and B ∼= A1 ?

An affirmative answer to this question would have been a good generalization

of the AMS theorem. But we will see that the answer is negative if ρ(X) ≥ 1 and

affirmative if ρ(X) = 0.

The main results in this paper are Theorems 2.1, 3.11, 4.2, 4.3 and 5.1. We have

also given several examples where the analogue of the AMS theorem is false for ML0
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surfaces with ρ > 0 and for ML1 surfaces (Theorem 2.3, Claims 3.7, 3.8). In addition,

an example of a simply-connected ML0 surface with ρ > 0 which does not contain

C2 as a Zariski-open subset is given (§6).

We will deal only with complex algebraic (and analytic) varieties. We let C∗ denote

the affine curve P1 − {two points}.

• A P1-fibration on a smooth algebraic surface S is a morphism f : S → B onto a

smooth curve such that a general fiber of f is isomorphic to P1. An A1-fibration

and a C∗-fibration on a smooth surface are defined similarly.
• An (n)-curve on a smooth surface S is a smooth projective rational curve C with

(C2) = n.
• A linear chain C1 +· · ·+Cn of smooth rational curves is called admissible if (Ci

2) ≤
−2 for 1 ≤ i ≤ n. For related definitions and relevant results we refer to [20].

In the following, we denote by e(S) the topological Euler–Poincaré characteristic of

a topological space S. The following results by Suzuki [28] and Zaidenberg [30] (see

also [10]) will play an important role.

Lemma 1.1 Let X be a smooth affine surface with a morphism f : X → B with con-

nected general fiber, where B is a smooth curve. Let F be a general fiber of f and let Fi be

the singular fibers in the scheme-theoretic sense for 1 ≤ i ≤ s. Then we have

e(X) = e(B)e(F) +

s∑

i=1

(e(Fi) − e(F)).

Further, e(Fi) ≥ e(F) for all i. If the equality holds for some i, then F is isomorphic to

either A1 or C∗ and Fi is isomorphic to F for all i if taken with reduced structure.

Let S be a smooth irreducible quasi-projective surface. A projective completion

S ⊂ W is called a normal completion of S if W is smooth and D := W − S is a

divisor with simple normal crossings. Furthermore, if any (−1)-curve in D intersects

at least three other irreducible components of D, then we say that this completion is

a minimal normal completion of S.

If S is an ML0 surface, then it is trivial to see that S is rational and the boundary

divisor W − S in any normal completion of S is a tree of P1’s. In particular, the

boundary divisor is simply connected.

We have the following result which characterizes an ML0 surface in terms of the

boundary graph [5,8,9,13]. The study of ML0 surfaces was begun by M. H. Gizatullin

in the influential papers [8, 9]

Lemma 1.2 Let X be a smooth affine surface and let V be a minimal normal comple-

tion of X. Then X is an ML0 surface if and only if γ(X) = 0 and the dual graph of the

boundary divisor D := V − X is a linear chain.

M. H. Gizatullin has described properties of a singular fiber of a P1-fibration on a

smooth projective surface [18, Ch. II, §2]. We will use this result implicitly in some

of the proofs later on.

We begin with some easy results.
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Lemma 1.3 Let C be an irreducible curve on a smooth affine surface X and let X ′
=

X −C. Then we have γ(X ′) − ρ(X ′) = γ(X) − ρ(X) + 1.

Proof In the case where mC is a principal divisor for some m > 0, write mC = (u).

Then γ(X ′) = γ(X) + 1 and ρ(X ′) = ρ(X). In the case where the class [C] is not zero

in Pic(X)Q , we have ρ(X ′) = ρ(X) − 1 and γ(X ′) = γ(X). In both cases the result

follows.

Lemma 1.4 Let X be an ML0 surface. Then the following assertions hold.

(i) γ(X) = 0.

(ii) The torsion part Pic(X)tor is isomorphic to π1(X) and is a finite cyclic group, while

H2(X) is the free part of Pic(X).

(iii) If B ∼= P1 (resp. B ∼= A1), any A1-fibration f : X → B has at most two (resp. one)

multiple fibers.

Proof (i) Since there are two independent Ga-actions on X, there is a dominant

morphism ϕ : A2 → X. Hence, for any non-constant unit u on X, ϕ∗(u) is a non-

constant unit on A2. But this is a contradiction. Hence γ(X) = 0.

(ii) Let X →֒ V be a normal completion. Let D := V − X. Then we have an exact

sequence of cohomology groups with Z-coefficients

H1(D) → H2(V,D) → H2(V ) → H2(D) → H3(V,D) → H3(V ),

where H1(D) = (0) since D is simply-connected, H2(V ) ∼= Pic(V ), H3(V,D) ∼=
H1(X) and H3(V ) ∼= H1(V ) = (0). On the other hand, we have an exact sequence

0 → H2(D) → H2(V ) → Pic(X) → 0.

Taking the dual of the last exact sequence, we have an exact sequence

0 → Hom(Pic(X),Z) → Hom(H2(V ),Z) → Hom(H2(D),Z)

→ Ext1(Pic(X),Z) → Ext1(H2(V ),Z),

where Hom(Pic(X),Z) is the dual of the free part of Pic(X), Hom(H2(V ),Z) ∼=
H2(V ) by the universal coefficient theorem and the fact that H1(V ) = (0),

Hom(H2(D),Z) ∼= H2(D), Ext1(Pic(X),Z) ∼= Pic(X)tor and Ext1(H2(V ),Z) = (0)

because H2(V ) is free. Hence we obtain an exact sequence

0 → Hom(Pic(X),Z) → H2(V ) → H2(D) → Pic(X)tor → 0.

Hence it follows that H1(X) ∼= Pic(X)tor and H2(X) is the free part of Pic(X).

(iii) Let f : X → B be an A1-fibration. Let X →֒ V be a smooth normal comple-

tion. We may assume that the A1-fibration f extends to a P1-fibration f : V → B,

where B ∼= P1. Let M be the cross-section of f lying in the boundary divisor

D := V −X. Suppose that there exist two or more multiple fibers, say m1F1, . . . ,mrFr
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in the fibration f . We include the fiber of f over the point B−B as mrFr (even though

it is reduced) if B ∼= A1. The corresponding fibers Φ1, . . . ,Φr of f have respectively

the components B1, . . . ,Br in D meeting the section M. Then M is a branching com-

ponent of D, i.e., a component meeting three or more other components of D. If we

make the boundary D minimal by successively contracting all (−1) curves in D which

lie in fibers of f so that the resulting boundary divisor still has normal crossings, then

the resulting divisor must be a linear chain by Lemma 1.2. But this is impossible as

long as r ≥ 3. So, f has at most two (resp. one) multiple fibers if B ∼= P1 (resp.

B ∼= A1).

With the above notations, let Φ be a fiber of f which cuts out a singular fiber of

f . Then Φ consists of a boundary part C1 + C2 + · · · + Cn with C1 meeting M and

several components A1, . . . ,Am such that Ai ∩ X is isomorphic to A1 for 1 ≤ i ≤ m

(see Lemma 1.5). We sometimes call any of A1 ∩ X, . . . ,Am ∩ X a feather of the A1-

fibration f . If there is no fear of confusion, we also call any of A1, . . . ,Am a feather

of X.

For later use, we shall look into a more systematic construction of ML0 surfaces.

The following result is well known and easy [20].

Lemma 1.5 Let U ⊂ X be smooth affine surfaces such that U is an open set of X and

U has an A1-fibration. Then X − U is a disjoint union of irreducible curves which are

isomorphic to A1.

Lemma 1.6 Let X be an ML0 surface and f : X → A1 an A1-fibration. Then there

exists a smooth normal completion X = X f ,n of X such that the boundary divisor D :=

X − X consists of a linear chain D = ℓ − M − A, where ℓ is a (0)-curve, M is an

(n)-curve and A is an admissible linear chain. The fibration f extends to a P1-fibration

f : X f ,n → P1 such that ℓ = f
−1

(∞) ( := F∞), M is a cross-section of f and F0 :=

f
−1

(0) = A + A1 + · · · + Ar , where each Ai is isomorphic to P1 and meets X − X

normally in a component A ′
i of A (hence Ai is a feather of X).

We then write X as X f ,n.

Furthermore, the following assertions hold.

(i) Given an ML0 surface X = X f ,n, an ML0 surface X f ,n ′ with an arbitrary n ′

is obtained by elementary transformations on f
−1

(∞) of X f ,n, where ℓ (resp. M) is

replaced by a (0)-curve (resp. (n ′)-curve) ℓ ′ (resp. M ′) and A,X are not touched in the

process.

(ii) We have r ≥ 1 and ρ(X) = r − 1. Let mi be the multiplicity of Ai in f
∗
(0).

Then Pic(X) is generated by the classes of A1, . . . ,Ar which are subject to the relation∑r
i=1 miAi = 0. Hence Pictor(X) is a finite cyclic group of order d = gcd(m1, . . . ,mr).

(cf. Lemma 1.4).

(iii) At least one Ai is a (−1)-curve.

We call a chain D = ℓ−M −A as above a standard chain and the completion X f ,n

of X attaching D as the boundary divisor a standard completion of X. Note that for

any standard chain on a smooth projective rational surface X, the curve ℓ induces an

A1-fibration on X := X − D. Then X is an ML0 surface precisely when X is affine.
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We shall explain a method of attaching feathers to construct any ML0 surface. Let

Σs be the Hirzebruch surface with a P1-fibration p : Σs → P1. Let ℓ = ℓ∞ and ℓ0 be

two fibers of p and let M be a cross-section with (M2) = n. We apply the following

two operations.

(A) Blow up above a point on ℓ0 not on M so that the proper transform ℓ ′0 of ℓ0

together with the exceptional curves form a linear chain B(1). Suppose B(1) has length

≥ 2. Let B(1)
0 be the tip of B(1) not meeting M and B(1)

1 the component meeting B(1)
0 .

Blow up above a point on B(1)
1 not on any other component of B(1) to produce a chain

B(2) attached to B(1)
1 . Continuing this way, we produce a linear chain

A ′
= (B(1) \ B(1)

0 ) − (B(2) \ B(2)
0 ) − · · · − (B(s−1) \ B(s−1)

0 ) − B(s).

We allow B(s) to have length 1 or to be empty.

(B) Choose irreducible components A ′
1, . . . ,A

′
t of A ′, including all (−1)-com-

ponents, and blow up ni points of A ′
i not on any other component of A ′ to produce

exceptional curves Ai j . Let A be the same chain as A ′ with (A ′
i

2
) replaced by (A ′

i
2
)−ni .

Relabel A11, . . . ,Atnt
as A1, . . . ,Ar ′ and B(1)

0 , . . . ,B(s−1)
0 as Ar ′+1, . . . ,Ar.

We produce a projective surface X with a P1-fibration f : X → P1 induced by p

such that f
−1

(∞) = ℓ, M is a cross-section of f and f
−1

(0) = A + A1 + · · · + Ar . If

we assume r ≥ 2 in case s = 1 and B(1) has length 1 (i.e., A = ℓ0), A is an admissible

chain.

