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RIGHT ALTERNATIVE ALGEBRAS
WITH COMMUTATORS IN A NUCLEUS

ERWIN KLEINFELD AND HARRY F. SMITH

Let A be a right alternative algebra, and [A, A] be the linear span of all com-
mutators in A. If [A, A] is contained in the left nucleus of A, then left nilpo-
tence implies nilpotence. If [A, A] is contained in the right nucleus, then over
a commutative-associative ring with 1/2, right nilpotence implies nilpotence. If
[A, A] is contained in the alternative nucleus, then the following structure results
hold: (1) If A is prime with characteristic / 2, then A is either alternative or
strongly (—1, 1). (2) If A is a finite-dimensional nil algebra, over a field of charac-
teristic 7̂  2, then A is nilpotent. (3) Let the algebra A be finite-dimensional over
a field of characteristic ^ 2, 3. If A/K is separable, where K is the nil radical of
A, then A has a Wedderburn decomposition

1. INTRODUCTION

Let A be a nonassociative algebra. As is customary, for x, y, z G A we denote
by [x, y, z) the associator (a:, y, z) = (xy)z — x[yz) and by [x, y] the commutator
[x, y] = xy — yx. If the algebra A satisfies the identity

(i) (y, x, x) = o,

then it is called right alternative. A right alternative algebra which also satisfies

the identity (x, x, y) = 0 is called alternative, and one which satisfies the identity

[[x, y], z] = 0 is called strongly (—1, 1).

In any nonassociative algebra A, the following are subalgebras:

Nt = {n E A | (n, x, y) — 0 for all x, y £ A} - left nucleus,

Nr = {n £ A | (x, y, n) = 0 for all x, y G A} — right nucleus.

For A a right alternative algebra with characteristic ^ 2 , 3 ,

U — {u 6 A | [u, x] = 0 for all x 6 A} - commutative centre
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is a subalgebra of A; and for characteristic ^ 2,

Np — {y E A | (z, x, v) = 0 for all i £ 4 } - alternative nucleus

is a subalgebra with both JVr C Np and U C. Np.

For A a nonassociative algebra, if for some positive integer n every product of n

elements from A is zero, no matter how the elements are associated, then A is called

nilpotent. Less restrictively, let A^ = A and define inductively A^ — AAyk_-^. If

A[n] = 0 for some n, then A is said to be left nilpotent. Analogously, setting A'1' = A

and defining inductively A^ — A^^'A, then A is right nilpotent if A^ — 0 for some

n.

In Section 2 we consider left and right nilpotency in certain varieties of right alter-
native algebras. Let [A, A] denote the linear span of all commutators in an algebra A.

Then for A a right alternative algebra with [A, A] C Nt, we show that for each natural
number n there exists a natural number f(n) such that A^n^ C A[n]. In particular, if
A is left nilpotent, then A is nilpotent. We next consider a right alternative algebra A,

over a commutative-associative ring with 1/2, such that [A, A] C Nr. We show that
for such an algebra A right nilpotence implies nilpotence. In particular, if such an A

satisfies the minimum condition on right ideals, then its quasi-regular radical J(A) is
nilpotent. We also note that existing examples [2, 11, 16] can be used to show that in
these indicated varieties there are no other implications between left or right nilpotence
and nilpotence.

Let A be right alternative algebra with characteristic ^ 2 . It is known that if
[A, A] C Np, then A is alternative if A is either simple [19] or prime and finitely-
generated [9]. In Section 3 we first extend these results by showing that if A is prime
with [.A, A] C Np, then A is either alternative or strongly (—1, 1). We then assume
A is a finite-dimensional right alternative algebra with [A, A] C Np, and prove the
following: (1) If A is a nil algebra over a field of characteristic ^ 2, then A is nilpotent.
(2) (Wedderburn Decomposition) Let the algebra A be over a field with characteristic
7̂  2, 3, and A/K be separable, where K is the nil radical of A. Then there exists a
subalgebra 5 of A such that A = 5 © K (vector space direct sum). It is known that
neither of these results holds for finite-dimensional right alternative algebras in general
[2, 20].

Finally, we note that in addition to (1) we shall also make use of the following
identities:

(1') {x, y, z) + (x, z, y) = 0,

(2) [xy, z] - x[y, z) - [a;, z]y = (x, y, z) - (x, z, y) + (z, x, y),

(3) (xy, z, w) + (x, y, [z, w}) = x(y, z, w) + (x, z, w)y,

(4) [[as, y], z) + [[y, z], x] + [[z, x], y] = 2{{x, y, z) + {y, z, x) + (z, x, y)}.
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Identity (1 ' ) is just the linearised form of (1). A straightforward verification shows that
(2) holds in any algebra. Identities (3) and (4) hold in any right alternative algebra
with characteristic ^ 2, for example see [19].

2. NlLPOTENCY

We first consider the variety of right alternative algebras which satisfy the identity
([x, y], z, w) = 0. As usual, for any algebra A we denote by La and Ra the operators
of left and right multiplication by a £ A. Using an argument analogous to that used
by Slin'ko for (—1, 1) algebras [12], we prove:

THEOREM 1 . Let A be a right alternative algebra such that [A, A] C Nt. For
each natural number n there exists a natural number f(n) such that A^n^ C ,4.[n].

PROOF: AS noted in [16], if / is an ideal in a right alternative algebra A, then
AI is also an ideal. In particular, A^n] is an ideal of A for each n .

