UNIT-REGULAR ORTHODOX SEMIGROUPS

by R. B. McFADDEN

(Received 5 May, 1983)
Introduction. Unit-regular rings were introduced by Ehrlich [4]. They arose in the search for conditions on a regular ring that are weaker than the ACC, DCC, or finite Goldie dimension, which with von Neumann regularity imply semisimplicity. An account of unit-regular rings, together with a good bibliography, is given by Goodearl [5].

The basic definition of unit-regularity is purely multiplicative; it is simply that for each element x of a monoid S (initially a ring R with identity) there is a unit u of S for which $x=x u x$. The concept of a unit-regular semigroup is a natural one; for example, the full transformation semigroup on a finite set, and the semigroup of endomorphisms of a finite-dimensional vector space, are unit-regular semigroups [1]. Unit-regularity has been studied by Chen and Hsieh [2], by Tirasupa [9], and by McAlister [6]. The connection between unit-regularity and finiteness conditions has been considered by D'Alarcao [3].

The problem of describing the structure of an arbitrary unit-regular semigroup S is difficult. It appears reasonable to attempt to provide such a description in terms of the group of units of S and the set of idempotents of S, and in this direction Blyth and McFadden did determine the structure of a narrow class of unit-regular semigroups. Calling a semigroup S uniquely unit orthodox if it is orthodox and, for each x in S, there exists a unique unit u of S for which $x=x u x$, they proved that every such semigroup is a semidirect product of a group (the group of units of S) and a band (the band of idempotents of S).

In the present paper we shall show first that every unit-regular orthodox semigroup S is an idempotent-separating homomorphic image of a uniquely unit orthodox semigroup (determined by the idempotents of S and the units of S). The main result here is then the determination of all idempotent-separating congruences on uniquely unit orthodox semigroups.

1. Unit-regular semigroups. Much of what follows depends on the following elementary fact. If S is a monoid and g is a unit in S, then for each idempotent e of S, geg^{-1} is an idempotent, and if f in S is also an idempotent then

$$
g(e f) g^{-1}=\left(\mathrm{geg}^{-1}\right)\left(\mathrm{g} \mathrm{~g}^{-1}\right)
$$

Definition 1.1. A monoid S is said to be unit-regular if for each x in S there exists a unit u of S for which $x=x u x$.

For the rest of this paper we shall deal with unit-regular semigroups; each such is, of course, regular, though it is certainly not the case that $x=x u x$ implies that $u x u=u$. We shall denote by $E(=E(S))$ the set of idempotents of S and by $G(=G(S))$ the group of units of S.

Clearly $x=x u x$ implies that $x u$ and $u x$ are idempotent, and each element of S may
Glasgow Math. J. 25 (1984) 229-240.
be written in the form eg for e in E and g in G. This factorization is not unique, though e is unique for unit-regular inverse semigroups [2].

If $e g$ and $f h$, for e, f in E and g, h in G, are elements of S then

$$
e g f h=e\left(\mathrm{gfg}^{-1}\right) \mathrm{gh}=j k g h
$$

where $e, g f g^{-1}, j$ are idempotent and k, g, h are units. Here

$$
j=j\left(e, \mathrm{gfg}^{-1}\right) \in E \quad \text { and } \quad k=k\left(e, g f g^{-1}\right) \in G .
$$

Any useful description of the structure of S in terms of E and G would need to provide more information about j and k than just the fact of their existence.

But there is one case in which j and k are obvious; if S is orthodox (E is a subsemigroup of S) we can take $j=e\left(g f g^{-1}\right)$ and $k=1$, so that

$$
e g f h=e\left(g^{\prime} g^{-1}\right) g h
$$

with $e\left(g \mathrm{fg}^{-1}\right)$ in E and $g h$ in G.
Definition 1.2. A monoid S is said to be unit orthodox if S is unit-regular and orthodox [1].

When S is unit orthodox it is clear that G acts automorphically (in the sense that there is a homomorphism from G into the group of automorphisms of E) on the band E of idempotents of S under the action

$$
g . e=g e g^{-1} \quad \text { for } g \text { in } G \text { and } e \text { in } E .
$$

As yet there is no method for describing the structure of a unit orthodox semigroup S directly in terms of $E(S)$ and $G(S)$, but a method does exist for a sub-class of unit orthodox semigroups. Calling a monoid S uniquely unit orthodox if for each x in S there is a unique unit u in S for which $x=x u x$, Blyth and McFadden proved the following theorem [1].

Theorem 1.3. Let E be a band with identity 1 and let G be a group which acts automorphically on E. Denoting by g.e the action of $g \in G$ on $e \in E$, define a product on $T=E \times G$ as follows:

$$
(a, g)(b, h)=(a(g . b), g h)
$$

Then T is a uniquely unit orthodox semigroup, which we shall denote by $E|\times| G$. Denoting also by 1 the identity of G,

$$
\begin{aligned}
& E(T)=\{(e, 1) \mid e \in E\} \sim E, \\
& G(T)=\{(1, g) \mid g \in G\} \sim G .
\end{aligned}
$$

If $x=(e, g)$ is an element of T then the unique unit u of T for which $x=x u x$ is $u=\left(1, g^{-1}\right)$.
Conversely, every uniquely unit orthodox semigroup arises in this way.
It is worth noting, as pointed out in the proof of Theorem 1.3, that $1 . e=e$ for each e in E, and $\mathrm{g} .1=1$ for each g in G.