Lemma 1.7 Let X be as constructed above and let D = ℓ+ M + A. Then X := X −D

is an ML0 surface and f induces an A1-fibration f : X → A1, where D is a standard

linear chain and X = X f ,n. Furthermore, every ML0 surface arises in this way.

Proof The steps (A) and (B) above are the only way to create standard chains D on

a smooth projective rational surface X such that X − D is affine.

The following result shows that if an ML0 surface has positive Picard rank, then it

contains an affine open set which is an ML0 surface with smaller Picard rank.

Lemma 1.8 Let X be an ML0 surface with ρ(X) > 0. Then there exists an irreducible

curve A such that

(i) A is isomorphic to A1,

(ii) X ′ := X − A is an ML0 surface with ρ(X ′) = ρ(X) − 1.

In particular, if ρ(X) = 1, then X ′ is a Q-homology plane.

Proof We choose a standard completion of X as in Lemma 1.6, obtained as in

Lemma 1.7. Since ρ ≥ 1, we have r ≥ 2. Say A1 is a (−1)-curve. Let D ′
= D + A1

and make D ′ minimal by the contraction of A1 and successively contractible curves.

If a component of A becomes a (−1)-curve in this process, then no feather Ai , i ≥ 2,

is attached to it unless A is a (−2)-curve and r = 2. In that case X − A1
∼= A2. In the
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general case we end up with a standard minimal boundary D ′′
= ℓ ′′ − M ′′ − A ′ ′

of X − A1 with A2, . . . ,Ar attached to A ′ ′. We may assume that D ′′ is minimal by

Lemma 1.6(i). We have ρ(X − A1) = r − 1, and hence γ(X − A1) = γ(X) = 0 by

Lemma 1.3. By Lemma 1.2, X − A1 is an ML0 surface.

We note here that all ML0 surfaces which are Q-homology planes are described

in [5, 17].

2 The Case of Q-Homology Planes

We shall prove the following result which is a generalization of the AMS theorem.

The proof below is very similar to a proof of the AMS theorem given in [11]. The

arguments in the proof below are used again in the proof of Theorem 3.11.

Theorem 2.1 Let X be an ML0 surface with ρ(X) = 0. Let C be a curve isomorphic

to the affine line on X. Then there exists an A1-fibration f : X → B such that B ∼= A1

and C is a fiber component of f .

Proof The proof uses Lemma 1.2 in an essential way. First we will prove the follow-

ing result.

Claim 2.2 We have e(X −C) = 0 and κ(X −C) ≤ 1.

Since e(X) = e(C) = 1, we have e(X−C) = 0. Hence κ(X−C) ≤ 1 for otherwise

e(X − C) > 0 by a logarithmic analogue of the Miyaoka–Yau inequality due to R.

Kobayashi [16]. For details, see [20, Theorem 6.7.1]. This proves the claim.

We consider each of the cases κ(X −C) = −∞, 0 and 1 separately.

Case I: κ(X−C) = −∞. Since X−C is an affine surface with κ(X−C) = −∞, there

exists an A1-fibration f ′ : X − C → B ′ which extends to an A1-fibration f : X → B

such that C is a fiber component of f .

Case II: κ(X − C) = 0. Since Pic(X) is a finite cyclic group by Lemma 1.4, there

exists an element u ∈ Γ(X,OX) such that Supp(u) = C . Consider the morphism

X−C → C∗ which is defined by the function u and hence denoted by u. By replacing

u by the Stein factorization u : X −C → B ′ → C∗ where B ′ is necessarily isomorphic

to C∗, we may assume that the general fibers of the morphism u are irreducible. By

Kawamata’s addition formula [20, Lemma 1.14.1], we have

0 = κ(X −C) ≥ κ(C
∗) + κ(F),

where F is a general fiber of u. Then κ(F) is either −∞ or 0. If κ(F) = −∞, then u

is an A1-fibration and the argument in Case I applies, and we are done.

So we may assume that κ(F) = 0, i.e., F ∼= C∗. By the construction of the mor-

phism u, it extends to a morphism u : X → B, where B ∼= A1, such that u∗(0)red = C .
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By Lemma 1.1 applied to u : X −C → C∗, we have

0 = e(X −C) = e(C
∗)e(F) +

∑

i

(e(Fi) − e(F)),

where the Fi exhaust all singular fibers of u. Hence e(Fi) = e(F) for all i. This

implies that all the fibers of u : X − C → C∗ are isomorphic to C∗ if taken with

reduced structures. Now we consider a smooth normal completion X →֒ V such

that u extends to a P1-fibration p : V → B, where B ∼= P1. We have two cases to

consider.

Case II.A: u is untwisted. This means that there exist two cross-sections H1,H2 of p

lying in the boundary D := V − X. We may assume that the fiber ℓ∞ = p−1(P∞)

is a smooth fiber and meets H1 and H2 in distinct points, where P∞ = B − B. The

fiber p−1(P0) contains the closure C of C , and Supp(p−1(P0)) −C is connected and

meets both H1 and H2 because C ∼= A1. Then the boundary divisor D contains a

loop, which is a contradiction because D is a tree if X is a Q-homology plane [23].

Case II.B: u is twisted. There exists a 2-section H of p contained in D. Since

p|H : H → B ramifies in two points and p−1(P)red ∩ X ∼= C∗ if P 6= P0, P∞, it

follows that p|H ramifies over the points P0 and P∞ of B. So we may assume that

p−1(P∞) + H looks like
(−2) ℓ ′∞
|

(−2) — (−1) — H

E1 E2

H + p∗(P0)red −C looks like H + Γ where there are three possibilities.

(i) Γ contains at least one branch component for D.

(ii) Γ = F1 + F2 and H + Γ + C looks like

(−2) C

|
H — (−1) — (−2)

F2 F1

(iii) Γ = ∅ and C touches H in a smooth point with order of contact 2.

In case (i), the boundary D has a configuration

(−2) — (−1) — H — Γ

|
(−2) ℓ ′∞

and D cannot be minimalized to a linear chain because Γ contains a branching com-

ponent. Hence X is not an ML0 surface.

In case (ii), contract E2, E1, F2 and F1 to obtain a relatively minimal P1-fibration

p : V → B. Let M0 and ℓ be the minimal section and a general fiber of p, respectively.
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Then the image H of H is linearly equivalent to 2M0 + aℓ with a ≥ 2n, where n =

−(M0
2). Then (H

2
) = 4(a − n) and (H2) = 4(a − n − 1). On the other hand, X is

ML0 surface if and only if H + F2 + F1 is contractible to a point, i.e., (H2) = −3. This

implies that D does not minimalize to a linear chain.

In case (iii), D minimalizes to a linear chain if and only if H is a (−1)-curve.

With notations as in the case (ii), contract E1 and E2 to obtain a relatively minimal

P1-fibration p : V → B. As above, H ∼ 2M0 + aℓ and hence (H
2
) = 4(a − n).

Meanwhile, (H
2
) = 1 because (H2) = −1, which is a contradiction.

Thus we have shown that the case κ(X −C) = 0 does not occur.

Case III: κ(X − C) = 1.There exists a C∗-fibration f ′ : X − C → B ′ by a theorem

of Kawamata (see [20]). We claim that B ′ ∼= A1 or C∗. First of all, since X − C is

rational, B ′ is a smooth rational curve. If B ′ ∼= Cn∗ (n ≥ 2), which is A1 with n points

punctured, then γ(X − C) ≥ n, while γ(X − C) = 1. Hence B ′ ∼= C∗,A1 or P1. If

B ′ ∼= P1, then ρ(X −C) > 0, while ρ(X −C) = 0 by Lemma 1.3. So, B ′ ∼= A1 or C∗.

We consider these cases separately. By Lemma 1.1, it follows that all fibers of f ′ are

isomorphic to C∗ if taken with the reduced structures.

Case III.A: B ′ ∼= A1. We consider the linear pencil Λ spanned by the closures of

general fibers of f ′. Suppose that the general fibers of f ′ are closed in X. Then f ′

extends to a C∗-fibration f : X → B. We have the following four cases to consider:

(i) B ∼= P1 and f is untwisted.

(ii) B ∼= P1 and f is twisted.

(iii) B ∼= A1 and f is untwisted.

(iv) B ∼= A1 and f is twisted.

Let X →֒ V be a smooth normal completion and let D := V − X. We may assume

that there is a P1-fibration p : V → B such that p|X = f . In the untwisted (resp.

twisted) case, there are two cross-sections H1,H2 (resp. one 2-section H) in D.

In case (i), B = B and H1 and H2 do not meet on the fiber p−1(P) (P 6= P0), where

P0 = B−B ′, because f −1(P)red
∼= C∗. We may assume that the boundary D := V −X

contains no (−1)-curves as fiber components. Let C be the closure of the given affine

line C . Then C is a unique (−1)-curve in the fiber p−1(P0) and a tip in the fiber.

Since D minimalizes to a linear chain, it follows that H1 and H2 are not branching

components in D. This implies that f ′ : X −C → B ′ has at most one multiple fiber.

Let V → V ′ be a sequence of contractions which brings p−1(P0) to a smooth fiber ℓ0

and let D ′ be the reduced image of D + C on V ′. Then κ(V,D + C + KV ) is equal to

κ(V ′,D ′ + KV ′) and

D ′ + KV ′ ∼Q

{
−2 + 1 +

(
1 −

1

m

)}
ℓ + ε,

where ℓ represents a general fiber of p, m is the multiplicity of a possible multiple

fiber of f ′ and ε is an effective Q-divisor with negative-definite intersection matrix

which does not affect the calculation of κ(V ′,D ′ + KV ′). In fact, ε =
1
m

p∗(P1) − F1,

where m(F1 ∩ X) is a multiple fiber of f ′ and P1 = p(F1). See [19, p. 81] for details.

https://doi.org/10.4153/CJM-2008-005-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-005-8


Affine Lines on Affine Surfaces and the Makar–Limanov Invariant 117

Then κ(X −C) = −∞. This is a contradiction.1

In case (ii), p|H : H → B branches over two points P0, P1 of B. We may assume

that f −1(P0)red = C ∼= A1. Since D is connected, it follows that f ′−1
(P1)red 6= C∗,

which is a contradiction.

In case (iii), since B = B ′ ∼= A1, D contains a complete fiber p−1(P∞) of p, which

we may assume to be a smooth fiber. The fiber p−1(P0) containing C cuts out a fiber

of the form either m1C∗ + n1C or m1C ′ + n1C on X, where C ′ ∼= C ∼= A1 and C ′,C
meet in one point transversally. We may further assume that there are no (−1) fiber

components of p in D.

