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Abstract: Line broadening cross sections for the broadening of spectral lines by
collisions with neutral hydrogen atoms have been tabulated by Anstee & O’Mara
(1995), Barklem & O’Mara (1997) and Barklem, O’Mara & Ross (1998) for s–p,
p–s, p–d, d–p, d–f and f–d transitions. To make these data more accessible to the
end user, fortran code which interpolates in these tabulations has been prepared
and placed on the World Wide Web. It should be easy to incorporate this code
into existing spectrum synthesis programs or to use it in a stand-alone mode to
compute line broadening cross sections for specific transitions. The use of the code
is demonstrated by its application to two transitions of astrophysical interest.
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1 Introduction

In cool stars such as the sun, the photospheric tem-
perature is sufficiently high to dissociate molecular
hydrogen into atomic hydrogen but is insufficient
to ionise hydrogen. The electrons present are pro-
duced by ionisation of metals leading to an electron
number density which is about four orders of mag-
nitude lower than the hydrogen atom density. As
hydrogen atoms are the dominant particle species,
the collisional broadening of most metallic lines is
dominated by collisions with hydrogen atoms. To
synthesise spectral lines in cool stars, particularly
those with well developed damping wings, it is
essential to have satisfactory line broadening data.
For the last fifty years astrophysicists have used the
broadening theory of Lindholm (1942) and Foley
(1946) in a form presented by Unsöld (1955) which
assumes a van der Waals interaction between the
absorbing atom and the perturbing hydrogen atom.
This theory has long been recognised as totally
inadequate (see for example Holweger & Müller
1974). Enhancement factors over the van der Waals
broadening, which in general range anywhere from
1 to 4, have been used by a number of workers to
fit solar spectral lines. One of the main reasons
that the use of this theory has persisted is the lack
of a suitable alternative that is easily used and is
applicable to many spectral lines.

Anstee & O’Mara (1995), Anstee, O’Mara & Ross
(1997), Barklem & O’Mara (1997) and Barklem,
O’Mara & Ross (1998) have shown that the general
theory of broadening developed by Anstee & O’Mara
(1991) leads to solar abundances of certain elements
which are consistent with their meteoritic values to

within the uncertainties involved, making this theory
a natural successor to van der Waals theory. Our
aim is to make the determination of line broadening
cross sections from this theory even more accessible
to users by means of fortran code available over the
World Wide Web. More detailed and possibly more
accurate calculations of broadening parameters have
been undertaken by others, however usually on a
line by line basis.

2 Theory Outline

The line broadening theory used has been developed
from the initial work on the sodium D lines by Anstee
& O’Mara (1991), which itself is a development of
the work of Brueckner (1971) and O’Mara (1976).
The theory has been further extended to general
transitions by Anstee & O’Mara (1995), Barklem
& O’Mara (1997) and Barklem, O’Mara & Ross
(1998). The theory is well described in these papers,
and so here only a brief review is presented.

Collisions with hydrogen atoms are sufficiently fast
for the impact approximation of collision broadening
to be applicable. This approximation results in a
Lorentz profile for the line. For a hydrogen atom
number density N , and temperature T , the line has
a half width at half maximum given by

w = N

∫ ∞
0

vf(v)σ(v)dv , (1)

where σ is the line broadening cross section, and
f(v) is the Maxwellian distribution of velocities for
the given temperature. In this work the perturber
trajectory is treated classically, and hence the semi-
classical cross section is defined by
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σ(v) = 2π
∫ ∞

0

Re(〈Π(b, v)〉av)bdb , (2)

where b is the impact parameter defining the
distance of closest approach of the atoms, and the
line broadening efficiency factor is the real part
of a complex efficiency factor 〈Π(b, v)〉av averaged
over all orientations of the perturbed atom. The
efficiency factor 〈Π(b, v)〉av can be expressed in terms
of the S-matrix for the collision, where the S-matrix
is dependent on the interaction potentials between
the atoms. Most broadening theories follow this
treatment with the only difference being the method
of finding the interaction potential.

In the theory developed by Anstee & O’Mara
(1991) spin is neglected and Rayleigh–Schrödinger
perturbation theory taken to second order is used to
calculate the interaction energy. The perturbed atom
is simply modelled as an atomic core with overall
unit charge, with a single valence electron. The
Unsöld approximation (1955) is used to simplify the
second order expression. Anstee & O’Mara (1991)
have shown that line broadening is dominated
by interactions at intermediate separations making
perturbation theory particularly appropriate. This
is a very important result with implications for all
line broadening theories.

The main advantage of the method is that
calculations can be made for general states of
the perturbed atoms, without requiring any prior
knowledge of the species of the atom or energies
of states. The potentials may be calculated using
Coulomb wavefunctions for the perturbed atom,
simply dependent on the effective principal quantum
numbers and azimuthal quantum numbers of the two
levels of the transition. Anstee & O’Mara (1995)
have tabulated line broadening cross sections for s–p
and p–s transitions, Barklem & O’Mara (1997) for
p–d and d–p transitions and Barklem, O’Mara &
Ross (1998) for d–f and f–d transitions. In all of these
cases, line broadening cross sections were tabulated
against effective principal quantum numbers of the
upper and lower states for a perturber velocity of
v0 = 104 m s−1. Cross sections were calculated for
a range of velocities and were found to obey the
velocity law

σ(v) = σ(v0)
(
v

v0

)−α
. (3)

The parameter α was determined by regression and
similarly tabulated.

