UNIT-REGULAR ORTHODOX SEMIGROUPS

by R. B. McFADDEN

(Received 5 May, 1983)

Introduction. Unit-regular rings were introduced by Ehrlich [4]. They arose in the search for conditions on a regular ring that are weaker than the ACC, DCC, or finite Goldie dimension, which with von Neumann regularity imply semisimplicity. An account of unit-regular rings, together with a good bibliography, is given by Goodearl [5].

The basic definition of unit-regularity is purely multiplicative; it is simply that for each element x of a monoid S (initially a ring R with identity) there is a unit u of S for which x = xux. The concept of a unit-regular semigroup is a natural one; for example, the full transformation semigroup on a finite set, and the semigroup of endomorphisms of a finite-dimensional vector space, are unit-regular semigroups [1]. Unit-regularity has been studied by Chen and Hsieh [2], by Tirasupa [9], and by McAlister [6]. The connection between unit-regularity and finiteness conditions has been considered by D'Alarcao [3].

The problem of describing the structure of an arbitrary unit-regular semigroup S is difficult. It appears reasonable to attempt to provide such a description in terms of the group of units of S and the set of idempotents of S, and in this direction Blyth and McFadden did determine the structure of a narrow class of unit-regular semigroups. Calling a semigroup S uniquely unit orthodox if it is orthodox and, for each x in S, there exists a unique unit u of S for which x = xux, they proved that every such semigroup is a semidirect product of a group (the group of units of S) and a band (the band of idempotents of S).

In the present paper we shall show first that every unit-regular orthodox semigroup S is an idempotent-separating homomorphic image of a uniquely unit orthodox semigroup (determined by the idempotents of S and the units of S). The main result here is then the determination of all idempotent-separating congruences on uniquely unit orthodox semigroups.

1. Unit-regular semigroups. Much of what follows depends on the following elementary fact. If S is a monoid and g is a unit in S, then for each idempotent e of S, geg^{-1} is an idempotent, and if f in S is also an idempotent then

$$g(ef)g^{-1} = (geg^{-1})(gfg^{-1}).$$

DEFINITION 1.1. A monoid S is said to be unit-regular if for each x in S there exists a unit u of S for which x = xux.

For the rest of this paper we shall deal with unit-regular semigroups; each such is, of course, regular, though it is certainly not the case that x = xux implies that uxu = u. We shall denote by E(=E(S)) the set of idempotents of S and by G(=G(S)) the group of units of S.

Clearly x = xux implies that xu and ux are idempotent, and each element of S may

Glasgow Math. J. 25 (1984) 229-240.

be written in the form eg for e in E and g in G. This factorization is not unique, though e is unique for unit-regular inverse semigroups [2].

If eg and fh, for e, f in E and g, h in G, are elements of S then

$$egfh = e(gfg^{-1})gh = jkgh$$

where e, gfg^{-1}, j are idempotent and k, g, h are units. Here

$$j = j(e, gfg^{-1}) \in E$$
 and $k = k(e, gfg^{-1}) \in G$.

Any useful description of the structure of S in terms of E and G would need to provide more information about j and k than just the fact of their existence.

But there is one case in which j and k are obvious; if S is orthodox (E is a subsemigroup of S) we can take $j = e(gfg^{-1})$ and k = 1, so that

$$egfh = e(gfg^{-1})gh$$

with $e(gfg^{-1})$ in E and gh in G.

DEFINITION 1.2. A monoid S is said to be *unit orthodox* if S is unit-regular and orthodox [1].

When S is unit orthodox it is clear that G acts automorphically (in the sense that there is a homomorphism from G into the group of automorphisms of E) on the band E of idempotents of S under the action

g.
$$e = geg^{-1}$$
 for g in G and e in E.

As yet there is no method for describing the structure of a unit orthodox semigroup S directly in terms of E(S) and G(S), but a method does exist for a sub-class of unit orthodox semigroups. Calling a monoid S uniquely unit orthodox if for each x in S there is a unique unit u in S for which x = xux, Blyth and McFadden proved the following theorem [1].

THEOREM 1.3. Let E be a band with identity 1 and let G be a group which acts automorphically on E. Denoting by g. e the action of $g \in G$ on $e \in E$, define a product on $T = E \times G$ as follows:

$$(a, g)(b, h) = (a(g \cdot b), gh).$$

Then T is a uniquely unit orthodox semigroup, which we shall denote by $E|\times|G$. Denoting also by 1 the identity of G,

$$E(T) = \{(e, 1) \mid e \in E\} \sim E,\$$

$$G(T) = \{(1, g) \mid g \in G\} \sim G.$$

If x = (e, g) is an element of T then the unique unit u of T for which x = xux is $u = (1, g^{-1})$. Conversely, every uniquely unit orthodox semigroup arises in this way.