Consider first the case p−1(P0) ∩ X = m1C∗ + n1C . If m1 > 1 there are no other

multiple fibers of f ′, for otherwise both H1 and H2 are branching components of D

and D cannot be minimalized to a linear chain. If m1 = 1, there is at most one mul-

tiple fiber m2C∗ in f ′ by the same reason as above. Since C is a (−1) curve, contract

C and consecutively contractible fiber components in D ∩ p−1(P0) and obtain the

images V ′,D ′ of V,D. Then κ(V,D + C + KV ) = κ(V ′,D ′ + KV ′) and

D ′ + KV ′ ∼Q

{
−2 + 1 +

(
1 −

1

mi

)}
ℓ + ε =

(
−

1

mi

)
ℓ + ε,

where i = 1 or 2 according to m1 > 1 or m1 = 1 and ε is, as in case (i) above, an

effective Q-divisor which does not affect the calculation of κ(V ′,D ′ + KV ′). Then

κ(X −C) = −∞. This is a contradiction.

Consider next the case p−1(P0) ∩ X = m1C ′ + n1C . Suppose min(m1, n1) > 1. If

there is at least one multiple fiber m2C∗ in f ′, then H1 and H2 are branching com-

ponents in D which has only admissible twigs. So this case does not occur. If there is

no multiple fiber in f ′ other than m1C∗ which is cut out by m1C ′ on X − C , a com-

putation similar to the above shows that κ(X −C) = −∞, which is a contradiction.

Hence min(m1, n1) = 1. Suppose m1 = n1 = 1. Let C ′ be the closure of C ′ on V .

Then each of C ′ and C meets one of H1 and H2. Assume that C ′ meets H1 and C

does H2. In this case, f ′ has at most one multiple fiber m2C∗ and κ(X−C) = −∞, a

contradiction. Hence either m1 = 1, n1 > 1 or m1 > 1, n1 = 1. Suppose that m1 = 1

and n1 > 1. Then the fiber p−1(P0) is a linear chain and there is a non-empty linear

chain connecting C to H2. Hence there is no other multiple fiber in f ′, for otherwise

H2 is a branching component. Then κ(X − C) = −∞ by a computation similar to

the above. Hence m1 > 1 and n1 = 1. Then there is a non-empty linear chain in

p−1(P0) connecting C ′ to H1 and hence there is no other multiple fiber in f ′. By the

computation of κ(X −C), this leads to a contradiction as well.

In case (iv), one fiber f −1(P0) of f must be of the form either m1C∗ + n1C or

m1C ′ + n1C as in case (iii). Furthermore, we may assume that the fiber at infinity

p−1(P∞) together with H has the following configuration:

(−2) — (−1) — H

|
(−2) ℓ ′∞

1We can use the following simpler argument. Since C is a (−1) curve sprouting from D, we have

κ(V,D + C + KV ) = κ(V,D + KV ) = κ(X) = −∞.
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Note that p|H : H → P1 ramifies over P∞ and a point P1 of B. Since D is connected,

the fiber p∗(P1) cannot produce a fiber of f which has the form m1C∗ + n1C,m1C ′ +

n1C (case P1 = P0) or mC∗. This is a contradiction.

Now suppose that the pencil Λ has a base point P on X. Then P is a one-place

point for the general members of Λ, P ∈ C and C is contained in a member of Λ.

The pencil must be parametrized by P1 because it has a base point in the affine part

X. So, mC is a member of Λ for some m ≥ 1. We consider elimination of base points

of Λ as well as a smooth normal completion X →֒ V . If Λ extended to a pencil on

V has base points on V − X, we replace V by a suitable smooth surface obtained

from V by elimination of the base points outside X. Then we obtain a P1-fibration

p : V → B satisfying the following conditions:

(i) B ∼= P1.

(ii) The exceptional locus Γ arising from the elimination of the base point P con-

sists of a cross-section of p, which is the last (−1)-curve in the elimination process,

and several trees sprouting out of the cross-section.

(iii) The boundary divisor D := V − X has one cross-section H and several trees

sprouting out of H.

(iv) The closure C of C together with the trees from Γ and D forms a fiber of p.

Furthermore, we may assume that any fiber of p contains no (−1)-curves in Γ + D.

Then we have:

(v) Every degenerate fiber consists of a linear chain of components.

(vi) There is at most one degenerate fiber besides the one containing C . If it exists,

let m ′C ′ be the multiple fiber of f ′ cut out by this degenerate fiber, where C ′ ∼= C∗.

We shall compute κ(X −C). We have

C + D + Γ + KV ∼Q ε +

{
−ℓ if no multiple fibers,

(−2 + 1 + (1 − 1
m ′

))ℓ if one multiple fiber,

where ℓ is a general fiber of p and ε is an effective divisor which does not affect the

calculation of κ(V,C + D + Γ + KV ). In both cases, κ(X − C) = −∞, which is a

contradiction to the assumption κ(X −C) = 1.

Suppose that Λ has no base points on C . Then C is a cross-section of Λ and

there are no multiple fibers in Λ. Hence Λ defines an A1-bundle structure on X

parametrized by A1. Hence X is isomorphic to A2. In this case, κ(X − C) = −∞,

which is a contradiction.

Case III.B: B ′ ∼= C∗. Consider again the pencil Λ generated by the closures on X of

general fibers of f ′. Then Λ has no base points. In fact, if Λ has a base point, Λ should

be parametrized by P1. Meanwhile, we have only as many members as parametrized

by C∗ and one more member corresponding to C . This is a contradiction. If the

general members of Λ meet the curve C , then C is a cross-section. But we have one

point to which no member of Λ corresponds. So, general members of Λ do not meet

the curve C . In this case we argue as in the case κ(X −C) = 0.

Hence we have shown that the case κ(X −C) = 1 does not occur.

We have thus completed the proof of Theorem 2.1
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Before finishing this section we shall construct a smooth affine surface X satisfying

the following conditions:

(i) X is an ML0 surface with ρ(X) = r > 0.

(ii) There exists an affine line C such that κ(X − C) ≥ 0. We call such an affine

line C an anomalous affine line.

In fact, the existence of such an example shows that the initial question is answered

in the negative.

We begin by constructing a basic example in case ρ(X) = 1. Let Σ0 be the

Hirzebruch surface P1 × P1. We denote any fiber of the vertical (resp. horizontal)

P1-fibration by ℓ (resp. M) and call it a fiber (resp. section). Take two horizontal

sections M0,M1 and three fibers ℓ0, ℓ1, ℓ∞. Let P0 := M0 ∩ ℓ0 and P1 := M1 ∩ ℓ1.

Let A be a smooth irreducible curve such that A ∼ M + 2ℓ and touches M0 (resp.

M1) at P0 (resp. P1) with order of contact 2. Clearly, A is a cross-section of one

of the P1-fibrations on Σ0 and a 2-section for the other P1-fibration and A2
= 4.

Now A meets ℓ∞ at a point other than M0 ∩ ℓ∞ and M1 ∩ ℓ∞. Blow up the point P0

(resp. P1) and its infinitely near point of the first order lying on M0 (resp. M1) to pro-

duce irreducible exceptional curves E1, E2 (resp. F1, F2), where (E1
2) = (F1

2) = −2

and (E2
2) = (F2

2) = −1. Then the proper transform A ′ of A meets E2 and F2. We

blow up these two intersection points to obtain the exceptional curves E3 and F3. We

denote the proper transforms of Ei, Fi (i = 1, 2) by the same letters. Now we have

(Ei
2) = (Fi

2) = −2 for i = 1, 2 and (E3
2) = (F3

2) = −1. Let A ′ be again the

proper transform of A ′. Then A ′2
= −2. Let σ : V → Σ0 be the composite of these

blowing-ups. Let M ′
0,M

′
1, ℓ

′
0, ℓ

′
1,A

′ signify the proper transforms of M0,M1, ℓ0, ℓ1,A
on V . We set X := V − D, where D := M ′

0 + M ′
1 + σ∗(ℓ∞) + E1 + E2 + F1 + F2 and

C := A ′ ∩ X. Then we shall prove the following result.

Theorem 2.3 The following assertions hold.

(i) X is an ML0 surface with ρ(X) = 1.

(ii) κ(X −C) = 0 and hence C is an anomalous affine line.

(iii) X −C is a Q-homology plane.

Proof (i) The boundary D := V − X consists of a linear chain

E1 E2 M ′
0 σ∗(ℓ∞) M ′

1 F2 F1

(−2) — (−2) — (−2) —— (0) —— (−2) — (−2) — (−2)

Since D is a linear chain we see that X is an ML0 surface with ρ(X) = 1, and C is

an affine line on X. Pic(X) is generated by E∗
3 = E3 − D and F∗

3 = F3 − D with

2E∗
3 = 2F∗

3 = C . Hence ρ(X) = 1 and ρ(X − C) = 0. This gives (i) and (iii). By the

adjunction formula we check easily that

4KV ∼ −3M ′
0 − 3M ′

1 − E1 − 2E2 − F1 − 2F2 − 4l ′∞ − 2A ′.

Hence

4(KV + D + A ′) ∼ M ′
0 + M ′

1 + 3E1 + 2E2 + 3F1 + 2F2 + 2A ′.
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Since the reduced divisors M ′
0 + E1 + E2,M

′
1 + F1 + F2 and A ′ are disjoint from each

other and since each of them has negative definite intersection matrix, it follows that

dim |4(A ′ + D + KV )| = 0. Hence κ(X − C) = 0 and C is an anomalous affine line.

We recall the definition of a half-point attachment in order to produce further

examples of ML0 surfaces admitting anomalous affine lines. Let X →֒ V be a normal

completion of a smooth affine surface and let D := V − X. Let P be a point on D

which is not an intersection point of two irreducible components of D. Let σ : V ′ →
V be the blowing-up of P, let E = σ−1(P), let D ′ := σ ′(D) and let X ′ := V ′ − D ′.

We say that the affine line E∩X ′ is a half-point and that X ′ is obtained by a half-point

attachment with center P. In fact, X is a Zariski open set of X ′. We are interested only

in the case where X ′ is again affine. An operation of attaching a feather, which we

defined in section one, is a kind of half-point attachment.

Theorem 2.4 Let X →֒ V be the same as in Theorem 2.3. Choose r points P1, . . . , Pr

on the boundary component E1 and let X ′ be a smooth surface obtained by half-point

attachments with centers P1, . . . , Pr. Then the following assertions hold:

(i) X ′ is an ML0 surface with ρ(X) = r + 1 for any r ≥ 0.

(ii) The curve C in X is also an anomalous affine curve in X ′.

Proof (i) Let τ : V ′ → V be the blowing-ups of P1, . . . , Pr. We denote the proper

transforms on V ′ of the components of D by the same letters. Then (E1
2) = −(r +2).

Let

L = 4E1 + (4r + 9)E2 + (8r + 15)M ′
0 + (12r + 22)σ∗(ℓ∞)

+ (9r + 15)M ′
1 + (6r + 9)F2 + (3r + 4)F1.

By the Nakai–Moishezon test, L is an effective ample divisor on V ′ with Supp L =

τ ′(D), the proper transform of D. Hence X ′ is affine. Since τ ′(D) is a linear chain,

X ′ is an ML0 surface with γ(X ′) = 0. Hence by Lemma 1.3, we have ρ(X ′) = ρ(X) =

r + 1.