While the class of uniquely unit orthodox semigroups is not a large one, it plays a decisive role in determining the structure of unit orthodox semigroups in general, as the following theorem shows.

Theorem 1.4. Let S be a unit orthodox semigroup with group of units G. For e in $E=E(S)$ and g in $G=G(S)$ define $\mathrm{g} . e=\mathrm{geg}^{-1}$. This action defines an automorphism of E, and the map which assigns this automorphism to g is a homomorphism from G into the group of automorphisms of E. If the uniquely unit orthodox semigroup $T=E|\times| G$ is defined as in Theorem 1.3, then the map $\theta: T \rightarrow S$ defined by $(e, g) \theta=e g$ is an idempotentseparating epimorphism.

Proof. As noted above, it is obvious that G acts automorphically on E under g. $e=g e g^{-1}$. For a in S choose a unit g in G such that $a=a g^{-1} a$, so that $e=a g^{-1} \in E$; then

$$
(e, g) \theta=e g=a g g^{-1}=a,
$$

so θ maps T onto S.
If (e, g) and (f, h) are elements of T then

$$
(e, g) \theta(f, h) \theta=e g f h=e\left(g f g^{-1}\right) g h=e(g . f) g h=((e, g)(f, h)) \theta
$$

so θ is a homomorphism.
Finally, each idempotent of T is of the form ($e, 1$) for some e in E, so if $(e, 1)$ and $(f, 1)$ are idempotents of T satisfying $(e, 1) \theta=(f, 1) \theta$ then $e=e 1=f 1=f$; therefore θ is idempotent-separating, and the proof is complete.

Now that we know that every unit orthodox semigroup is an idempotent-separating homomorphic image of a uniquely unit orthodox semigroup, the question arises: What are the congruence relations on a uniquely unit orthodox semigroup which are contained in \mathscr{H} ? We shall answer this question in Section 2.
2. The \mathscr{D}-class structure of $E|\times| G$. For any orthodox semigroup S the finest inverse semigroup congruence \mathscr{Y} on S is given by $x \mathscr{y} w$ if and only if $V(x)=V(w)$ where $V(x)$ denotes the set of inverses of x. Further, on any band E the \mathscr{O}-classes coincide with the \mathscr{D}-classes, and E is a semilattice Y of rectangular bands; in particular, if x, y, and z are \mathscr{D}-equivalent elements of E then $x y z=x z$. We shall write D_{x} for the $\mathscr{D}=\mathscr{Y}$-class of x in E, and similarly for \mathscr{R} and \mathscr{L}.

Now let T be a uniquely unit orthodox semigroup. Since we need to know about congruence relations on T contained in \mathscr{H}, we proceed to determine Green's relations on T. But while \mathscr{H} determines the "local" properties it is \mathscr{D} which determines the "global" properties of the congruences we are seeking.

By Theorem 1.3 we may assume that $T=E|\times| G$ under the operation

$$
(e, g)(f, h)=(e(g . f), g h)
$$

where $E=E^{1}$ is a band with identity and G is a group which acts automorphically on E. Recall that 1. $e=e$ and $g .1=1$ for each e in E and each g in G.

Lemma 2.1. Let (a, g) be an element of T. Then (x, u) is an inverse of (a, g) in T if and only if $u=g^{-1}$ and g. $x \in D$ where D is the \mathscr{D}-class of a in E.

Proof. First,

$$
(a, g)(x, u)(a, g)=(a(g \cdot(x(u, a))), g u g)=(a, g)
$$

if and only if $u=\mathrm{g}^{-1}$ and $a(\mathrm{~g} . x) a=a$, while

$$
\left(x, \mathrm{~g}^{-1}\right)(a, \mathrm{~g})\left(x, \mathrm{~g}^{-1}\right)=\left(x\left(\mathrm{~g}^{-1} \cdot(a(\mathrm{~g} \cdot x))\right), \mathrm{g}^{-1}\right)=\left(x, \mathrm{~g}^{-1}\right)
$$

if and only if $x\left(g^{-1} \cdot a\right) x=x$. Therefore $\left(x, g^{-1}\right)$ and (a, g) are mutually inverse if and only if $a(g . x) a=a$ and $x\left(g^{-1} \cdot a\right) x=x$. Since g acts as an automorphism, this is true if and only if $g . x$ is in D.

Lemma 2.2. For each e in E and each g in G,

$$
\mathrm{g} \cdot L_{e}=L_{\text {g.e }}, \quad \mathrm{g} \cdot R_{e}=R_{\text {g.e }}, \quad \mathrm{g} \cdot D_{e}=D_{\mathrm{g} . e} .
$$

Proof. This follows directly from the definition of Green's relations and the fact that G acts automorphically.

Lemma 2.3. Let $(a, g),(b, h)$ be elements of T. Then
(i) $(a, g) \mathscr{R}(b, h)$ if and only if $a \mathscr{R} b$ in E.
(ii) $(a, g) \mathscr{L}(b, h)$ if and only if $\mathrm{g}^{-1} \cdot a \mathscr{L} h^{-1} \cdot b$ in E.
(iii) $(a, \mathrm{~g}) \mathscr{H}(b, h)$ if and only if $h \mathrm{~g}^{-1} . a \mathscr{D} a$ and $b=a\left(h g^{-1} \cdot a\right)$.