It is worth noting, as pointed out in the proof of Theorem 1.3, that $1 \cdot e = e$ for each e in E, and $g \cdot 1 = 1$ for each g in G.

While the class of uniquely unit orthodox semigroups is not a large one, it plays a decisive role in determining the structure of unit orthodox semigroups in general, as the following theorem shows.

THEOREM 1.4. Let S be a unit orthodox semigroup with group of units G. For e in E = E(S) and g in G = G(S) define g. $e = geg^{-1}$. This action defines an automorphism of E, and the map which assigns this automorphism to g is a homomorphism from G into the group of automorphisms of E. If the uniquely unit orthodox semigroup $T = E|\times|G$ is defined as in Theorem 1.3, then the map $\theta: T \to S$ defined by $(e, g)\theta = eg$ is an idempotent-separating epimorphism.

Proof. As noted above, it is obvious that G acts automorphically on E under $g \cdot e = geg^{-1}$. For a in S choose a unit g in G such that $a = ag^{-1}a$, so that $e = ag^{-1} \in E$; then

$$(e, g)\theta = eg = agg^{-1} = a,$$

so θ maps T onto S.

If (e, g) and (f, h) are elements of T then

$$(e, g)\theta(f, h)\theta = egfh = e(gfg^{-1})gh = e(g \cdot f)gh = ((e, g)(f, h))\theta$$

so θ is a homomorphism.

Finally, each idempotent of T is of the form (e, 1) for some e in E, so if (e, 1) and (f, 1) are idempotents of T satisfying $(e, 1)\theta = (f, 1)\theta$ then e = e1 = f1 = f; therefore θ is idempotent-separating, and the proof is complete.

Now that we know that every unit orthodox semigroup is an idempotent-separating homomorphic image of a uniquely unit orthodox semigroup, the question arises: What are the congruence relations on a uniquely unit orthodox semigroup which are contained in \mathcal{H} ? We shall answer this question in Section 2.

2. The \mathcal{D} -class structure of $E|\times|G$. For any orthodox semigroup S the finest inverse semigroup congruence \mathcal{D} on S is given by $x \mathcal{D} w$ if and only if V(x) = V(w) where V(x) denotes the set of inverses of x. Further, on any band E the \mathcal{D} -classes coincide with the \mathcal{D} -classes, and E is a semilattice Y of rectangular bands; in particular, if x, y, and z are \mathcal{D} -equivalent elements of E then xyz = xz. We shall write D_x for the $\mathcal{D} = \mathcal{D}$ -class of x in E, and similarly for \mathcal{R} and \mathcal{L} .

Now let T be a uniquely unit orthodox semigroup. Since we need to know about congruence relations on T contained in \mathcal{H} , we proceed to determine Green's relations on T. But while \mathcal{H} determines the "local" properties it is \mathcal{D} which determines the "global" properties of the congruences we are seeking.

By Theorem 1.3 we may assume that $T = E | \times | G$ under the operation

$$(e, g)(f, h) = (e(g \cdot f), gh),$$

where $E = E^{1}$ is a band with identity and G is a group which acts automorphically on E. Recall that $1 \cdot e = e$ and $g \cdot 1 = 1$ for each e in E and each g in G.

LEMMA 2.1. Let (a, g) be an element of T. Then (x, u) is an inverse of (a, g) in T if and only if $u = g^{-1}$ and $g \, x \in D$ where D is the \mathcal{D} -class of a in E.

Proof. First,

$$(a, g)(x, u)(a, g) = (a(g \cdot (x(u \cdot a))), gug) = (a, g)$$

if and only if $u = g^{-1}$ and $a(g \cdot x)a = a$, while

$$(x, g^{-1})(a, g)(x, g^{-1}) = (x(g^{-1} \cdot (a(g \cdot x))), g^{-1}) = (x, g^{-1})$$

if and only if $x(g^{-1} \cdot a)x = x$. Therefore (x, g^{-1}) and (a, g) are mutually inverse if and only if $a(g \cdot x)a = a$ and $x(g^{-1} \cdot a)x = x$. Since g acts as an automorphism, this is true if and only if g $\cdot x$ is in D.

LEMMA 2.2. For each e in E and each g in G,

$$g \cdot L_e = L_{g.e}, \quad g \cdot R_e = R_{g.e}, \quad g \cdot D_e = D_{g.e}.$$

Proof. This follows directly from the definition of Green's relations and the fact that G acts automorphically.