(ii) It is known that a half-point attachment does not change the logarithmic Ko-

daira dimension, cf. [15]. So, κ(X ′ −C) = κ(X −C) = 0 and C is anomalous in X ′

too.

The above theorems give counterexamples to the question posed at the beginning

of the article. The divisor class of C has infinite order in Pic(X) by Theorem 2.3(iii).

Similarly, C has infinite order in Pic(X ′).

So we shall reformulate the question as follows.

Question Let X be an ML0 surface and let C be a curve on X isomorphic to the

affine line A1. Suppose that C has torsion divisor class in Pic(X). Does there exist an

A1-fibration f : X → B such that C is a fiber component of f , where B ∼= A1 ?
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3 ML1 Surfaces

Let X be a smooth affine surface. We say that X is unruled (resp. simply ruled,

multi-ruled) if X has no A1-fibrations (resp. only one A1-fibration, two indepen-

dent A1-fibrations). If there is no fear of confusion, we say that X is 0-ruled,

1-ruled, 2-ruled if X is unruled, simply-ruled, multi-ruled, respectively. Note that

an A1-fibration on X does not necessarily have as base an affine curve. If X is an ML0

surface then it is 2-ruled. We shall see later that the converse is not necessarily the

case.

We shall begin with giving a criterion for an affine surface to be an ML1 surface.

Let V be a smooth projective surface and let D be an effective reduced divisor with

simple normal crossings. We assume that D consists of smooth rational curves. Let

Γ(D) be the associated weighted graph. In the following, we only consider D which are

trees. Blowing up an intersection point of two components will add one more com-

ponent of weight −1 and decrease by −1 the weights of the components concerned;

we call this blowing-up subdivisional. Blowing up a point on a single component also

adds one component of weight (−1) and decrease by (−1) the weight of the con-

cerned component; we call this blowing-up sprouting. See [7, 19] for further details

of the terminology. Modelled on Γ(D), we consider a connected weighted graph Γ in

general. We say that Γ is minimal if any (−1) component meets at least three other

components, i.e., it is a branching component. Let Γ,Γ ′ be two weighted graphs. If

there exist a weighted graph Γ
′′ and morphisms ϕ : Γ

′′ → Γ, ϕ ′ : Γ
′ ′ → Γ

′, which

are, by definition, composites of subdivisional or sprouting blowing-ups, we say that

Γ and Γ
′ are pre-equivalent. Let G be the set of all connected weighted graphs, which

are trees, together with the equivalence relation generated by the pre-equivalence re-

lations. Given two graphs Γ,Γ ′ which are equivalent, we say that Γ
′ is a modification

of Γ and vice versa.

Lemma 3.1 Let Γ,Γ ′,Γ ′′ be the connected weighted graphs and let ϕ : Γ
′′ → Γ,

ϕ ′ : Γ
′′ → Γ

′ be morphisms. Assume that no (−1) component of Γ
′ ′ which is ϕ-excep-

tional is ϕ ′-exceptional, and vice versa. Then the following assertions hold.

(i) A branch component of Γ does not become ϕ ′-exceptional on Γ
′′.

(ii) If ϕ contains a sprouting blowing-up on a non-tip component Di , then Di becomes

a branching component and hence does not become ϕ ′-exceptional.

(iii) One can create ϕ ′-exceptional (−1) components on Γ
′ ′ by applying successively

one of the following operations:

(a) subdivisional blowing-up on a non-branching component with non-negative

weight,

(b) sprouting blowing-up on a tip component with non-negative weight.

Proof We leave the proof to the reader.

Let Γ be a weighted graph and let L be a connected part of Γ which is a linear

chain. We say that L is admissible if all components of L have weight ≤ −2.
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Corollary 3.2

(i) The modifications between Γ and Γ
′ occur on

(a) non-admissible linear chains,

(b) non-admissible maximal twigs Ti or

(c) non-admissible linear chains L j connecting two branching components.

Under the modifications, admissible maximal twigs and admissible maximal lin-

ear chains between branching components are unaffected.

(ii) If all the maximal twigs of Γ are admissible, then the same is true of Γ
′.

(iii) If Γ is a minimal non-admissible linear chain and if Γ
′ is a minimal graph equiv-

alent to Γ, then Γ
′ is also a non-admissible linear chain.

Proof The assertions (i) and (ii) are more or less obvious. As for the assertion (iii),

if one tries to modify the graph, a non-admissible component is a tip component

or has two components adjacent to it. If it is a tip component, it is clear that Γ
′ is

a linear chain. If it has two adjacent components and the blowing-up is sprouting,

then it becomes a branch component and hence not contractible. This means that

we have to contract back exactly the same exceptional components we obtained by

the blowing-ups. If the blowing-up is subdivisional, we obtain a linear chain.

We need one more lemma.

Lemma 3.3 Suppose that the weighted graph Γ is associated to an effective reduced

divisor with simple normal crossings consisting of rational curves on a smooth projective

rational surface V . If Di ,D j are two components of D such that (Di
2) ≥ 0, (D j

2) ≥ 0,

then either Di and D j are adjacent or (Di
2) = (D j

2) = 0 and Di ∼ D j .

Proof Suppose that Di and D j are not adjacent. By the Hodge index theorem,

(Di
2) = (D j

2) = 0. Since |Di | is a linear pencil and Di ∩ D j = ∅, D j is a mem-

ber of |Di |. Hence Di ∼ D j .

We can now state a result which leads to a criterion for ML1 surfaces.

Theorem 3.4 Let X be a smooth affine rational surface and let X →֒ V be a minimal

normal completion. Let D := V − X and Γ = Γ(D). Then the following conditions are

equivalent.

(i) X has an A1-fibration f : X → B, where B is an open set of A1.

(ii) Γ as well as any other minimal modification of Γ has a non-admissible twig.

(iii) There exists a modification Γ
′ of Γ which has a tip with weight 0.

Proof (i) ⇒ (ii): We may assume that the A1-fibration extends to a P1-fibration

p : V → B, where B ∼= P1. We may also assume that the fibers of p over the points

B − B are smooth fibers. Then, in Γ(D), these fibers represent non-admissible twigs.
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(ii) ⇒ (iii): If a non-admissible twig has a non-negative component which is not a

tip component of the twig, then we can modify the graph by subdivisional blowing-

ups and blowing-downs so that the tip component has weight 0. Let D0 be a non-

admissible tip component and let D1 be the component adjacent to D0. Then, apply-

ing subdivisional blowing-ups with centers at D0 ∩ D1 and its infinitely near points

lying on D0, we can ensure that the proper transform D ′
0 has weight 0. Then the

obtained weighted graph Γ
′ has D ′

0 as a tip.

(iii) ⇒ (i): We may assume that D has a tip component D0 with weight 0. Then

|D0| is a linear pencil of rational curves, and the adjacent component, say D1, is a

cross-section. Hence the P1-fibration p = Ψ|D0| : V → B restricts to an A1-fibration

f : X → B with B ⊂ A1.

Corollary 3.5 Let the notations and assumptions be the same as in Theorem 3.4. Then

the following conditions are equivalent.

(i) X is an ML1 surface which is different from A1 × C∗.

(ii) Let X →֒ V be a smooth minimal normal completion and let D := X − V . Then

Γ(D) has a non-admissible twig and Γ(D) is not a linear chain.

Proof (i) ⇒ (ii): Since X is an ML1 surface, there is an A1-fibration f : X → B with

an open set B ⊂ A1. Then, by Theorem 3.4, Γ(D) has a non-admissible twig. Suppose

that Γ(D) is a linear chain. Then we take a different completion of the same kind if

necessary and assume that a tip component, say D1, has weight 0. Consider the A1-fi-

bration f defined by |D1|. Name the components of Γ(D) as D1 − D2 − · · · − Dn.

We may assume that (D2
2) = 0 and D3 − · · · − Dn contains no (−1) components if

n ≥ 3. If n = 2, X ∼= A2 and X is an ML0 surface. Suppose n ≥ 3. If D3 − · · · − Dn is

not negative-definite, then n = 3 and (D3
2) = 0 because D3 − · · · − Dn is contained

in one and the same fiber of f . Hence X ∼= A1 × C∗. This case is excluded. Hence

D3 − · · · − Dn is negative-definite. Then the base of f is isomorphic to A1. Hence

γ(X) = 0. Then X is an ML0 surface by Lemma 1.2. So Γ(D) is not a linear chain.

(ii) ⇒ (i): By changing the completion V , we may assume that a tip component,

say D1, has weight 0. Let f : X → B be the A1-fibration defined by |D1|. Then B is an

open set of A1. If B ∼= A1, then γ(X) = 0 and X is not an ML0 surface because Γ(D)

is not a linear chain. If B $ A1, then Γ(D) − D1 − D2 contains a non-admissible

connected component, say Γ2, where D2 is the component adjacent to D1. Since Γ2

is contained in a member of |D1|, the minimality of Γ(D) shows that Γ2 consists of

a single component of weight 0. Hence γ(X) 6= 0 and X is not an ML0 surface by

Lemma 1.5. Since Γ(D) is not a linear chain, X 6∼= A1 × C∗ as well.

Our interest lies in clarifying the interdependence between the MLi property and

j-ruledness on a smooth rational affine surface X. We shall first consider a smooth

affine rational surface X which is an ML2 surface, i.e., X has no Ga actions. Note

that almost all smooth affine rational surfaces are ML2 and 0-ruled. For example, if

κ(X) ≥ 0, X satisfies these properties.

As for an example of X which is ML2 and 1-ruled, we have the following result [13,

Theorem 4.1].
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Theorem 3.6 Let f : X → B be an A1-fibration on a smooth affine surface X with

base B a smooth curve such that every fiber of f is irreducible. Assume further that B is

isomorphic to A1 or P1 and that f has at least two (resp. three) multiple fibers if B ∼= A1

(resp. B ∼= P1). Then X has no other A1-fibrations whose general fibers are transverse

to f .

If, in this theorem, we take B to be P1, X is ML2 and 1-ruled. We define a

Platonic A1-fiber space as a smooth affine surface X with an A1-fibration f : X →
B such that B ∼= P1, all fibers of f are irreducible and there are three multiple

fibers m1F1,m2F2,m3F3, where {m1,m2,m3} is a Platonic triplet {2, 2, n}, {2, 3, 3},

{2, 3, 4}, {2, 3, 5}, up to permutations.

Claim 3.7 By modifying the surface X in Theorem 2.3, we can construct a smooth

affine surface X1 which is ML2 and at least 1-ruled. With the notations in Theorem 2.3,

we blow up the points E3 ∩A ′ and F3 ∩A ′. Let V1 be the obtained projective surface. To

avoid complicated notations, we denote the proper transform of σ∗(ℓ∞) by ℓ∞ and those

of M ′
0,M

′
1, Ei, Fi,A

′ by the same letters, where 1 ≤ i ≤ 3. Now (E3
2) = (F3

2) = −2.