Proof. (i) $(a, g) \mathscr{R}(b, h)$ if and only if there exist inverses $(a, g)^{\prime}$ of (a, g) and $(b, h)^{\prime}$ of (b, h) respectively for which $(a, g)(a, g)^{\prime}=(b, h)(b, h)^{\prime}$. By Lemma 2.1 this is true if and only if there exist a^{\prime} in $V(a)$ and b^{\prime} in $V(b)$ for which

$$
(a, g)\left(g^{-1} \cdot a^{\prime}, \mathrm{g}^{-1}\right)=\left(a a^{\prime}, 1\right)=(b, h)\left(h^{-1} \cdot b^{\prime}, h^{-1}\right)=\left(b b^{\prime}, 1\right)
$$

in other words, if and only if $a \mathscr{R} b$ in E.
(ii) As in (i), $(a, g) \mathscr{L}(b, h)$ if and only if $g^{-1} \cdot a^{\prime} a=h^{-1} \cdot b^{\prime} b$ for some a^{\prime} in $V(a)$ and some b^{\prime} in $V(b)$. But $a^{\prime} a \mathscr{L} a$ and $b^{\prime} b \mathscr{L} b$, while g^{-1} and h^{-1} preserve \mathscr{L}-classes by Lemma 2.2, and therefore $(a, g) \mathscr{L}(b, h)$ implies

$$
\mathrm{g}^{-1} \cdot a \mathscr{L} \mathrm{~g}^{-1} \cdot a^{\prime} a=h^{-1} \cdot b^{\prime} b \mathscr{L} h^{-1} \cdot b .
$$

Conversely, $\mathrm{g}^{-1} \cdot a \mathscr{L} h^{-1} \cdot b$ implies

$$
g^{-1} \cdot\left(\left(g h^{-1} \cdot b\right) a\right)=\left(h^{-1} \cdot b\right)\left(g^{-1} \cdot a\right)=h^{-1} \cdot b
$$

and certainly $h^{-1} \cdot b b=h^{-1} . b$, so with $a^{\prime}=g h^{-1} . b$ and $b^{\prime}=b$ we have $g^{-1} \cdot a^{\prime} a=$ $h^{-1} \cdot b^{\prime} b$, so that $(a, g) \mathscr{L}(b, h)$.
(iii) By parts (i) and (ii) we have

$$
\begin{array}{rlll}
(a, g) \mathscr{H}(b, h) & \text { if and only if } a \mathscr{R} b \text { and } \mathrm{g}^{-1} \cdot a \mathscr{L} h^{-1} \cdot b \text { in } E \\
& \text { if and only if } a \mathscr{R} b \text { and } b \mathscr{L} h \mathrm{~g}^{-1} \cdot a \text { in } E \\
& \text { if and only if } h \mathrm{~g}^{-1} \cdot a \mathscr{D} a & \text { and } b=a\left(h g^{-1} \cdot a\right),
\end{array}
$$

Corollary. Let ($a, 1$) be an idempotent in T. Then $(b, h) \mathscr{H}(a, 1)$ if and only if $b=a(h . a)$ for $h . a \in D_{a}$.

The egg-box picture in E when $(a, g) \mathscr{H}(b, h)$ in T is as follows.

	a		b	
	$g h^{-1} \cdot b$			
			$h g^{-1} \cdot a$	

Lemma 2.4. Let D be a \mathscr{D}-class of E, let $a \in D$, and let $h \in G$. Then

$$
\text { h. } a \in D \text { if and only if h. } D=D \text {. }
$$

Proof. Suppose $h . a \mathscr{D} a$ and let $b \mathscr{D} a$. Then since D is a rectangular band, $b=b a b$ and $a=a b a$. Applying h to these equations yields $h . b \mathscr{D} h . a \mathscr{D} a$; that is, $h . D \subseteq D$.

Also, $a \mathscr{D} h . a$ implies that for some c in D we have $a \mathscr{R} c \mathscr{L} h . a$, so $h^{-1} \cdot a \mathscr{R} h^{-1} \cdot c \mathscr{L} a$; that is, $h^{-1} \cdot a \mathscr{D} a$. By the first part of the proof, $h^{-1} \cdot D \subseteq D$ and therefore $D=1 . D \subseteq h . D$. Combining these inclusions yields the result.

Definition 2.5. For a \mathscr{D}-class D of E define

$$
S_{D}=\{g \in G \mid g \cdot D=D\} .
$$

Clearly S is a subgroup of G, and by Lemma 2.4,

$$
g \in S_{D} \quad \text { if and only if } D \cap g . D \neq \varnothing
$$

For each element D of the semilattice of \mathscr{D}-classes of E we now have a subgroup of G which stabilizes D. These stabilizers are in fact intimately connected with the \mathscr{H}-classes, in particular with the maximal subgroups, of T.

Lemma 2.6. Let (a, g) be an element of T and let D be the \mathscr{D}-class of a in E. Then the \mathscr{H}-class of (a, g) in T is $\left\{(a(k . a), k g) \mid k \in S_{D}\right\}$.

Proof. By Lemma 2.3 we have

$$
\begin{array}{ll}
(a, g) \mathscr{H}(b, h) & \text { if and only if } a \mathscr{R} b \text { and } \mathrm{g}^{-1} \cdot a \mathscr{L} h^{-1} \cdot b \\
& \text { if and only if } \mathrm{hg}^{-1} \cdot a \mathscr{L} b \mathscr{R} a \text { and } h \mathrm{~g}^{-1}=k \in S_{\mathrm{D}} \\
& \text { if and only if } b=a(k \cdot a) \text { and } k \in S_{\mathrm{D}} .
\end{array}
$$

Therefore (b, h) is in the \mathscr{H}-class of (a, g) precisely when $(b, h)=(a(k . a), k g)$ for some k in S_{D}.