LEMMA 2.3. Let (a, g), (b, h) be elements of T. Then (i) $(a, g) \mathcal{R}(b, h)$ if and only if $a \mathcal{R} b$ in E. (ii) $(a, g) \mathcal{L}(b, h)$ if and only if $g^{-1} \cdot a \mathcal{L} h^{-1} \cdot b$ in E. (iii) $(a, g) \mathcal{H}(b, h)$ if and only if $hg^{-1} \cdot a \mathcal{D} a$ and $b = a(hg^{-1} \cdot a)$.

Proof. (i) $(a, g) \mathcal{R}(b, h)$ if and only if there exist inverses (a, g)' of (a, g) and (b, h)' of (b, h) respectively for which (a, g)(a, g)' = (b, h)(b, h)'. By Lemma 2.1 this is true if and only if there exist a' in V(a) and b' in V(b) for which

 $(a, g)(g^{-1} \cdot a', g^{-1}) = (aa', 1) = (b, h)(h^{-1} \cdot b', h^{-1}) = (bb', 1);$

in other words, if and only if $a \mathcal{R} b$ in E.

(ii) As in (i), $(a, g) \mathcal{L}(b, h)$ if and only if $g^{-1} \cdot a'a = h^{-1} \cdot b'b$ for some a' in V(a) and some b' in V(b). But $a'a \mathcal{L}a$ and $b'b \mathcal{L}b$, while g^{-1} and h^{-1} preserve \mathcal{L} -classes by Lemma 2.2, and therefore $(a, g) \mathcal{L}(b, h)$ implies

$$g^{-1}$$
. $a \mathscr{L} g^{-1}$. $a'a = h^{-1}$. $b'b \mathscr{L} h^{-1}$. $b'a = h^{-1}$. $b'b \mathscr{L} h^{-1}$.

Conversely, $g^{-1} \cdot a \mathcal{L} h^{-1} \cdot b$ implies

$$g^{-1}$$
. $((gh^{-1} \cdot b)a) = (h^{-1} \cdot b)(g^{-1} \cdot a) = h^{-1} \cdot b$,

and certainly $h^{-1} \cdot bb = h^{-1} \cdot b$, so with $a' = gh^{-1} \cdot b$ and b' = b we have $g^{-1} \cdot a'a = h^{-1} \cdot b'b$, so that $(a, g) \mathcal{L}(b, h)$.

(iii) By parts (i) and (ii) we have

$$(a, g) \mathcal{H}(b, h)$$
 if and only if $a \mathcal{R} b$ and $g^{-1} \cdot a \mathcal{L} h^{-1} \cdot b$ in E
if and only if $a \mathcal{R} b$ and $b \mathcal{L} h g^{-1} \cdot a$ in E
if and only if $hg^{-1} \cdot a \mathcal{D} a$ and $b = a(hg^{-1} \cdot a)$,

COROLLARY. Let (a, 1) be an idempotent in T. Then $(b, h) \mathcal{H}(a, 1)$ if and only if b = a(h, a) for $h, a \in D_a$.

The egg-box picture in E when $(a, g) \mathcal{H}(b, h)$ in T is as follows.

	а		b	
	gh^{-1} . b			
		_	hg ⁻¹ . a	
-	İ.			

LEMMA 2.4. Let D be a \mathfrak{D} -class of E, let $a \in D$, and let $h \in G$. Then

 $h \cdot a \in D$ if and only if $h \cdot D = D$.

Proof. Suppose $h \cdot a \mathcal{D} a$ and let $b \mathcal{D} a$. Then since D is a rectangular band, b = bab and a = aba. Applying h to these equations yields $h \cdot b \mathcal{D} h \cdot a \mathcal{D} a$; that is, $h \cdot D \subseteq D$.

Also, $a \mathcal{D} h \cdot a$ implies that for some c in D we have $a \mathcal{R} c \mathcal{L} h \cdot a$, so $h^{-1} \cdot a \mathcal{R} h^{-1} \cdot c \mathcal{L} a$; that is, $h^{-1} \cdot a \mathcal{D} a$. By the first part of the proof, $h^{-1} \cdot D \subseteq D$ and therefore $D = 1 \cdot D \subseteq h \cdot D$. Combining these inclusions yields the result.

DEFINITION 2.5. For a \mathcal{D} -class D of E define

$$S_{\mathbf{D}} = \{ \mathbf{g} \in G \mid \mathbf{g} : \mathbf{D} = \mathbf{D} \}.$$

Clearly S is a subgroup of G, and by Lemma 2.4,

 $g \in S_D$ if and only if $D \cap g \cdot D \neq \emptyset$.

For each element D of the semilattice of \mathcal{D} -classes of E we now have a subgroup of G which stabilizes D. These stabilizers are in fact intimately connected with the \mathcal{H} -classes, in particular with the maximal subgroups, of T.