Let E4 and F4 be the new (−1) curves. Let D1 = D + E3 + F3 and X1 := V1 − D1. Now

E2 and F2 are branching in D1 and there are no non-admissible maximal twigs in D1.

Hence X is ML2

We shall consider the question in Section 1 for ML1 surfaces. The answer is nega-

tive as shown by the following claim.

Claim 3.8 Let V0 be a Hirzebruch surface of degree n = 0 or 1 with the P1-fibration

p0 : V0 → P1. Let M0 and ℓ be respectively the minimal section and a general fiber. Let

H0 be a smooth curve such that H0 ∼ 2M0 + ℓ (resp. H0 ∼ 2(M0 + ℓ)) if n = 0 (resp.

n = 1). Let P0, P∞ be the points of the base curve of p0 over which p0|H0
: H0 → P1

ramifies and let ℓ0 = p−1
0 (P0) and ℓ∞ = p−1

0 (P∞). Let σ : V → V0 be the blowing-

ups of the point ℓ∞ ∩ H0 and its infinitely near point on H0 which produce a (−2)

curve E1 and a (−1) curve E2. Let H = σ ′(H0), L = σ ′(ℓ∞) and C = σ ′(ℓ0). Let

X = V − (H + E1 + E2 + L) and let C = C ∩ X. Then the following assertions hold.

(i) (H2) = 2. Let τ : V ′ → V be the blowing-ups of the point H ∩ E2 and its

infinitely near point on H which produce a (−2) curve E3 and a (−1) curve E4. Denote

τ ′(E1), τ ′(E2) again by E1, E2 and let H ′
= τ ′(H). Then (H ′2) = 0 and |H ′| defines

a P1-fibration f : V ′ → P1 such that f = f |X : X → A1 is an A1-fibration. In the

fibration f , E4 is a cross-section and E3 +L+2(E2 +E1 +A) (resp. E3 +E1 +2(E2 +L+A))

is a fiber of f if n = 0 (resp. n = 1), where A is a (−1) curve meeting X.

(ii) X is an ML1 surface with ρ(X) = 0 and one multiple fiber of multiplcity 2.

(iii) C is an affine line lying transversally to f and κ(X −C) = 0.

Proof (i) If n = 0, let M be a section of p0 such that M ∼ M0 and M passes

through the point H0 ∩ ℓ∞. Then M meets ℓ0 in a point other than H0 ∩ ℓ0. If n = 1,

let M = M0. It meets ℓ0, ℓ∞ in the points other than H0 ∩ ℓ0,H0 ∩ ℓ∞. Then the

proper transform of M on V is the (−1) curve A in the statement.
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(ii) The boundary divisor D = V − X is H + E1 + E2 + L, where E2 is a branching

component and H is a non-admissible twig. Hence X is an ML1 surface by Corollary

3.5. A unique A1-fibration on X is given by f .

(iii) In fact, C is a 2-section of f . It is easy to see that κ(X − C) = 0 since X − C

has a C∗-fibration over C∗ with all fibers reduced and irreducible.

Example 3.9 Let V0 be a Hirzebruch surface of degree n ≥ 0 with the P1-fibration

p0 : V0 → P1 with general fiber ℓ. Let M0 and M1 be disjoint sections (so M2
0 = −M2

1

and |M2
i | = n). Choose three fibers ℓ0, ℓ1, ℓ∞. Let σ : V → V0 be a sequence of

blowing-ups which produce the following degenerate fibers Γi from ℓi for i = 0, 1:

Γ0 : M ′
0 — (−m1) — (−1) — (−2) — · · · — (−2) — M ′

1

C E0 E1 Em1−1

Γ1 : M ′
0 — (−a1) — · · · — (−as) — (−1) — (−bt ) — · · · — (−b1) — M ′

1

F0

where ai ≥ 2 (1 ≤ i ≤ s), b j ≥ 2 (1 ≤ j ≤ t),C = σ ′(ℓ0) and M ′
k = σ ′(Mk)

for k = 0, 1. Let m2 be the multiplicity of the component F0 in the fiber σ∗(ℓ1), let

D = M ′
0 + M ′

1 + ℓ∞ + (σ∗(ℓ0)red − (C + E0)) + (σ∗(ℓ1)red − F0), and let X = V − D.

Finally, let C = C ∩ X. Then we have:

Proposition 3.10 If m1 ≥ 2 and m2 ≥ 2, then the following assertions hold.

(i) X is an ML1 surface.

(ii) C is an affine line, and it lies transversally to a unique A1-fibration f : X → A1.

(iii) κ(X −C) = 0 if and only if m1 = m2 = 2 and κ(X −C) = 1 otherwise.

(iv) If m1 = m2 = 2, X is isomorphic to the surface constructed in Claim 3.7.

Proof (i) In the divisor D, the component M ′
1 is a branching component and has a

non-admissible twig

(−as) − · · · − (−a1) − M ′
0 − ℓ∞ − M ′

1

where (ℓ∞
2) = 0. Hence X is an ML1 surface by Corollary 3.5.

(ii) When we make the end component of the above twig a (0) curve A by blowing-

ups and blowing-downs (see [19, Corollary 2.4.3]), the image C̃ of C meets the end

component A. Hence the pencil |A| defines a unique A1-fibration f : X → A1 and

C̃ ∩ X is an affine line which lies transversally to the A1-fibration f .

(iii) Consider the P1-fibration on V defined by the pencil |ℓ∞|. It induces a

C∗-fibration f ′ : X − C → A1 which has two multiple fibers m1C∗,m2C∗. By the

formula used in the proof of Theorem 2.1, κ(X −C) = 1 if and only if

−2 + 1 +
(

1 −
1

m1

)
+

(
1 −

1

m2

)
> 0.

Namely, κ(X −C) = 1 if and only if (m1 − 1)(m2 − 1) > 1. Similarly, κ(X −C) = 0

if and only if m1 = m2 = 2.

(iv) Straightforward.
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Notwithstanding the above examples, we can prove the following result.

Theorem 3.11 Let X be a Q-homology plane. Suppose that X is an ML1 surface and

not isomorphic to one of the surfaces constructed in Claim 3.8 and Claim 3.9. Then any

affine line on X is a fiber of the unique A1-fibration f : X → A1. In other words, there

are no affine lines which lie transversally to the unique A1-fibration f : X → A1.

Proof Our proof follows essentially the same arguments as in the proof of Theo-

rem 2.1. The reason the arguments can be applied to the present case is that if the

boundary divisor D becomes a linear chain when minimalized, then we obtain con-

tradictions by the computations of κ(X − C), and if D is not a linear chain when

minimalized, then all maximal twigs of D are admissible, whence X is not even an

ML1-surface by Corollary 3.5. We shall use the same notations as in the proof of

Theorem 2.1 and indicate the points which need special attention.

Step I. We note that Pic(X) is a finite group by [23, Lemma 1.1]. Let C be an affine

line on X. Then there exists an element u ∈ Γ(X,OX) such that mC = (u) for some

m > 0, which we take to be minimal. Then u defines a morphism u : X → A1 such

that u∗(0) = mC and the general fibers are irreducible. Since e(X − C) = 0, we

have κ(X − C) ≤ 1. If κ(X − C) = −∞, then X − C has an A1-fibration which

extends to such an A1-fibration on X with C as a fiber component. The base of the

fibration is A1 since X is a Q-homology plane. By the uniqueness of A1-fibration on

X, it coincides with the given f . Hence C is a fiber of f . We consider below the cases

κ(X −C) = 0, 1 separately.

Step II. Suppose that κ(X − C) = 0. Consider u : X − C → B ′, where B ′ ∼= C∗.

With the notations in Case II in the proof of Theorem 2.1, if κ(F) = −∞, u is an

A1-fibration over B ′ which, extended to X, coincides with f and hence C is a fiber of

f . Suppose that κ(F) = 0. Then u is a C∗-fibration. The case where u is untwisted

is treated in the same way as in Theorem 2.1. In the case where u is twisted and Γ

contains at least one branching component (case (i)), we see readily that D has only

admissible twigs. So, X is not ML1 by Corollary 3.5. In the case where u is twisted

and case (ii) or (iii) occurs, contract the curves E2, E1 (and F2, F1 in case (ii)) to

obtain a relatively minimal P1-fibration p : V → B. Then κ(V,D + KV ) = −∞ and

κ(V,D + C + KV ) = 0 if and only if a = n + 1, where a ≥ 2n because (H · M0) ≥
0. Hence n = 0, 1. Then it is easy to show that X is isomorphic to the surface

constructed in Claim 3.8 and C is as given in the same example.

Step III. Suppose that κ(X − C) = 1. The arguments for the proof of Theorem 2.1

can be applied without change when D is minimalized to a linear chain, and the

criterion in Corollary 3.5 can be applied to the non-ML1 property of X when D does

not minimalize to a linear chain. The only exception occurs in case (iii) where B ∼=
A1, f is untwisted and p−1(P0)∩X = m1C ′ + n1C . Suppose that one of the cases (1)

min(m1, n1) > 1 and (2) m1 = 1, n1 ≥ 1 occurs. In order that κ(X − C) = 1, we

need multiple fibers m2C∗, . . . ,mrC∗ such that the following inequality holds:

−2 + 1 +
(

1 −
1

m1

)
+

r∑

i=2

(
1 −

1

mi

)
> 0.
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Hence r ≥ 2 in case (1) and r ≥ 3 in case (2). Then H1 and H2 are branching

components (with the fiber at infinity ℓ∞ taken into account) and all the twigs of D

are admissible. So X is not an ML1 surface by Corollary 3.5. Suppose that m1 > 1

and n1 = 1. Since p−1(P0) is a linear chain, its graph looks like Γ0 in Claim 3.9 with

E0,M
′
0,M

′
1 corresponding respectively to C ′,H2,H1.

Since κ(X −C) = 1, we have r ≥ 2 by the above inequality. If r ≥ 3, then H1 and

H2 are branching components of D and there are only admissible twigs in D. Hence

X is not an ML1 surface. So r = 2. Let m2C∗ be the second multiple fiber of f ′ over a

point P1 ∈ B ′. Then κ(X−C) = 1 if and only if (m1−1)(m2−1) > 1. Furthermore,

the fiber p−1(P1) looks like the fiber Γ1 in Claim 3.9 with M ′
0,M

′
1 corresponding to

H2,H1 respectively, and F0 is the component with multiplicity m2 and meets X. Now

we are in the same situation as in Claim 3.9. Hence X is isomorphic to the surface

constructed in that example.

4 Ascent and Descent of the MLi Property

We begin with recalling the following result [17].

Lemma 4.1 Let ϕ : X → Y be an étale finite morphism of smooth affine surfaces.

Then any Ga-action on Y lifts to a Ga-action on X. In particular, if Y is ML0, then so

is X.

We ask if the converse holds, and obtain the following descent result for the ML0

property. Note that there is no restriction on ρ (see Theorem 4.3).

Theorem 4.2 Let ϕ : X → Y be a finite morphism of smooth affine surfaces with X an

ML0 surface. Assume that either ϕ is étale or ϕ is a Galois (possibly ramified) covering.