Lemma 2.7. Let $(a, 1)$ be an idempotent in T. Then the maximal subgroup of T containing $(a, 1)$ is isomorphic to S_{D} where D is the \mathscr{D}-class of a in E.

Proof. Let H denote the \mathscr{H}-class of $(a, 1)$. Define the mapping $\theta: H \rightarrow S$ by $(b, k) \theta=$ k, for $(b, k) \in H$. Clearly θ is injective; it is also surjective, because if $k \in S$ then ($a(k . a), k) \in H$ by Lemma 2.6. If $(b, k),(c, h) \in H$ then $b=a(k . a), c=a(h . a)$, again by Lemma 2.6 , and so

$$
\begin{aligned}
(b, k)(c, h) & =(a(k \cdot a), k)(a(h \cdot a), h)=(a(k \cdot a) k \cdot(a(h \cdot a)), k h) \\
& =(a(k \cdot a)(k \cdot a)(k h \cdot a), k h)=(a(k h \cdot a), k h),
\end{aligned}
$$

the last equality following from the fact that D is a rectangular band of which $a, k . a$ and $k h . a$ are each elements. Therefore θ is a homomorphism, and the proof is complete.
3. Idempotent-separating congruences on $E|\times| G$. Consider an arbitrary orthodox semigroup S, and let ρ be an idempotent-separating congruence on S. If a and b are elements of S for which $a \rho b$ then for any inverse a^{\prime} of a there is an inverse b^{\prime} of b for which $a^{\prime} \rho b^{\prime}$. For certainly $a a^{\prime} \mathscr{R} b \mathscr{L} a^{\prime} a$, so there exists an inverse b^{\prime} of b in the \mathscr{H}-class of a^{\prime} and since $a \rho b$ then $a a^{\prime}=b b^{\prime} \rho a b^{\prime}$, whence $a^{\prime} \rho a^{\prime} a b^{\prime}=b^{\prime} b b^{\prime}=b^{\prime}$. This is, of course, almost exactly the treatment provided by Meakin in [7], the only difference being that the choice of a^{\prime} is at our disposal, a fact we shall use below to some advantage. Precisely as Meakin shows, the fact that ρ is idempotent-separating implies that:

$$
\text { for each } x \text { in } E, \quad a^{\prime} x a=b^{\prime} x b \quad \text { and } \quad a x a^{\prime}=b x b^{\prime} .
$$

Let us apply this to the uniquely unit orthodox semigroup $T=E|\times| G$ defined as in Section 1. First, it is easy to verify that $\left(g^{-1} . a, g^{-1}\right)$ is an inverse of the element (a, g) of T. Therefore if ρ is an idempotent-separating congruence on T and $(a, g) \rho(b, h)$ then there exists an inverse $(b, h)^{\prime}$ of (b, h) such that $(b, h)^{\prime} \rho\left(g^{-1} \cdot a, g^{-1}\right)$. By Lemma 2.1 we can take $(b, h)^{\prime}=\left(h^{-1} \cdot b^{\prime}, h^{-1}\right)$ for some $b^{\prime} \mathscr{D} b$. In fact, using Lemma 2.3(iii) and $\rho \subseteq H$ we have the \mathscr{D}-class picture

	a		b	
	b^{\prime}		$\mathrm{hg}^{-1} \cdot a$	

and so $b^{\prime}=\left(h g^{-1} . a\right) a$.
Applying to T the property of ρ noted above, it follows that for each $(x, 1)$ in $E(T)$, or equivalently, for each element x of E,

$$
\begin{aligned}
& \left(g^{-1} \cdot a, g^{-1}\right)(x, 1)(a, g)=\left(h^{-1} \cdot b^{\prime}, h^{-1}\right)(x, 1)(b, h) \\
& (a, g)(x, 1)\left(g^{-1} \cdot a, g^{-1}\right)=(b, h)(x, 1)\left(h^{-1} \cdot b^{\prime}, h^{-1}\right)
\end{aligned}
$$

Evaluating these products and equating their first components yields:
If $(a, g) \rho(b, h)$ then for each x in $E, a x a=g h^{-1} .\left(b^{\prime} x b\right)$ and $a(g . x) a=b(h . x) b^{\prime}$ for some inverse b^{\prime} of b.

There is a dual condition based on the fact that ($h^{-1} \cdot b, h^{-1}$) is an inverse of (b, h); it is that:

If $(a, g) \rho(b, h)$ then for each x in $E, b x b=h g^{-1} .\left(a^{\prime} x a\right)$ and $b(h . x) b=a(g . x) a^{\prime}$ for some inverse a^{\prime} of a.
Any congruence relation ρ on T, when restricted to a group \mathscr{H}-class of T, determines a normal subgroup of that maximal subgroup. Let $(a, 1) \in E(T)$ and denote by D the \mathscr{D}-class of E containing a. By Lemma 2.7 the \mathscr{H}-class of $(a, 1)$ is isomorphic to the subgroup S_{D} of G which stabilizes D, and when ρ is restricted to this maximal subgroup of T it determines, by the second projection mapping, a normal subgroup N_{a} of S_{D}, namely

$$
N_{a}=\left\{k \in S_{D} \mid(a(k . a), k) \rho(a, 1)\right\} .
$$

Given any two idempotents $(a, 1)$ and $(b, 1)$ of T, then since ρ is a congruence and $(a, 1)(b, 1)=(a b, 1)$, it follows that

$$
N_{a} N_{b} \subseteq N_{a b}
$$

Since each N_{x} is a subgroup of G it is then the case that:

$$
\text { for each } a, x \text { in } E, \quad N_{a} \subseteq N_{a x} \quad \text { and } \quad N_{a} \subseteq N_{x a}
$$