LEMMA 2.6. Let (a, g) be an element of T and let D be the \mathcal{D} -class of a in E. Then the \mathcal{H} -class of (a, g) in T is $\{(a(k \cdot a), kg) \mid k \in S_D\}$.

Proof. By Lemma 2.3 we have

(a, g)
$$\mathcal{H}(b, h)$$
 if and only if $a \mathcal{R} b$ and $g^{-1} \cdot a \mathcal{L} h^{-1} \cdot b$
if and only if $hg^{-1} \cdot a \mathcal{L} b \mathcal{R} a$ and $hg^{-1} = k \in S_D$
if and only if $b = a(k \cdot a)$ and $k \in S_D$.

Therefore (b, h) is in the \mathcal{H} -class of (a, g) precisely when $(b, h) = (a(k \cdot a), kg)$ for some k in S_{D} .

LEMMA 2.7. Let (a, 1) be an idempotent in T. Then the maximal subgroup of T containing (a, 1) is isomorphic to S_D where D is the \mathcal{D} -class of a in E.

Proof. Let H denote the \mathcal{H} -class of (a, 1). Define the mapping $\theta: H \to S$ by $(b, k)\theta = k$, for $(b, k) \in H$. Clearly θ is injective; it is also surjective, because if $k \in S$ then $(a(k \cdot a), k) \in H$ by Lemma 2.6. If $(b, k), (c, h) \in H$ then $b = a(k \cdot a), c = a(h \cdot a)$, again by Lemma 2.6, and so

$$(b, k)(c, h) = (a(k \cdot a), k)(a(h \cdot a), h) = (a(k \cdot a)k \cdot (a(h \cdot a)), kh)$$
$$= (a(k \cdot a)(k \cdot a)(kh \cdot a), kh) = (a(kh \cdot a), kh),$$

the last equality following from the fact that D is a rectangular band of which a, k. a and kh. a are each elements. Therefore θ is a homomorphism, and the proof is complete.

3. Idempotent-separating congruences on $E|\times|G$. Consider an arbitrary orthodox semigroup S, and let ρ be an idempotent-separating congruence on S. If a and b are elements of S for which $a \rho b$ then for any inverse a' of a there is an inverse b' of b for which $a' \rho b'$. For certainly $aa' \mathcal{R} b \mathcal{L} a'a$, so there exists an inverse b' of b in the \mathcal{H} -class of a' and since $a \rho b$ then $aa' = bb' \rho ab'$, whence $a' \rho a' ab' = b'bb' = b'$. This is, of course, almost exactly the treatment provided by Meakin in [7], the only difference being that the choice of a' is at our disposal, a fact we shall use below to some advantage. Precisely as Meakin shows, the fact that ρ is idempotent-separating implies that:

for each x in E,
$$a'xa = b'xb$$
 and $axa' = bxb'$.

Let us apply this to the uniquely unit orthodox semigroup $T = E|\times|G$ defined as in Section 1. First, it is easy to verify that $(g^{-1} \cdot a, g^{-1})$ is an inverse of the element (a, g) of T. Therefore if ρ is an idempotent-separating congruence on T and $(a, g) \rho(b, h)$ then there exists an inverse (b, h)' of (b, h) such that $(b, h)' \rho(g^{-1} \cdot a, g^{-1})$. By Lemma 2.1 we can take $(b, h)' = (h^{-1} \cdot b', h^{-1})$ for some $b' \mathfrak{D} b$. In fact, using Lemma 2.3(iii) and $\rho \subseteq H$ we have the \mathfrak{D} -class picture

and so $b' = (hg^{-1} \cdot a)a$.

Applying to T the property of ρ noted above, it follows that for each (x, 1) in E(T), or equivalently, for each element x of E,

$$(g^{-1} \cdot a, g^{-1})(x, 1)(a, g) = (h^{-1} \cdot b', h^{-1})(x, 1)(b, h)$$

 $(a, g)(x, 1)(g^{-1} \cdot a, g^{-1}) = (b, h)(x, 1)(h^{-1} \cdot b', h^{-1}).$

Evaluating these products and equating their first components yields:

If $(a, g) \rho(b, h)$ then for each x in E, $axa = gh^{-1} \cdot (b'xb)$ and $a(g \cdot x)a = b(h \cdot x)b'$ for some inverse b' of b.

https://doi.org/10.1017/S0017089500005656 Published online by Cambridge University Press

There is a dual condition based on the fact that $(h^{-1} \cdot b, h^{-1})$ is an inverse of (b, h); it is that:

If $(a, g) \rho(b, h)$ then for each x in E, $bxb = hg^{-1} \cdot (a'xa)$ and $b(h \cdot x)b = a(g \cdot x)a'$ for some inverse a' of a.