Then Y is an ML0 surface.

Proof If ϕ is étale, then π1(X) is a subgroup of finite index in π1(Y ). Hence by

taking a normal subgroup of finite index in π1(Y ) contained in π1(X) we can find a

smooth affine surface Z and an étale finite morphismψ : Z → X such thatϕ◦ψ : Z →
Y is an étale Galois covering. Since X is ML0, it follows by Lemma 4.1 that Z is also an

ML0 surface. After replacing X by Z if necessary, we can assume that ϕ is a (possibly

ramified) Galois covering with Galois group G.

By the equivariant completion theorem of Sumihiro [26, 27] and G-equivariant

resolution of singularities, we can find a smooth normal G-completion X →֒ V ,

where G acts on the boundary divisor D := V − X. If the completion is minimal,

then D is a linear chain because X is ML0 (Lemma 1.2). We shall show that V can be

chosen so that D is linear.

Assume that D is not minimal. Then D has an irreducible component D1 such that

D1 is a (−1) curve and meets at most two other components. Then all the conjugates

of D1 in D have the same property. Let D1,D2, . . . ,Dr be all the conjugates of D1. If

Di ∩D j = ∅ for every pair (i, j) with 1 ≤ i < j ≤ r, then we can contract all of them

simultaneously and obtain a new normal G-completion. Assume that Di ∩ D j 6= ∅
for some pair (i, j), say (i, j) = (1, 2). Let Γ1 be the connected component of D−D2
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containing D1 and let Γ2 be the connected component of D−D1 containing D2. Then

Γ1 (resp. Γ2) does not contain D2 (resp. D1), and Γ1 and Γ2 are also conjugate. By the

assumption, D1 meets only one other irreducible component of Γ1 and similarly for

D2. If Γ1 contains a branch component of D, then so does Γ2. If we contract D1 and

any subsequent (−1) curves which meet at most two other irreducible components,

then we reach a minimal divisor with simple normal crossings which is a tree but

still has two branching components. This contradicts the assumption that X is ML0.

Hence we can assume that D is a G-stable linear chain.

Consider the quotient surface V//G which contains Y as an open set. Then V//G

is normal and D//G is a simply connected divisor. Furthermore, V//G has at most

quotient singular points on D//G which are the images of intersection points of irre-

ducible components of D.

We shall show that Y has a smooth normal completion W such that W − Y is a

linear chain of smooth rational curves. First consider the case when D is irreducible.

Then the isotropy subgroup of any point in D is finite cyclic. This implies that V//G

has at most cyclic quotient singular points.

Now consider the general case. Let H be a subgroup of G which keeps all the irre-

ducible components of D stable. Then H has index at most 2 in G. Any intersection

point of two irreducible components of D is fixed by H. From this we deduce that

V//H has cyclic quotient singularities. By taking a minimal G/H-equivariant reso-

lution of singularities, we obtain a normal completion X//H →֒ U such that U is

smooth along U − X//H and U − X//H is a linear chain of smooth rational curves.

We note here that X//H may have singular points if ϕ is not étale.

Now we can assume that G ∼= Z/2Z and the generator of G permutes the end

components of D which is a linear chain. If D is irreducible, then at a fixed point

of G we can find local coordinates x, y such that the action is given by (x, y) 7→
(±x,±y). Then taking a minimal resolution of singularities of U//(Z/(2)) we get a

smooth completion W of Y such that W − Y is a linear chain of smooth rational

curves. Hence Y is an ML0 surface by Lemma 1.2.

Suppose that D is not irreducible. Then a local analysis at a possible fixed point on

D shows that G-action is given by (x, y) 7→ (y, x) with respect to a suitable system of

local coordinates at the fixed point and hence that U//(Z/2Z) is, in fact, smooth. Let

W := U//(Z/2Z). Then W − Y is a linear chain of smooth rational curves. Hence Y

is an ML0 surface by Lemma 1.2 because γ(X) = 0 implies γ(Y ) = 0.

In the case of ML0 surfaces with ρ = 0 we have the following general result.

Theorem 4.3 Let f : X → Y be a finite morphism of smooth affine surfaces. Suppose

that X is an ML0 surface with ρ(X) = 0. Then Y is also an ML0 surface with ρ(Y ) = 0.

Proof The proof of this result is inspired by results about pseudoconcave spaces in

the theory of analytic spaces, but we will not use any definitions and results from this

theory.

For any normal affine surface S, let π ′
1(S) denote the fundamental group at infinity

for S as defined in [25].
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Clearly X is a Q-homology plane. Since f is proper, we see easily that b1(Y ) = 0 =

ρ(Y ) and hence e(Y ) = 1. Since X is an ML0 surface, by Lemma 1.2 and the well-

known result of Mumford on the presentation of π ′
1(X) in terms of the intersection

form on the divisor at infinity for a normal completion of X, π ′
1(X) is finite cyclic.

The next result clearly implies that π ′
1(Y ) is finite cyclic.

Claim 4.4 The homomorphism π ′
1(X) → π ′

1(Y ) is a surjection.

Since f is proper there is a natural induced homomorphism π ′
1(X) → π ′

1(Y ).

Finiteness of f also implies that the image H of this homomorphism has finite index

in π ′
1(Y ) [24, Lemma 1.5]. Suppose that H is a proper subgroup of π ′

1(Y ). Let K ⊂ Y

be a suitable big compact set such that the closure of U := Y \K in Y is an orientable

real 4-manifold with boundary a compact 3-manifold whose fundamental group is

π ′
1(Y ). Let N be the inverse image of U in X. We can assume that π1(N) = π ′

1(X).

There is a covering Ũ → U corresponding to the subgroup H of π1(U ). By covering

space theory we have a complex analytic map N → Ũ which factors the map N → U .

Let Y ⊂ W be a smooth projective embedding such that D := W \ Y is a simple

normal crossing divisor. The complex space W \ K is 0-concave in the sense of [1].

We can find an open embedding Ũ ⊂ T such that T is a normal complex analytic

space with a proper analytic map with finite fibers ϕ : T → W \K extending the map

Ũ → U . Since Y is affine, D supports an effective divisor ∆ which is very ample for

W . Let B := ϕ−1(D) and B̃ = ϕ∗
∆. Our aim is to show that T is an open subset of a

normal projective surface Z such that Z \ B̃ is a smooth affine surface.

Let V be the normalization of W in the function field of X and let f ′ : V → W

be the natural proper morphism with finite fibers. Let N = N ∪ A, where A is the

inverse image of D in V . Now N is also 0-concave. There exists a natural complex

analytic map ψ : N → T which factors N → W \ K. The divisor f ′−1
(D) = ψ−1(B)

supports the ample divisor ψ∗(B̃) on V .

Let p, q be distinct points in T and let p ′ be a point in N lying over p. There exists

m ≫ 0 and a section L ∈ H0(V, ψ∗mB̃) such that L(p ′) = 0 and L is not zero at any

point lying over q. If d = degreeψ, then ψ∗(L|N ) ∼ dmB̃ and this divisor vanishes at

p, but not at q. This shows that sections of multiples of B̃ separate points in T.

Since T is essentially compact, we can find a finite number of open sets Ti in T

such that for each i there exists mi and a section σi ∈ H0(T,mi B̃) which does not

vanish at any point in Ti . Taking M to be the product of all the mi , we can find

sections h0, . . . , hR of |MB̃| such that the map h : T → PR given by sending any point

p ∈ T to [h0(p), . . . , hR(p)] is holomorphic. Since ϕ : T → W \ K is finite and W is

projective, we know that the field of meromorphic functions on T has transcendence

degree 2 over C. The meromorphic functions hi/h0 generate a field of transcendence

degree 2 over C. From this and the fact that B̃ = ϕ∗
∆ we can further assume that M

is so large that the image of h is contained in a projective algebraic surface S ⊂ PR.

Let q be a general point in h(T). By the argument above, we can find a multiple M ′

of M and sections h ′
0, . . . , hR ′ of |M ′B̃| such that the analogous map h ′ : T → PR ′

is

injective on the inverse image of q in T. It is clear that the map h ′ is bimeromorphic.

Since ϕ is a finite map, by the projection formula no closed curve in T can contract

to a point under h ′. From these observations we conclude that h ′ : T → h ′(T) is
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both finite and bimeromorphic. Further, h ′(T) is contained in a projective surface

Sn ⊂ Pn. Then the normalization Z of Sn is biholomorphic to T. Hence T can be

embedded as an open subset in a normal projective surface.

By Hartog’s theorem, the analytic map ψ extends to a proper analytic map with

finite fibers from Z to W which is then also algebraic. Let S be the inverse image of Y

in Z. Since Ũ → U is an étale map the morphism S → Y is ramified only at finitely

many points in S. By the purity of branch locus it follows that the morphism S → Y is

actually étale. Hence S is a smooth affine surface. We have a finite morphism X → S

which induces a surjection π ′
1(X) → π ′

1(S). It follows that π ′
1(S) is finite cyclic. Since

X is a Q-homology plane so is S. Hence e(S) = 1. But the degree of the étale (finite)

map S → Y is > 1. Hence e(S) > 1. This contradiction shows that H = π ′
1(Y ).

Hence π ′
1(Y ) is finite cyclic. Since Y is a Q-homology plane, we conclude by [13,

Theorem 2.10] that Y is an ML0 surface. This completes the proof of the theorem.

Remark The argument above proves the following general result. Let f : X1 → X2

be a proper morphism between normal affine surfaces. Then there is a factorization

of f in the form X1 → S → X2, where S is a normal affine surface and X1 → S is a

proper morphism such that π ′
1(S) is isomorphic to the image of the homomorphism

π ′
1(X1) → π ′

1(X2).

We deduce the following result using the proof of the above theorem. This result

was proved in [21] using the proof of the cancellation theorem for C2 and in [14]

using the Mumford–Ramanujam method and Milnor’s classification of finite groups

acting freely on a homotopy 3-sphere.

Corollary 4.5 Let Y be a smooth affine surface with a finite morphsim f : C2 → Y .

Then Y is isomorphic to C2.

Proof Clearly C2 is an ML0 surface with ρ(C2) = 0. The above proof shows that the

fundamental group at infinity of Y is trivial. Hence by the well-known topological

characterization of C2 [25], we know that Y is isomorphic to C2.

Remark More generally, if C2 → Y is a proper morphism onto a normal affine

surface Y , then we can show by similar arguments that Y is isomorphic to a quotient

C2/G for a finite group of automorphisms of C2 [14, 22].

Next we shall consider the ascent and descent of the MLi-property for i = 1, 2.

We have the following result.