In particular, when $a \mathscr{D} b$ in E, so that $a=a b a$ and $b=b a b$, we can conclude that $N_{a} \subseteq N_{a b} \subseteq N_{b a b}=N_{b}$, and similarly that $N_{b} \subseteq N_{a}$. Therefore $a \mathscr{D} b$ implies that $N_{a}=N_{b}=$ N_{D}, say, where D is the \mathscr{D}-class of a and b. We have therefore:
(1) for any two elements D, D^{\prime} of the semilattice \mathscr{Y} of \mathscr{D}-classes of E,

$$
N_{\mathrm{D}} \subseteq N_{\mathrm{DD}^{\prime}} \quad\left(=N_{\mathrm{D}^{\prime} \mathrm{D}}\right)
$$

Further, if D is any \mathscr{D}-class of E, if $a \in D$, if k is an arbitrary element of G, and $n \in N_{D}$, then ($\left.n(n . a), n\right) \rho(a, 1)$ implies

$$
(1, k)(n(n . a), n)\left(1, k^{-1}\right)=\left(\ldots, k n k^{-1}\right) \rho(1, k)(a, 1)\left(1, k^{-1}\right)=(k . a, 1)
$$

that is,
(2) for each k in G and for each D in \mathscr{Y},

$$
k N_{\mathrm{D}} k^{-1} \subseteq N_{\mathrm{D}^{\prime}} \quad \text { where } D^{\prime} \text { is the } \mathscr{D} \text {-class of } k . a .
$$

We are now in a position to state and prove the main result of the paper.
Theorem 3.1. Let T be a uniquely unit orthodox semigroup, say $T=E|\times| G$ as defined in Section 1. Suppose that for each element D of the semilattice \mathscr{Y} of \mathscr{D}-classes of E we have a normal subgroup N_{D} of the stabilizer S_{D} of D, and that the collection of these normal subgroups satisfies (1) and (2) above. Define the relation σ on T by:

$$
(a, g) \sigma(b, h) \quad \text { if and only if } \quad{h g^{-1}}^{-1} \in N_{D}
$$

where D is the \mathscr{D}-class of $a\left(\right.$ and of b), and there exist $a^{\prime} \in V(a), b^{\prime} \in V(b)$ such that for
each x in E,
(3)

$$
\begin{aligned}
a x a=g h^{-1} \cdot\left(b^{\prime} x b\right), & a(g \cdot x) a=b(h \cdot x) b^{\prime}, \\
b x b=h g^{-1} \cdot\left(a^{\prime} x a\right), & b(h \cdot x) b=a(g \cdot x) a^{\prime} .
\end{aligned}
$$

Then σ is an idempotent-separating congruence on T.
Conversely, every idempotent-separating congruence on a uniquely unit orthodox semigroup arises in this way.

Proof. We begin by showing that $\sigma \subseteq \mathscr{H}$. Suppose that (a, g) $\sigma(b, h)$ and that $a^{\prime} \in V(a)$ and $b^{\prime} \in V(b)$ satisfy (3). Setting $x=1$ in $a(g . x) a=b(h . x) b^{\prime}$ yields $a=b b^{\prime} \mathscr{R} b \in D$; setting $\quad x=1$ in $b x b=h g^{-1} .\left(a^{\prime} x a\right)$ yields $b=h g^{-1} .\left(a^{\prime} a\right) \mathscr{L} h g^{-1} . a$, and so $h^{-1} \cdot b \mathscr{L} \mathrm{~g}^{-1} . a$. It follows from Lemma 2.3(iii) that $\sigma \subseteq H$.

It is obvious that σ is reflexive and symmetric. For transitivity, suppose that $(a, g) \sigma(b, h)$ and $(b, h) \sigma(c, k)$. Then there exist $a^{\prime} \in V(a), b^{\prime}, b^{\prime \prime} \in V(b), c^{\prime} \in V(c)$ such that for each x in E we have (3) and

$$
\begin{array}{ll}
b x b=h k^{-1} \cdot\left(c^{\prime} x c\right), & b(h \cdot x) b=c(k \cdot x) c^{\prime} \\
c x c=k h^{-1} \cdot\left(b^{\prime \prime} x b\right), & c(k \cdot x) c=b(h \cdot x) b^{\prime \prime}
\end{array}
$$

First, $k^{-1} g=\left(k^{-1} h\right)\left(h^{-1} g\right) \in N_{D} N_{D}=N_{D}$. Next, we require the existence of $a^{\prime \prime}$ in $V(a), c^{\prime \prime}$ in $V(c)$ such that for each x in E,

$$
\begin{aligned}
a x a & =g k^{-1} \cdot\left(c^{\prime \prime} x c\right), & a(g \cdot x) a & =c(k \cdot x) c^{\prime \prime} \\
c x c & =k g^{-1} \cdot\left(a^{\prime \prime} x a\right), & c(k \cdot x) c & =a(g \cdot x) a^{\prime \prime}
\end{aligned}
$$

The following configuration holds in D.

	a		b		c	
	$g h^{-1} \cdot b$		a^{\prime}			
	b^{\prime}		$h g^{-1} \cdot a$			
			c^{\prime}		$k h^{-1} \cdot b$	
	$g k^{-1} \cdot c$		$h k^{-1} \cdot c$		$b^{\prime \prime}$	
	$c^{\prime \prime}$				$a^{\prime \prime}$	