Any congruence relation ρ on T, when restricted to a group \mathcal{H} -class of T, determines a normal subgroup of that maximal subgroup. Let $(a, 1) \in E(T)$ and denote by D the \mathcal{D} -class of E containing a. By Lemma 2.7 the \mathcal{H} -class of (a, 1) is isomorphic to the subgroup S_D of G which stabilizes D, and when ρ is restricted to this maximal subgroup of T it determines, by the second projection mapping, a normal subgroup N_a of S_D , namely

$$N_a = \{k \in S_D \mid (a(k \cdot a), k)\rho(a, 1)\}.$$

Given any two idempotents (a, 1) and (b, 1) of T, then since ρ is a congruence and (a, 1)(b, 1) = (ab, 1), it follows that

$$N_a N_b \subseteq N_{ab}$$

Since each N_x is a subgroup of G it is then the case that:

for each a, x in E,
$$N_a \subseteq N_{ax}$$
 and $N_a \subseteq N_{xa}$.

In particular, when $a \mathcal{D} b$ in E, so that a = aba and b = bab, we can conclude that $N_a \subseteq N_{ab} \subseteq N_{bab} = N_b$, and similarly that $N_b \subseteq N_a$. Therefore $a \mathcal{D} b$ implies that $N_a = N_b = N_D$, say, where D is the \mathcal{D} -class of a and b. We have therefore:

(1) for any two elements D, D' of the semilattice \mathcal{Y} of \mathcal{D} -classes of E,

$$N_D \subseteq N_{DD'} \qquad (=N_{D'D}).$$

Further, if D is any \mathcal{D} -class of E, if $a \in D$, if k is an arbitrary element of G, and $n \in N_D$, then $(n(n \cdot a), n) \rho(a, 1)$ implies

$$(1, k)(n(n \cdot a), n)(1, k^{-1}) = (\ldots, knk^{-1}) \rho (1, k)(a, 1)(1, k^{-1}) = (k \cdot a, 1);$$

that is,

(2) for each k in G and for each D in \mathcal{Y} ,

 $kN_{\rm D}k^{-1} \subseteq N_{\rm D'}$ where D' is the \mathcal{D} -class of k.a.

We are now in a position to state and prove the main result of the paper.

THEOREM 3.1. Let T be a uniquely unit orthodox semigroup, say $T = E|\times|G$ as defined in Section 1. Suppose that for each element D of the semilattice \mathcal{Y} of \mathcal{D} -classes of E we have a normal subgroup N_D of the stabilizer S_D of D, and that the collection of these normal subgroups satisfies (1) and (2) above. Define the relation σ on T by:

 $(a, g)\sigma(b, h)$ if and only if $hg^{-1} \in N_D$,

where D is the D-class of a (and of b), and there exist $a' \in V(a)$, $b' \in V(b)$ such that for

each x in E,

(3)

$$axa = gh^{-1} \cdot (b'xb),$$
 $a(g \cdot x)a = b(h \cdot x)b',$
 $bxb = hg^{-1} \cdot (a'xa),$ $b(h \cdot x)b = a(g \cdot x)a'.$

Then σ is an idempotent-separating congruence on T.

Conversely, every idempotent-separating congruence on a uniquely unit orthodox semigroup arises in this way.

Proof. We begin by showing that $\sigma \subseteq \mathcal{H}$. Suppose that $(a, g)\sigma(b, h)$ and that $a' \in V(a)$ and $b' \in V(b)$ satisfy (3). Setting x = 1 in $a(g \cdot x)a = b(h \cdot x)b'$ yields $a = bb' \mathcal{R} b \in D$; setting x = 1 in $bxb = hg^{-1} \cdot (a'xa)$ yields $b = hg^{-1} \cdot (a'a) \mathcal{L} hg^{-1} \cdot a$, and so $h^{-1} \cdot b\mathcal{L} g^{-1} \cdot a$. It follows from Lemma 2.3(iii) that $\sigma \subseteq H$.