Theorem 4.6 Let ϕ : X → Y be an étale finite morphism. Then Y is MLi (i = 1, 2) if

and only if X is also.
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Proof Consider first the ML1-property. Suppose that Y is ML1. Then X is ML1 or

ML0 by Lemma 4.1. If X is ML0, then Y is ML0 by Theorem 4.2. This is a contradic-

tion. Hence X is ML1. Conversely, suppose that X is ML1. As in the proof of Theo-

rem 4.2, there exists a Galois étale finite covering ψ : Z → X such that ϕ ◦ψ : Z → Y

is a Galois étale covering. Since Z is ML1 by what we have just proved, we may as-

sume that ϕ : X → Y is a Galois étale finite covering with group G. Let f : X → B

be an A1-fibration with B ∼= A1. Since this A1-fibration is unique on X, the G-action

preserves f . Namely, the G-translates of a fiber of f are again fibers of f . Hence f

induces an A1-fibration g : Y → A1. So, Y is ML1 or ML0. If Y is ML0, then X is ML0

by Theorem 4.2, a contradiction. Hence Y is ML1.

The case for the ML2-property follows readily if one uses the ascent and descent

of MLi-property for i = 0, 1.

Remark The ML1-property does not descend under a ramified Galois covering mor-

phism. In fact, let X be the hypersurface in A3 defined by xr y = zn − 1, where

r, n ≥ 2. Then X is ML1. Meanwhile, the projection (x, y, z) 7→ (x, y) defines a rami-

fied Galois covering morphism X → A2
= Spec C[x, y] with group Z/nZ. Hence the

ML1-property is not preserved.

5 Derksen Invariants and ML0 Surfaces

We shall prove the following somewhat surprising result.

Theorem 5.1 Let X be an ML0 surface with ρ(X) > 0. Then there exists a surjective

A1-fibration X → P1.

In order to prove this result, we introduce the Derksen invariant Dk(X) of an affine

variety X = Spec R, which is defined as the subalgebra of R generated over C by all

Ker δ, where δ runs over the locally nilpotent derivations of R [6]. If X is a rational

affine surface with γ(X) = 0, which we always assume tacitly, then Ker δ is a poly-

nomial ring C[u], where Spec C[u] is the parameter space of the A1-fibration on X

associated to δ. Note that an A1-fibration on X parametrized by A1 is always associ-

ated with a Ga-action on X, hence a locally nilpotent derivation on R. Hence Dk(X)

is generated by all the elements u such that Spec C[u] parametrizes an A1-fibration

on X. We sometimes write Dk(R) instead of Dk(X) when R is the coordinate ring of

X. We do not know if Dk(X) is finitely generated over C. On the other hand, we also

do not know of an ML0 surface X with Dk(X) 6= R.

We shall first prove a preparatory result.

Lemma 5.2 Let X be an ML0 surface with ρ(X) > 0. Let C1, . . . ,Cr be affine lines

such that U := X − (C1 ∪ · · · ∪ Cr) is also an ML0 surface. Assume that Γ(U ,OU ) is

integral over Dk(U ). Then there exists an A1-fibration f̃ : X → P1.

Proof We shall prove the case r = 1 and write C1 = C . The general case is treated in

a similar way. Let f : U → B be an A1-fibration. Then it extends to an A1-fibration
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f̃ : X → B̃. If either B ∼= P1 or B ∼= A1 and B̃ ∼= P1, then we are done. Suppose

that all A1-fibrations on U are parametrized by A1 and such A1-fibrations extend to

A1-fibrations on X parametrized by A1. Let f : U → B be an A1-fibration with B ∼=

A1 and let F̃ : X → B be its extension on X. Then C is contained in some fiber of f̃ .

This implies that if B = Spec C[u], the function u is constant along C . In particular,

any function of Dk(U ) is constant on C . On the other hand, Γ(X,OX) ⊂ Γ(U ,OU ),

and Γ(U ,OU ) is integral over Dk(U ) by the assumption. Hence Γ(X,OX) is integral

over Dk(U ). Let ξ be any element of Γ(X,OX). Then we have a monic relation

ξn + a1ξ
n−1 + · · · + an−1ξ + an = 0,

where a1, . . . , an ∈ Dk(U ), which are constants on C . Hence ξ is also a constant on

C . This is a contradiction because any two points of C are separated by a function of

Γ(X,OX).

We know by Lemma 1.8 that if X is an ML0 surface with ρ(X) > 0, then there

exists an affine line C such that X − C is still an ML0 surface. So, in order to prove

Theorem 5.1, we have only to show the following result.

Lemma 5.3 Let X be an ML0 surface of ρ(X) = 0. Then Γ(X,OX) is integral over

Dk(X).

Proof Let X̃ be the universal covering of X. It is known [5, 17] that X̃ is a hyper-

surface in A3 defined by an equation xy = zn − 1 and that X is the quotient of X̃

by the Galois group G ∼= Z/nZ which acts as (x, y, z) 7→ (ωx, ω−1 y, ωiz) for some

0 < i < n, gcd(n, i) = 1, where ω is a primitive n-th root of unity and G is identified

with the multiplicative group {ω j |1 ≤ j ≤ n}. Furthermore, X̃ has two independent

A1-fibrations fx : X̃ → A1 and fy : X̃ → A1 which are defined by locally nilpotent

derivations δx and δy , respectively, where

δx(x) = 0, δx(y) = nzn−1, δx(z) = x,

δy(x) = nzn−1, δy(y) = 0, δy(z) = y.

So C[x, y] ⊆ Dk(X̃). Hence Γ(X̃,OeX) is integral over Dk(X̃).

On the other hand, the G-action maps a fiber f −1
x (a) to f −1

x (ωa) if a 6= 0 and

permutes the n lines A1, . . . ,An of f −1
x (0), where A j is defined by x = z − ω j

= 0,

where 1 ≤ j ≤ n. Hence the A1-fibration fx descends down to an A1-fibration on

X. So xn ∈ Dk(X). Similarly, yn ∈ Dk(X). Thus, C[xn, yn] ⊆ Dk(X). Note that we

have the natural inclusion Dk(X) ⊆ Dk(X̃) because any Ga-action lifts to a Ga-action

on X̃.

Now we have the following inclusion relations.

C[xn, yn] ⊆ C[x, y] ⊆ Dk(X̃) ⊆ Γ(X̃,OeX),

C[xn, yn] ⊆ Dk(X) ⊆ Γ(X,OX) ⊆ Γ(X̃,OeX).

Since Γ(X̃,OeX) is integral over C[x, y], so also over C[xn, yn]. Hence Γ(X,OX) is

integral over Dk(X).
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6 ML0 Surfaces Not Containing C2

Let X be an ML0 surface. In Theorem 2.1 and Theorem 2.4, we saw that there is a

difference between the cases ρ(X) = 0 and ρ(X) > 0. In this section we shall point

out some more differences in these cases.

We recall that a smooth algebraic surface X is isomorphic to the affine plane A2

if and only if Pic(X) = (0), γ(X) = 0 and κ(X) = −∞ [20]. This characteriza-

tion of the affine plane is equivalent to saying that a smooth affine surface is iso-

morphic to A2 if and only if X is ML0, Pic(X)tor = (0) and ρ(X) = 0. Hence one

can ask if a smooth affine surface X contains A2 as an open set provided X is ML0

and Pic(X)tor = (0). It will be shown later that the answer is negative. In order to

construct a counterexample, we shall describe birational transformations of smooth

completions of X which do not affect X. For this purpose, we employ the terminology

and notation in §1 after Lemma 1.6 and the beginning of §3.

Let D be a weighted linear chain. We denote by w(Di) (or simply wi) the weight

of a component Di of D. Let Q(D) be the intersection form of the components of D.

Namely, if D is a linear chain D1 − D2 − · · · − Dn, then Q(D) is an (n × n)-matrix

such that its (i, j)-entry is given by w(Di) (resp. 1 or 0) if i = j (resp. j = i ± 1

or otherwise). Let d(D) = det(−Q(D)). Given a tip D1 of D, we put (d, d ′) =

(d(D), d(D ′)), where D ′
= D − D1 and call it the pair of D seen from D1. We have

the following result, which can be verified as an easy exercise.

Lemma 6.1 Let D be a weighted linear chain. The following assertions then hold.

(i) Suppose that D is admissible, i.e., w(Di) ≤ −2 for all i. With the above notations,

we have d ′ < d and gcd(d, d ′) = 1. Let Dn be the tip of D on the opposite side of D1

and let d ′ ′
= d(D ′′) with D ′ ′

= D − Dn. Then d ′d ′ ′ ≡ 1 (mod d) [7, Lemma 3.6,

(2)].

(ii) Suppose that D has the form U − E −V , where U ,V are linear chains meeting

the component E at their end components. Let (u, u ′) (resp. (v, v ′)) be the pair of U seen

from E, where u ′ (resp. v ′) is d(U ′) (resp. d(V ′)) with U ′ (resp. V ′) being U (resp. V )

minus the end component adjacent to E. Let w = w(E). Then we have

d(D) = −wuv − uv ′ − u ′v.

(cf. [31, Lemma 3.1]).

(iii) Let c, p be relatively prime integers with 1 ≤ p < c. Let Q be a point on a

(0)-curve ℓ on a smooth projective surface. Apply the Euclidean transformation σ with

center Q with respect to the data (c, p) [18] and let D be the linear chain consisting of

irreducible components of σ∗(ℓ),

D = B − E − A

where E is the last (−1) curve and B contains the proper transform σ ′(ℓ) as the end

component. More precisely, let c/p = [b1, b2, . . . , bn] be the expansion of c/p as a
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continued fraction

c

p
− b1 −

1

b2 −
1

b3 −
1

. . .
−

1

bn

and let c/(c − p) = [a1, a2, . . . , am]. Then D is of the form

(−b1) — (−b2) — · · · — (−bn)

σ ′(ℓ) |
(−1)

|
(−a1) — (−a2) — · · · — (−am)

where B,A have respectively the pairs (c, p) and (c, c − p), seen from the tips of B and

A with weights −b1 and −a1.

With the notations of Lemma 1.7, we have the following result.

Lemma 6.2 Let D = ℓ−M −A be a standard chain with (M2) = n0. Assume that A

has the pair (a, a ′) seen from M. Suppose we blow up a point Q ∈ ℓ not on M according

to the pair (c, p), i.e., the Euclidean transformation with center Q and data (c, p). Let E

be the last (−1) curve and let D ′ be the resulting weighted chain (containing M and A).

Let D∗ be the chain obtained from D ′ by changing the weight of E from −1 to 0. Then

we have d(D∗) = −a + c(n0ca + ca ′ + pa).

Proof The chain D ′ is of the form U − E −V with w(E) = −1. Let U ,V have pairs

(u, u ′), (v, v ′) seen from E. Then we may assume that V has the form W − M − A,

where W has the pair (c, p) seen from M and (M2) = n0. Hence

v = d(V ) = −n0ca − ca ′ − pa

by Lemma 6.1. We have also u = d(U ) = c. Now d(D ′) = uv − uv ′ − u ′v and

d(D∗) = −uv ′ − u ′v, whence d(D∗) = d(D ′) − uv. On the other hand, d(D) = −a

and d(D ′) = d(D) since D ′ is obtained by a sequence of blowing-ups from D. The

result then follows readily.

We shall now fix the setting. Assume that an ML0 surface X has ρ(X) = 1 and

contains an open set U which is isomorphic to A2. Then we have the following.