Defining $a^{\prime \prime}$ and $c^{\prime \prime}$ by this configuration, for each x in E,

$$
\begin{aligned}
c(k \cdot x) c^{\prime \prime} & =c(k \cdot x)\left(k g^{-1} \cdot a\right) a \\
& =c\left(k \cdot\left(x\left(g^{-1} \cdot a\right)\right)\right) c a \quad \text { since } \quad a \mathscr{R} c \\
& =b\left(h \cdot\left(x\left(\mathrm{~g}^{-1} \cdot a\right)\right) b^{\prime \prime} a \quad \text { using } \quad(b, h) \sigma(c, k)\right. \\
& =b(h \cdot x)\left(h g^{-1} \cdot a\right) a \quad \text { since } \quad h g^{-1} \cdot a, b^{\prime \prime}, a \text { are all in } D \\
& =b(h \cdot x) b^{\prime}=a(g \cdot x) a \quad \text { using } \quad(a, g) \sigma(b, h) .
\end{aligned}
$$

Similarly, $a(g \cdot x) a^{\prime \prime}=c(k \cdot x) c$. Also,

$$
\begin{aligned}
c^{\prime \prime} x c & =c^{\prime \prime} a x a c \text { since } c^{\prime \prime} \mathscr{L} a \mathscr{R} c \\
& =c^{\prime \prime}\left(a\left(\mathrm{~g} \cdot\left(\mathrm{~g}^{-1} \cdot x\right)\right) a\right) c=c^{\prime \prime}\left(c\left(k \cdot\left(\mathrm{~g}^{-1} \cdot x\right)\right) c^{\prime \prime}\right) c \\
& =c^{\prime \prime} c\left(k g^{-1} \cdot x\right) c^{\prime \prime} c=\left(k g^{-1} \cdot a\right)\left(k g^{-1} \cdot x\right)\left(k g^{-1} \cdot a\right)=k g^{-1} \cdot(a x a),
\end{aligned}
$$

so $a x a=g k^{-1} .\left(c^{\prime \prime} x c\right)$ and, similarly, $c x c=k g^{-1} .\left(a^{\prime \prime} x a\right)$. Therefore σ is an equivalence.
To show that σ is compatible we show first that if $(a, g) \sigma(b, h)$ and $(c, k) \in T$ then ($c(k . a), k g) \mathscr{H}(c(k . b), k h)$, and dually for products on the right. Since $a \mathscr{R} b$ implies $k . a \mathscr{R} k . b$, and \mathscr{R} is a left congruence, $c(k . a) \mathscr{R} c(k . b)$; by Lemma 2.3(i)

$$
(c(k . a), k g) \mathscr{R}(c(k . b), k h)
$$

For \mathscr{L}-equivalence, note that for each x in E,

$$
\begin{aligned}
x a & =x a x a=x g h^{-1} \cdot\left(b^{\prime} x b\right) \quad \text { using } \quad(a, g) \sigma(b, h) \\
& =\left(x\left(g h^{-1} \cdot b^{\prime}\right)\right)\left(g h^{-1} \cdot x b\right) \mathscr{L} g h^{-1} \cdot x b
\end{aligned}
$$

in $D_{b x}$, because \mathscr{D} is a congruence and, using (1), $g h^{-1} \in N_{D} \subseteq N_{D^{\prime}} \subseteq S_{D^{\prime}}$ where D^{\prime} is the \mathscr{D}-class of $x b$. Therefore g^{-1}. (xa) $\mathscr{L} h^{-1} .(x b)$, and in particular, setting $x=k^{-1} . c$, we have $g^{-1} \cdot\left(\left(k^{-1} . c\right) a\right) \mathscr{L} h^{-1} \cdot\left(\left(k^{-1} . c\right) b\right)$. By Lemma 2.3(iii) again, we obtain

$$
(c, k)(a, g) \mathscr{H}(c, k)(b, h)
$$

For the products on the right by (c, k),

$$
\begin{aligned}
(a(g \cdot c))(b(h \cdot c)) & =(a(g \cdot c) a)(b(h \cdot c)) \quad \text { since } a \mathscr{R} b \\
& =b(h \cdot c) b^{\prime} b(h \cdot c) \text { using }(a, g) \sigma(b, h) \\
& =(b(h \cdot c))\left((h \cdot c) b^{\prime}\right)(b(h \cdot c)) \\
& =b(h \cdot c)
\end{aligned}
$$

and similarly $b(h . c) a(g . c)=a(g . c)$, so $(a, g)(c, k) \mathscr{R}(b, h)(c, k)$. Finally,

$$
\begin{aligned}
g^{-1} \cdot a \mathscr{L} h^{-1} \cdot b & \Rightarrow a(g \cdot c) \mathscr{L}\left(g h^{-1} \cdot b\right)(g \cdot c)=g h^{-1} \cdot(b(h \cdot c)) \\
& \Rightarrow(g k)^{-1} \cdot(a(g \cdot c)) \mathscr{L}(h k)^{-1} \cdot(b(h \cdot c)),
\end{aligned}
$$

and so $(a, g)(c, k)$ and $(b, h)(c, k)$ are \mathscr{L}-equivalent, therefore \mathscr{H}-equivalent.
To prove that σ is compatible with multiplication in T, let us continue to suppose that
$(a, g) \sigma(b, h)$ and $(c, k) \in T$. We have the following D-class configurations.