For cross sections obeying this relationship, Anstee
& O’Mara (1995) found that the linewidth per unit
hydrogen atom density could be expressed as

w

N
=
(

4
π

)α/2
Γ
(

4− α
2

)
v0σ(v0)(v/v0)1−α , (4)

where v = (8kT/πµ) 1
2 , and µ is the reduced mass

of the two atoms.
In order to make these data more accessible, fortran

code has been written to interpolate these tables. The
code simply requires the effective principal quantum
numbers and the azimuthal quantum numbers of
the upper and lower levels of the transition. Code
is also included to compute the linewidth per unit
hydrogen atom density from the data, given the
temperature.

The code is suitably broken into subroutines
which should allow easy integration into other
programs if necessary. The program has been
successfully tested under DEC fortran. The code
uses a bicubic spline interpolation routine from the
Numerical Recipes package (Press et al. 1992) for
the interpolation of tables. The Gamma function
routine is from the Netlib archive (http://netlib.bell-
labs.com/netlib/master/readme.html).

The code is available on the World Wide Web at
http://www.physics.uq.edu.au/people/barklem/
barklem.html. The code can also be obtained by
contacting the authors.

It should be noted that this program was not
used for the examples given in the papers cited
above. These were interpolated using a Matlab
program. There may be small differences between
the two methods of interpolation.

3 Examples

In order to demonstrate how the data are used a brief
example is presented. Consider the line of neutral
magnesium at 8806 ·76 Å. The first step is to identify
the levels involved in the transition. Moore’s (1972)
multiplet tables show this line is from multiplet 7,
with level designations 31P 0–31D. Moore’s (1971)
energy level tables are now consulted to determine
the type of transition and the energies of the levels.
The 31P 0 level has an electron configuration of
3s(2S)3p and the 31D has an electron configuration
of 3s(2S)3d. The transition therefore is p–d. The p-
and d-state energies are quoted in wavenumber units
as 35051 ·36 cm−1 and 46403 ·14 cm−1 respectively.
The effective principal quantum numbers can then
be calculated from the formula

n∗ =

√
109678 ·8

(Elimit − Enl)
, (5)

with all energies in cm−1.
For magnesium the series limit Elimit is 61669 ·14

cm−1. Hence the effective principal quantum
numbers for the p- and d-states are 2 ·030 and
2 ·680 respectively. Using the fortran code previously
mentioned the cross section for a relative collision
speed of 104 m s−1 is found to be 530 atomic units
and the velocity parameter is 0 ·277. The program
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calculates a width per unit hydrogen atom density of
1 ·50×10−8 cm−3 rad s−1 for the hydrogen broadening
of the line at 5000 K. Barklem (1998) has shown
that this cross section leads to a solar abundance of
magnesium in accord with the meteoritic value to
within the uncertainty in the f -value for the line.

3.1 Two Electron Excitations

On some rare occasions, one may have to deal with a
transition involving states in which two electrons are
excited. What this means, in essence, is that one of
the core electrons is also in an excited state during
the transition and that our simple model of a single
electron outside a singly charged core is no longer
strictly applicable. However, as the line broadening
cross section is largely determined by the tail of
the wave function for the optical electron, useful
results can still be obtained provided one is careful
in the determination of the appropriate binding
energy for the optical electron. As an example,
we choose the E-line of Fe I at 5269 ·34 Å, first
observed by Fraünhofer in the solar spectrum. From
Moore’s (1972) multiplet tables this transition is from
multiplet 15, with level designations a5F–z5D0 with
corresponding electron configurations 3d7(a4F )4s–
3d64s(a5D)4p. The parent configuration for the
upper state corresponds to the ground state of Fe II
and therefore the effective principal quantum number
is calculated in the usual way. However, the lower
state parent configuration 3d7(a4F ) corresponds to
the first excited state of Fe II at an energy of
1872 ·60 cm−1 and consequently this energy must
be added to the series limit prior to calculating the
effective principal quantum number. This leads to
an effective principal quantum number for the lower
s-state of the transition of 1 ·368 and an effective
principal quantum number of 1 ·703 for the upper
p-state. From the fortran code the cross section
for a perturber velocity of 104 m s−1 is 237 atomic

units and the velocity parameter is 0 ·249. Anstee,
O’Mara & Ross (1997) have shown that this cross
section leads to a solar abundance of iron in excellent
agreement with the meteoritic value.

4 Conclusions

A program enabling easy interpolation of previously
published line broadening data has been demon-
strated by application to two lines in the solar
spectrum. The source code for this program is
available from the World Wide Web. The code
is only applicable to lines originating from neutral
atoms. We are currently investigating the applica-
tion of the theory to lines originating from atoms
in ionised states.
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