It is obvious that σ is reflexive and symmetric. For transitivity, suppose that $(a, g)\sigma(b, h)$ and $(b, h)\sigma(c, k)$. Then there exist $a' \in V(a)$, $b', b'' \in V(b)$, $c' \in V(c)$ such that for each x in E we have (3) and

$$bxb = hk^{-1} \cdot (c'xc),$$
 $b(h \cdot x)b = c(k \cdot x)c',$
 $cxc = kh^{-1} \cdot (b''xb),$ $c(k \cdot x)c = b(h \cdot x)b''.$

First, $k^{-1}g = (k^{-1}h)(h^{-1}g) \in N_D N_D = N_D$. Next, we require the existence of a'' in V(a), c'' in V(c) such that for each x in E,

$$axa = gk^{-1} \cdot (c''xc),$$
 $a(g \cdot x)a = c(k \cdot x)c'',$
 $cxc = kg^{-1} \cdot (a''xa),$ $c(k \cdot x)c = a(g \cdot x)a''.$

The following configuration holds in D.

b	с
a'	
hg ⁻¹ . a	
<i>c'</i>	kh^{-1} . b
hk ⁻¹ .c	b"
	a"
	kg ⁻¹ .a
	a' hg ⁻¹ .a c'

Defining a'' and c'' by this configuration, for each x in E,

$$c(k \cdot x)c'' = c(k \cdot x)(kg^{-1} \cdot a)a$$

= $c(k \cdot (x(g^{-1} \cdot a)))ca$ since $a \mathcal{R} c$
= $b(h \cdot (x(g^{-1} \cdot a))b''a$ using $(b, h)\sigma(c, k)$
= $b(h \cdot x)(hg^{-1} \cdot a)a$ since $hg^{-1} \cdot a, b'', a$ are all in D
= $b(h \cdot x)b' = a(g \cdot x)a$ using $(a, g)\sigma(b, h)$.

Similarly, $a(g \cdot x)a'' = c(k \cdot x)c$. Also,

$$c''xc = c''axac \quad \text{since} \quad c'' \mathcal{L} a \mathcal{R} c$$

= $c''(a(g.(g^{-1}.x))a)c = c''(c(k.(g^{-1}.x))c'')c)$
= $c''c(kg^{-1}.x)c''c = (kg^{-1}.a)(kg^{-1}.x)(kg^{-1}.a) = kg^{-1}.(axa),$

so $axa = gk^{-1} \cdot (c''xc)$ and, similarly, $cxc = kg^{-1} \cdot (a''xa)$. Therefore σ is an equivalence.

To show that σ is compatible we show first that if $(a, g)\sigma(b, h)$ and $(c, k) \in T$ then $(c(k.a), kg) \mathcal{H}(c(k.b), kh)$, and dually for products on the right. Since $a \mathcal{R} b$ implies $k \cdot a \mathcal{R} k \cdot b$, and \mathcal{R} is a left congruence, $c(k \cdot a) \mathcal{R} c(k \cdot b)$; by Lemma 2.3(i)

$$(c(k \cdot a), kg) \mathcal{R} (c(k \cdot b), kh).$$

For \mathcal{L} -equivalence, note that for each x in E,

$$xa = xaxa = xgh^{-1} \cdot (b'xb) \quad \text{using} \quad (a, g)\sigma(b, h)$$
$$= (x(gh^{-1} \cdot b'))(gh^{-1} \cdot xb) \mathcal{L}gh^{-1} \cdot xb$$

in D_{bx} , because \mathcal{D} is a congruence and, using (1), $gh^{-1} \in N_D \subseteq N_{D'} \subseteq S_{D'}$ where D' is the \mathcal{D} -class of xb. Therefore $g^{-1} . (xa) \mathcal{L}h^{-1} . (xb)$, and in particular, setting $x = k^{-1} . c$, we have $g^{-1} . ((k^{-1} . c)a) \mathcal{L}h^{-1} . ((k^{-1} . c)b)$. By Lemma 2.3(iii) again, we obtain

$$(c, k)(a, g) \mathcal{H}(c, k)(b, h)$$

For the products on the right by (c, k),

$$(a(g.c))(b(h.c)) = (a(g.c)a)(b(h.c)) \text{ since } a \mathcal{R} b$$
$$= b(h.c)b'b(h.c) \text{ using } (a,g)\sigma(b,h)$$
$$= (b(h.c))((h.c)b')(b(h.c))$$
$$= b(h.c),$$

and similarly $b(h \cdot c)a(g \cdot c) = a(g \cdot c)$, so $(a, g)(c, k) \mathcal{R}(b, h)(c, k)$. Finally,

$$g^{-1} \cdot a \mathcal{L} h^{-1} \cdot b \Rightarrow a(g \cdot c) \mathcal{L} (gh^{-1} \cdot b)(g \cdot c) = gh^{-1} \cdot (b(h \cdot c))$$

$$\Rightarrow (gk)^{-1} \cdot (a(g \cdot c)) \mathcal{L} (hk)^{-1} \cdot (b(h \cdot c)),$$

and so (a, g)(c, k) and (b, h)(c, k) are \mathcal{L} -equivalent, therefore \mathcal{H} -equivalent.