(i) X −U is an irreducible curve C which is isomorphic to A1 by Lemma 1.6.
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(ii) Let f : X → A1 be an A1-fibration and X be a standard completion of X

with boundary D = ℓ − M − A and P1-fibration f : X → P1 induced by ℓ which

extends f . Then A has two feathers A1,A2 of respective multiplicities m1,m2. Since X

contains A2, it is simply connected and hence Pic(X)tor = (0). So, gcd(m1,m2) = 1

by Lemma 1.6. Let (a, a ′) be the pair of A seen from M.

(iii) We assume that for any standard completion X of X as above we have

min(m1,m2) > 1.

(iv) Pic(X − A1) ∼= Z/m2Z and Pic(X − A2) ∼= Z/m1Z. This implies that Ai 6= C

for i = 1, 2.

Our aim is to show that the above assumption is realizable for a special choice of

the linear chain A and leads to a contradiction. We proceed in several steps.

Claim 6.3 Let C be the closure of C in X.

(i) Then C meets ℓ in a single point Q which is a one-place point of C.

(ii) After suitable elementary transformations on ℓ, we may assume that Q 6= ℓ ∩ M.

(iii) Let c̃ = (C · ℓ) and let p̃ be the multiplicity of C at Q. It cannot occur that

c̃ = p̃ = 1. We may further assume that c̃ > p̃.

Proof (i) C − C is a one-place point of C and hence C meets D in one point. If

(C · ℓ) = 0, then C is a fiber component of f . Since C 6= Ai for i = 1, 2, C is a

smooth fiber of f . Hence there is a surjective morphism from A2 → C∗. This is a

contradiction. So, C meets ℓ.
(ii) If Q = ℓ∩M, then perform elementary transformations with center Q and its

infinitely near points lying on M until the proper transform of C is separated from

the proper transform of M.

(iii) Suppose c̃ = p̃ = 1. Then C cannot meet A1 and A2 because m1 > 1 and

m2 > 1. Since C meets ℓ, C does not meet A either, hence the fiber of f supported

by A + A1 + A2. This is a contradiction. If c̃ = p̃ and p̃ > 1, perform blowing-ups

with centers at Q and its infinitely near points lying on C until the proper transform

of C meets the last (−1) curve, say E, with the intersection number greater than

the multiplicity of singularity. Then contract the proper transform of ℓ and all the

exceptional curves but E. Then we have c̃ > p̃.

We call such a standard completion X normalized for C and let n0 = (M2). Let

Γ = D + C , which is the boundary divisor of U ∼= A2 in X. Let c = c̃/ gcd(c̃, p̃) and

p = p̃/ gcd(c̃, p̃). Let Γ̃ = D̃ + C̃ be the boundary divisor of U which results from

the Euclidean transformation with center Q with respect to the pair (c, p) and let E

be the last (−1) curve. Then C̃ meets E in a point not on the proper transform of ℓ
or any other exceptional curves. Further, let Γ

∗
= D∗ + C∗ be the boundary divisor

obtained by the minimal blowing-ups such that the proper transform of Γ together

with the exceptional curves has only simple normal crossings. This process involves

the above Euclidean transformation. We then have the following two possibilities:

(i) C̃ is a smooth curve meeting normally E and (C̃2) = −1.
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(ii) Either C̃ is singular or C̃ is a smooth curve meeting E normally with (C̃2) 6= −1.

Suppose the second case above occurs. Then we have the following.

Claim 6.4

(i) Write D̃ as W + E + B3, where W and B3 are subchains and W contains M + A.

Then n0 = (M2) = −1 and W is contractible to a smooth point.

(ii) Suppose that C̃ is singular. By blowing up, if necessary, the point E ∩ C̃ (resp.

E ∩ B3) and its infinitely near points lying on C̃ (resp. B3) and contracting the proper

transform of E and a part of exceptional curves, we have a new standard normalized

completion X
′

with a standard boundary D ′
= ℓ ′ − M ′ − A ′ with the image of C̃ (still

possibly singular but the singularity better than C) meeting ℓ ′ at a point Q ′ not on M ′.

(iii) In the case (ii) above, the linear chain A ′ is the transpose t A of A, which is, by

definition, the same A read from the other tip not meeting M.

(iv) The case where C̃ is smooth with (C̃2) 6= −1 cannot occur.

Proof (i) In the divisor Γ
∗, the proper transform of E is a branching component

with three branches B1,B2,B3, where B1 contains the proper transform of ℓ, B2 con-

tains C∗ and B3 is an admissible chain. In fact, it is always the case that the last

(−1)-curve of the Euclidean transformation with data (c, p) is a branching compo-

nent with the image of C as one branch if c > p. Note that since Γ
∗ + C∗ is the

boundary divisor with simple normal crossings it is minimalized to a linear chain by

a theorem of Ramanujam [25]. Hence one of B1 and B2 is contractible to a point.

Suppose B2 is contractible. Then C∗ is a (−1) curve meeting a component of B2 nor-

mally which becomes a 0-curve after the contraction of C∗. This is a contradiction

to the assumption that B2 is contractible. Hence B1 is contractible in Γ
∗ and already

contractible in Γ̃. In particular, n0 = −1. In fact, we blow up at least twice on ℓ, so

only M can be a (−1) curve in B1.

(ii) After the contraction of B1, the image of Γ̃ is of the form Γ
′

= D ′ ′ + C̃ ,

where D ′′ is a chain with the image E ′ of E as a tip and (E ′2) ≥ 0. If (E ′2) > 0, we

blow up the point E ′ ∩ B3 and its infinitely near points lying on E ′ until the proper

transform ℓ ′ of E ′ becomes a (0)-curve. Let B ′
3 be the inverse image of B3 at this stage

and M ′ the component of B ′
3 meeting ℓ ′ and A ′

= B ′
3 − M ′, the rest of B ′

3. Then

D ′
= ℓ ′ − M ′ − A ′ is the boundary divisor of a standard completion of X. After

performing an elementary transformation involving ℓ ′ if necessary, we may assume

that it is normalized for C , i.e., we have (C
′
· ℓ ′) > (multiplicity of C

′
at C

′
∩ ℓ ′),

where C
′

is the proper transform of C̃ .

(iii) We refer to [4, Theorem 3.12].

(iv) When C̃ is smooth with (C̃2) 6= −1, the component E is also a branching

component of Γ̃ and the branch B1 contracts to a point. As in the case (ii), we have a

standard completion X
′

of X with the boundary divisor D ′
= ℓ ′ − M ′ − A ′, where

C̃ meets normally ℓ ′. This contradicts (iii) in Claim 6.3.

We call the operation of changing the standard normalized completions X → X
′

a flip. After repeating flips several times, we reach to the case (i) described after
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Claim 6.3. Namely, we may assume that C̃ is a (−1) curve meeting E normally. Con-

tract C̃ to a point and obtain the image of E having intersection number 0. Let Γ be

the image of Γ̃. Then Γ is a linear chain which is the boundary divisor of A2 with

simple normal crossings. Hence we have d(Γ) = ±1. By Lemma 6.2, we have one of

the following two equalities, where n0 = (M2):

a ± 1 = c((n0c + p)a + ca ′), a ± 1 = c((n0c + p)a + ca ′′).

Construction of a counterexample. We construct an ML0 surface X as in Lemma 1.7

by constructing a chain

(−3) — (−1) — (−2) — (−2)

ℓ0 E3 E2 E1

and attaching feathers A1,A2 to E3 and E2 of multiplicities 3 and 2, respectively. The

corresponding chain A is now

(−3) — (−2) — (−3) — (−2)

ℓ ′0 E ′
3 E ′

2 E ′
1

with a = 19, a ′
= 8, and a ′ ′

= 12. It is readily verified that the only way to attach

feathers to A or its transpose A ′
=

t A so as to produce a complete fiber in a P1-

fibration is to attach them to E3 and E2. Hence the requirements (ii) and (iii) before

Claim 6.3 are satisfied. It is also readily verified that there are no solutions of c, n0

and p satisfying one of the above equalities. So, X does not contain A2. On the other

hand, Pic(X) ∼= Z is torsion-free. Thus we have constructed an example of an ML0

surface X with Pic(X)tor = (0) and ρ(X) = 1 which does not contain an open set

isomorphic to A2.

Recall that an A1-fibration on an ML0 surface with Picard number zero has at

most one multiple fiber (which is irreducible) and the multiplicity is the order of the

Picard group. Hence this multiplicity is invariant for any A1-fibration on the surface.

This is not the case for the multiplicities of the components of singular fibers of an

ML0 surface with positive Picard number. We exhibit this by giving an example.

Example 6.5 Let C be a smooth conic on P2 and let Q ∈ C be a point. Let

σ : V0 → P2 be the blowing-up of Q with M0 := σ−1(Q). The surface V0 is the Hirze-

bruch surface of degree 1, M0 is the minimal section and the standard P1-fibration

p0 : V0 → P1 is given by the pencil of lines through Q. Let C ′
= σ ′(C) and let

X = V0 −C ′. Then the following assertions hold.

(i) X is an ML0 surface with ρ(X) = 1 and Pic(X)tor = (0). Furthermore, X is a

half-point attachment of P2 −C . In particular, P2 −C is an open set of X.

(ii) f0 := p0|X : X → P1 is an A1-fibration such that every fiber is irreducible and

reduced.

(iii) Let P ∈ C be a point other than Q and let T be the tangent line to C at P.

The pencil generated by 2T and C defines an A1-fibration on P2 − C which extends

to an A1-fibration f1 : X → P1. Then f1 has one singular fiber which is irreducible of

multiplicity 2 and all other fibers are irreducible and reduced.

https://doi.org/10.4153/CJM-2008-005-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-005-8


138 R. V. Gurjar, K. Masuda, M. Miyanishi, and P. Russell

(iv) There exists an irreducible quintic Y on P2 which has six consecutive cusps

of multiplicity 2 infinitely near to the point P with five of them lying on C [29]. The

pencil generated by 2Y and 5C induces an A1-fibration on P2 − C which extends to

an A1-fibration f2 : X → P1 such that Y ′ := σ(Y ) ∩ X and M ′
0 := M0 ∩ X support

multiple fibers of f2 with respective multiplicities 2 and 5 and all other fibers are

irreducible and reduced.

The proofs are straightforward.

Remark The construction of X in Example 6.5 can be generalized as follows. By

a result in [3], a smooth affine surface Σs − S, where Σs is the Hirzebruch surface

of degree s and S is an ample section with (S2) = k + 1, contains an open set U

which is an ML0 surface with Pic(U ) = Z/kZ. Concretely, U can be realized as

the complement of the zero locus C of a weighted homogeneous poynomial f :=

X0X2 −Xk+1
1 in the weighted projective plane P with weight (1, 1, k) and Σs −S as the

complement of the proper transform C ′ of C in the blowing-up of P at the (singular)

point Q = (0, 0, 1). Again, there exist A1-fibrations of P with C and another curve Y

as singular fibers.
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