	a		b	
	$\mathrm{gh}^{-1} \cdot b$		a^{\prime}	
	b^{\prime}		$\mathrm{hg}^{-1} \cdot a$	

	$a(g \cdot c)$		$b(h \cdot c)$	
	$g h^{-1} \cdot(b(h \cdot c))$		$(a(g \cdot c))^{\prime}$	
	$(b(h \cdot c))^{\prime}$		$h g^{-1} \cdot(a(g \cdot c))$	

Define $(a(g . c))^{\prime}$ and $(b(h . c))^{\prime}$ by the configuration on the right. Then

$$
\begin{aligned}
(a(g \cdot c))^{\prime} & =\left(g h^{-1} \cdot(b(h \cdot c))\right) b(h \cdot c) \\
& =\left(g h^{-1} \cdot b\right) a(g \cdot c) a b(h \cdot c) \quad \text { since } \quad g h^{-1} \cdot b \mathscr{L} a \mathscr{R} b \\
& =\left(g h^{-1} \cdot b\right) b(h \cdot c) b^{\prime} b(h \cdot c) \quad \text { using } \quad(a, g) \sigma(b, h) \\
& =\left(g h^{-1} \cdot b\right) b(h \cdot c)(h \cdot c) b^{\prime} b(h \cdot c) \\
& =\left(g h^{-1} \cdot b\right) b(h \cdot c)=a^{\prime}(h \cdot c)
\end{aligned}
$$

using $b(h . c) \mathscr{D}(h . c) b^{\prime}$. In the same way, $(b(h . c))^{\prime}=b^{\prime}(g . c)$. Now for each x in E,

$$
\begin{aligned}
(h k)(g k)^{-1} \cdot(a(g \cdot c))^{\prime} x a(g \cdot c) & =\left(h g^{-1} \cdot\left(a^{\prime}((h \cdot c) x) a\right)\right)(h \cdot c) \\
& =b(h \cdot c) x b b(h \cdot c),
\end{aligned}
$$

and similarly $(g k)(h k)^{-1} \cdot\left((b(h . c))^{\prime} x b(h . c)\right)=a(g . c) x a(g . c)$. Further,

$$
\begin{aligned}
a(g \cdot c)(g k \cdot x) a(g \cdot c)=a(g \cdot(c(k \cdot x))) a(g \cdot c)=b(h \cdot(c(k \cdot x))) b^{\prime} & (g \cdot c) \\
& =b(h \cdot c)(h k \cdot x) b(h \cdot c))^{\prime}
\end{aligned}
$$

and $b(h, c)(h k, x) b(h, c)=a(g, c)(g k, x)(a(g, c))^{\prime}$.
This completes the proof of compatibility on the right. For left compatibility, we note first that because $k N_{D} k^{-1} \subseteq N_{D^{\prime}}$ where $k . a \in D^{\prime}$, we can multiply on the left by the units $(1, k)$ or $\left(1, k^{-1}\right)$ respectively and observe that it is enough to prove

$$
\left.\left(\left(k^{-1} \cdot c\right) a, g\right) \sigma\left(k^{-1} \cdot c\right) b, h\right)
$$

Write $d=k^{-1} . c$ and note that $h g^{-1} \in N_{D_{d a}}$ because $N_{D} \subseteq N_{D_{d a}}$ by (1). Consider the configurations below.

	$d a$		$d b$	
	$g h^{-1} \cdot(d b)$		$(d a)^{\prime}$	
	$(d b)^{\prime}$		$h \mathrm{~g}^{-1} \cdot(d a)$	

Using these,

$$
\begin{aligned}
(d a)^{\prime} & =\left(g h^{-1} \cdot d\right)\left(g h^{-1} \cdot b\right)(a d a) b \quad \text { since } \quad d b=d a b, \quad a d a \mathscr{L} d a \mathscr{L}\left(g h^{-1} \cdot d\right)\left(g h^{-1} \cdot b\right) \\
& =\left(g h^{-1} \cdot\left(d b b^{\prime} d d b\right)\right) b \quad \text { using } \quad(a, \mathrm{~g}) \sigma(b \cdot h) \\
& =\left(g h^{-1} \cdot(d b)\right) b \quad \text { calculating in } D \text { and in } D_{d a} \\
& =\left(g h^{-1} \cdot d\right) a^{\prime} .
\end{aligned}
$$

Similarly $(d b)^{\prime}=\left(h g^{-1} . d\right) b^{\prime}$. It follows that for each x in E,

$$
h g^{-1} \cdot\left((d a)^{\prime} x d a\right)=h g^{-1} \cdot\left(\left(g h^{-1} \cdot d\right) a^{\prime} x d a\right)=d b x d b
$$

and that $h g^{-1} \cdot\left((d b)^{\prime} x d b\right)=d a x d a$. The other two equations in (3) of Theorem 3.1 also follow from $(d a)^{\prime}=\left(g h^{-1} . d\right) a^{\prime}$ and $(d b)^{\prime}=\left(h g^{-1} . d\right) b^{\prime}$. Therefore σ is compatible, so is an idempotent-separating congruence on T.