To prove that σ is compatible with multiplication in T, let us continue to suppose that

 $(a, g)\sigma(b, h)$ and $(c, k) \in T$. We have the following D-class configurations.

a	b	a(g.c)	b(h.c)
gh^{-1} . b	a'	gh^{-1} . $(b(h.c))$	$(a(g \cdot c))'$
b'	hg^{-1} . a	$(b(h \cdot c))'$	$hg^{-1} \cdot (a(g \cdot c))$

Define (a(g.c))' and (b(h.c))' by the configuration on the right. Then

$$(a(g.c))' = (gh^{-1} . (b(h.c)))b(h.c)$$

= $(gh^{-1} . b)a(g.c)ab(h.c)$ since $gh^{-1} . b \mathcal{L} a \mathcal{R} b$
= $(gh^{-1} . b)b(h.c)b'b(h.c)$ using $(a, g)\sigma(b, h)$
= $(gh^{-1} . b)b(h.c)(h.c)b'b(h.c)$
= $(gh^{-1} . b)b(h.c) = a'(h.c)$

using $b(h \cdot c) \mathcal{D}(h \cdot c)b'$. In the same way, $(b(h \cdot c))' = b'(g \cdot c)$. Now for each x in E,

$$(hk)(gk)^{-1} \cdot (a(g \cdot c))'xa(g \cdot c) = (hg^{-1} \cdot (a'((h \cdot c)x)a))(h \cdot c)$$

= $b(h \cdot c)xbb(h \cdot c)$,

and similarly $(gk)(hk)^{-1} \cdot ((b(h \cdot c))'xb(h \cdot c)) = a(g \cdot c)xa(g \cdot c)$. Further,

a(g.c)(gk.x)a(g.c) = a(g.(c(k.x)))a(g.c) = b(h.(c(k.x)))b'(g.c) = b(h.c)(hk.x)b(h.c))'

and b(h.c)(hk.x)b(h.c) = a(g.c)(gk.x)(a(g.c))'.

This completes the proof of compatibility on the right. For left compatibility, we note first that because $kN_Dk^{-1} \subseteq N_{D'}$ where $k \, a \in D'$, we can multiply on the left by the units (1, k) or $(1, k^{-1})$ respectively and observe that it is enough to prove

$$((k^{-1} \cdot c)a, g)\sigma(k^{-1} \cdot c)b, h).$$

Write $d = k^{-1} \cdot c$ and note that $hg^{-1} \in N_{D_{da}}$ because $N_D \subseteq N_{D_{da}}$ by (1). Consider the configurations below.

a	b	da	db
gh^{-1} . b	a'	gh^{-1} . (db)	(da)'
<i>b'</i>	gh^{-1} . a	(db)'	hg^{-1} . (da)

Using these,

$$(da)' = (gh^{-1} \cdot d)(gh^{-1} \cdot b)(ada)b \text{ since } db = dab, \quad ada \,\mathscr{L} \, da \,\mathscr{L} \, (gh^{-1} \cdot d)(gh^{-1} \cdot b)$$
$$= (gh^{-1} \cdot (dbb' ddb))b \text{ using } (a, g)\sigma(b \cdot h)$$
$$= (gh^{-1} \cdot (db))b \text{ calculating in } D \text{ and in } D_{da}$$
$$= (gh^{-1} \cdot d)a'.$$

Similarly $(db)' = (hg^{-1} \cdot d)b'$. It follows that for each x in E, $hg^{-1} \cdot ((da)'xda) = hg^{-1} \cdot ((gh^{-1} \cdot d)a'xda) = dbxdb$,

and that hg^{-1} . ((db)'xdb) = daxda. The other two equations in (3) of Theorem 3.1 also follow from $(da)' = (gh^{-1} \cdot d)a'$ and $(db)' = (hg^{-1} \cdot d)b'$. Therefore σ is compatible, so is an idempotent-separating congruence on T.

Conversely, suppose that ρ is an idempotent-separating congruence on *T*. We saw above that ρ determines a collection of normal subgroups N_D , for *D* in \mathcal{Y} , satisfying (1) and (2); let σ denote the congruence determined by this collection as in the first part of the proof. If $(a, g)\sigma(b, h)$ then $hg^{-1} \in N_D$ implies that $(a(hg^{-1} \cdot a), hg^{-1})\rho(a, 1)$, and therefore $(b, hg^{-1})\rho(a, 1)$ or, equivalently, $(b, h)\rho(a, g)$; that is $\sigma \subseteq \rho$. The reverse inclusion is obvious, so $\sigma = \rho$. This completes the proof of the theorem.