Conversely, suppose that ρ is an idempotent-separating congruence on T. We saw above that ρ determines a collection of normal subgroups N_{D}, for D in \mathscr{Y}, satisfying (1) and (2); let σ denote the congruence determined by this collection as in the first part of the proof. If $(a, g) \sigma(b, h)$ then $h g^{-1} \in N_{D}$ implies that $\left(a\left(h g^{-1} . a\right), h g^{-1}\right) \rho(a, 1)$, and therefore $\left(b, h g^{-1}\right) \rho(a, 1)$ or, equivalently, $(b, h) \rho(a, g)$; that is $\sigma \subseteq \rho$. The reverse inclusion is obvious, so $\sigma=\rho$. This completes the proof of the theorem.
4. Examples. Theorem 1.3 enables us to construct all uniquely unit orthodox semigroups, Theorem 1.4 shows that every unit-regular orthodox semigroup is an idempotent-separating homomorphic image of one of the former, and Theorem 3.1 provides a description of the appropriate congruences. In practice, starting with a given group G that acts automorphically on a band $E=E^{1}$, one would construct as above a unit-regular orthodox semigroup T whose band is necessarily isomorphic to E, and usually one would like the group of units of T to be isomorphic to G. To ensure isomorphism between the two groups one only has to take $N_{G}=\{1\}$ (denoting by G the \mathscr{D}-class of 1 in E) in (1) and (2), and to notice for (1) that G is the identity element of \mathscr{Y}, for (2) that $k .1=1$ for each k in G.

A unit-regular orthodox semigroup S constructed as in Section 3 by factoring via an idempotent-separating congruence on $T=E(S)|\times| G(S)$ will be an inverse semigroup precisely when $E=E(S)$ is a semilattice. In this case the inverse semigroup T is the semi-direct product of a semilattice and a group. Every factorizable inverse semigroup [2] is of this sort [6], and may therefore be obtained by factoring T by a congruence of the type described in Theorem 3.1. And when E is a semilattice its \mathscr{D}-classes are singletons and the groups S_{D} are the stabilizers of individual elements of E. The idempotentseparating congruences ρ in this case may be defined much more simply than in Theorem 3.1 ; it is easy to see that:

$$
(a, g) \rho(b, h) \quad \text { if and only if } \quad a=b \quad \text { and } \quad h g^{-1} \in N_{b} .
$$

Chen and Hsieh [2] proved that each element of a factorizable inverse semigroup S may be written in the form $x=e \mathrm{~g}$ for a unique e in $E(S)$ and g in G. This does not hold in general for unit-regular orthodox semigroups, as the example below shows. So while it is
still true that each element is under a unit in the natural ordering, the uniqueness of e in $x=e g$ has gone. Further, the natural ordering on a regular monoid S is compatible with multiplication only if S is an inverse semigroup [8].

Example. Let S be the semigroup of all 3×3 real matrices of the form

$$
\left[\begin{array}{lll}
1 & p & q \\
0 & 1 & r \\
0 & 0 & s
\end{array}\right]
$$

Then S is a unit-regular orthodox semigroup with $E=E(S)$ consisting of the identity matrix and those matrices of S for which $p=s=0$, and $G=G(S)$ those for which $s \neq 0$. The band of S consists of two \mathscr{D}-classes, namely $\{1\}$ and one \mathscr{R}-class D, say, consisting of all the non-identity idempotents of S. By straightforward calculation, for each e in D the subgroup N of units g satisfying ege $=e$ [1] consists of those units whose (1,2)-entry is zero, and N is a normal subgroup of G. Each eSe except S itself is isomorphic to the additive group of real numbers, and S is the union of its group of units and its kernel, a single \mathscr{R}-class consisting of the $e S e, e \in E-\{1\}$. There is no uniqueness of e in $x=e g$ because ($E-\{1\}$) $N \subseteq E-\{1\}$.

By Theorem 1.4 the semigroup S is the idempotent-separating homomorphic image of $T=E|\times| G$ under the mapping $(e, g) \mapsto e g$. Since the \mathscr{D}-class D is a rectangular band $e T e=\{(a(g . a), g) \mid g \in G\} \cong G$ for each idempotent $e=(a, 1)$ with $a \in D$. An element ($a(g . a), g$) maps to

$$
a(g \cdot a) g=a\left(g_{a} g^{-1}\right) g=a g a .
$$

Therefore $(a(g . a), g)$ is congruent to e if and only if the $(1,2)$-entry of g is zero; that is, $N_{\mathrm{D}}=N$. Therefore the congruence σ defined in Theorem 3.1 is determined by just two normal subgroups of G, namely $N_{G}=\{1\}$ and $N_{D}=N$.

REFERENCES

1. T. S. Blyth and R. McFadden, Unit orthodox semigroups, Glasgow Math. J. 24 (1983), 39-42.
2. S. Y. Chen and H. C. Hsieh, Factorizable inverse semigroups, Semigroup Forum 8 (1974), 283-297.
3. H. D'Alarcao, Factorizable as a finiteness condition, Semigroup Forum 20 (1980), 281-282.
4. G. Ehrlich, Unit-regular rings, Portugal. Math., 27 (1968), 209-212.
5. K. R. Goodearl, Von Neumann regular rings (Pitman, 1979).
6. D. B. McAlister, Some covering and embedding theorems for inverse semigroups, J. Austral. Math. Soc. Ser. A 22 (1976), 188-211.
7. J. C. Meakin, Congruences on orthodox semigroups, J. Austral. Math. Soc. 12 (1971), 323-341.
8. K. S. S. Nambooripad, Structure of regular semigroups. I, Mem. Amer. Math. Soc. 22 (1979), Number 224.
9. Y. Tirasupa, Factorizable transformation semigroups, Semigroup Forum 18 (1979), 15-20.

Northern Illinois University
Dekalb, IL. 60115.