4. Examples. Theorem 1.3 enables us to construct all uniquely unit orthodox semigroups, Theorem 1.4 shows that every unit-regular orthodox semigroup is an idempotent-separating homomorphic image of one of the former, and Theorem 3.1 provides a description of the appropriate congruences. In practice, starting with a given group G that acts automorphically on a band $E = E^1$, one would construct as above a unit-regular orthodox semigroup T whose band is necessarily isomorphic to E, and usually one would like the group of units of T to be isomorphic to G. To ensure isomorphism between the two groups one only has to take $N_G = \{1\}$ (denoting by G the \mathcal{D} -class of 1 in E) in (1) and (2), and to notice for (1) that G is the identity element of \mathcal{Y} , for (2) that $k \cdot 1 = 1$ for each k in G.

A unit-regular orthodox semigroup S constructed as in Section 3 by factoring via an idempotent-separating congruence on $T = E(S)|\times|G(S)$ will be an inverse semigroup precisely when E = E(S) is a semilattice. In this case the inverse semigroup T is the semi-direct product of a semilattice and a group. Every factorizable inverse semigroup [2] is of this sort [6], and may therefore be obtained by factoring T by a congruence of the type described in Theorem 3.1. And when E is a semilattice its \mathcal{D} -classes are singletons and the groups S_D are the stabilizers of individual elements of E. The idempotent-separating congruences ρ in this case may be defined much more simply than in Theorem 3.1; it is easy to see that:

 $(a, g)\rho(b, h)$ if and only if a = b and $hg^{-1} \in N_b$.

Chen and Hsieh [2] proved that each element of a factorizable inverse semigroup S may be written in the form x = eg for a unique e in E(S) and g in G. This does not hold in general for unit-regular orthodox semigroups, as the example below shows. So while it is

still true that each element is under a unit in the natural ordering, the uniqueness of e in x = eg has gone. Further, the natural ordering on a regular monoid S is compatible with multiplication only if S is an inverse semigroup [8].

EXAMPLE. Let S be the semigroup of all 3×3 real matrices of the form

$$\begin{bmatrix} 1 & p & q \\ 0 & 1 & r \\ 0 & 0 & s \end{bmatrix}$$

Then S is a unit-regular orthodox semigroup with E = E(S) consisting of the identity matrix and those matrices of S for which p = s = 0, and G = G(S) those for which $s \neq 0$. The band of S consists of two \mathfrak{D} -classes, namely {1} and one \mathfrak{R} -class D, say, consisting of all the non-identity idempotents of S. By straightforward calculation, for each e in D the subgroup N of units g satisfying ege = e [1] consists of those units whose (1, 2)-entry is zero, and N is a normal subgroup of G. Each eSe except S itself is isomorphic to the additive group of real numbers, and S is the union of its group of units and its kernel, a single \mathfrak{R} -class consisting of the eSe, $e \in E - \{1\}$. There is no uniqueness of e in x = egbecause $(E - \{1\})N \subseteq E - \{1\}$.

By Theorem 1.4 the semigroup S is the idempotent-separating homomorphic image of $T = E |\times|G$ under the mapping $(e, g) \mapsto eg$. Since the \mathcal{D} -class D is a rectangular band $eTe = \{(a(g, a), g) | g \in G\} \cong G$ for each idempotent e = (a, 1) with $a \in D$. An element (a(g, a), g) maps to

$$a(g \cdot a)g = a(gag^{-1})g = aga.$$

Therefore (a(g, a), g) is congruent to e if and only if the (1, 2)-entry of g is zero; that is, $N_D = N$. Therefore the congruence σ defined in Theorem 3.1 is determined by just two normal subgroups of G, namely $N_G = \{1\}$ and $N_D = N$.

REFERENCES

1. T. S. Blyth and R. McFadden, Unit orthodox semigroups, Glasgow Math. J. 24 (1983), 39-42.

2. S. Y. Chen and H. C. Hsieh, Factorizable inverse semigroups, Semigroup Forum 8 (1974), 283-297.

3. H. D'Alarcao, Factorizable as a finiteness condition, Semigroup Forum 20 (1980), 281–282.

4. G. Ehrlich, Unit-regular rings, Portugal. Math., 27 (1968), 209-212.

5. K. R. Goodearl, Von Neumann regular rings (Pitman, 1979).

6. D. B. McAlister, Some covering and embedding theorems for inverse semigroups, J. Austral. Math. Soc. Ser. A 22 (1976), 188-211.

7. J. C. Meakin, Congruences on orthodox semigroups, J. Austral. Math. Soc. 12 (1971), 323-341.

8. K. S. S. Nambooripad, Structure of regular semigroups. I, Mem. Amer. Math. Soc. 22 (1979), Number 224.

9. Y. Tirasupa, Factorizable transformation semigroups, Semigroup Forum 18 (1979), 15-20.

NORTHERN ILLINOIS UNIVERSITY DEKALB, IL. 60115.