Our proof will be by induction on n. Since A = A^ and A2 = A{2], we start with
/ ( I ) = 1 and / (2) = 2. Suppose then there exists a number f(n — 1) ^ 2 such that
4 / («- i ) c A[ n_!] . We first consider A^^R^ ...RXk, where k ^ 3. The identity
([x, y], z, w) = 0 written in operator form gives

RyRzRy, = RyRzw ~\~ LyRzRw ~ LyRzw

Using this to substitute for RXlRX2RX3, we see A[n_1]RxlRX2RX3 ...RXk C
A\n_i\RXlRX2X3 ...RXk + A[n_!](LXlRXiRX3 ...RXk - LXIRX2X3 ...RXk). Thus, since
A{n_^LXl C A[n] and A[n] is an ideal, we have A[n_!]RXl ... RXk C A[n^i]RxlRXjX3 ...

RXk + A[n] Applying this same argument to A[n-i]RXlRXjX3 • • • RXk , after k — 2 such
procedures we arrive at A^n_^Rxl ...RXk C A[n_^RXlR^X2X3)_)xk + A[n]. Now let

k — 1 = f(n — 1). Then using -/![„_!] is an ideal and our induction assumption, we
see A[n-i]RXlR((X2X3)...)Xk C A[n^ ]RAt(n-i) C A^n_^RA[nl] C A^n_^A[n^ C A[n].
Thus we have A[n_i]RXl ... Rx,,n_1)+1 Q 4̂[n] >

 a n ( i s o it follows that

(*) J4[n_i]5i . . .5 / ( n_1)+ 1C4[n] , where Si is either LXi or RXi.

We now let t > 1 be an integer such that 21"1 < / ( n - 1 ) + 1 ^ 2*.
Then A*'+'(n-1)+1 C A ^ ' ^ S , C . . . C A* St... 5 / ( n _ 1 ) + 1 C

J4/(n-i>51... S/(n_!)+1 C A[n_1]5i... 5/(n_1)+1 C A[n], using our induction assump-
tion and (*). Thus it suffices to take f(n) — 21+/(n~1)+1

 ( which completes our induc-
tion and the proof of the theorem. D

COROLLARY. Let A be a right alternative algebra such that [A, A] C Nt. If A
is left nilpotent, then A is nilpotent.

In [2] Dorofeev constructed an example of a finite-dimensional right alternative al-
gebra that is right nilpotent but not nilpotent. This algebra A has basis {a, b, c, d, e},
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with the nonzero products of basis elements being ab — —ba = ae = —ea = db — —bd =
—c, ac — d, be = e. A straightforward computation shows that [A, A] is contained in
the subspace with basis {c, d, e}, and then that [A, A] C Ni. We also note that the
subspaces with bases {a, c, d, e} and {6, c, d, e} are nilpotent ideals whose sum is A.
Thus it follows that the locally nilpotent radical doesn't exist in the variety of right
alternative algebras satisfying ([a;, y], z, w) — 0.

We next consider nilpotency in the variety of right alternative algebras which satisfy
the identity (a:, y, [z, to]) = 0.

THEOREM 2 . Let A be a right alternative algebra, over a commutative-associative
ring with 1/2, such that [A, A] C Nr. If A is right nilpotent, then A is nilpotent.

PROOF: First, for any nonassociative algebra A, let A^ = A and define induc-
tively A<-n) = (A^"-1))2. Then if 4<m> = 0 , with TO the least such integer, the algebra
A is called solvable of index m. Now it is immediate that any right nilpotent algebra
is solvable, and so to prove the theorem we induct on the index of solvability of A.
For a start, it is clear A is nilpotent when A = A^ = 0 or A2 — A^ — 0. Thus by
induction we can assume A2 is nilpotent, since A2 is a right nilpotent right alternative
algebra which satisfies (x, y, [z, w]) = 0 and has solvable index one less than that of
A. In particular, let (A2)n — 0.

Now from the proof of Theorem 1 in [7], iVr — {n E Nr \ nA C Nr} is an ideal
of A such that [[A, A], A] C 7?r.. Thus AfNr is a right nilpotent strongly ( - 1 , 1)
algebra, over a commutative-associative ring with 1/2, and so by Theorem 5 in [10]
A/Nr is nilpotent. In particular, we must have (A)LXl .. .LXm C Nr for some integer
m > 0. Also, using that Nr is an ideal contained in Nr, for 2n factors of A we
have 4(,4(...jl(A/Vr))) = A2(A(... A(A~Nr))) - . . . - A2(A2(. ..A2(A2Wr))) =

(A2)2(A*(...A2(A2Nr))) = . . . = (({(A2)2A2)A2...)A2)Nr C (A2)nNr = 0,

that is (Nr)Lyi ...Lyin — 0. Thus it now follows that (A)LXl ...LXmLyi ...Ly3n C
(lVr)Xyi ...Ly2n — 0, and so A is left nilpotent. But by Lemma 1 in [16], a right
alternative algebra that is both left and right nilpotent is nilpotent. This completes our
induction, and so proves the theorem. D

COROLLARY . Let A be a right alternative algebra, over a commutative-associative
ring containing 1/2, suci that [A, A] C Nr. II A satisfies tie minimum condition on
right ideals, then the quasi-regular radical 3(A) of A is nilpotent.

PROOF: By [15] J(^4) is right nilpotent, and so by Theorem 2 J(A) is in fact
nilpotent. U

In [11] Pchelincev constructed an example of a right nilpotent right alternative
algebra A that is not nilpotent. We note that a straightforward verification shows
[A, A] C Np, so Theorem 2 cannot be extended to the variety of right alternative
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algebras satisfying (x, x, [y, z\) = 0. Also, in [16] Slin'ko constructed an example of a
left nilpotent right alternative algebra A that is not nilpotent. This example has the
property A A2 = 0, and so obviously satisfies the identity (x, y, [z, w}) = 0.

3. ALTERNATIVE NUCLEUS

In this section we consider the variety of right alternative algebras which satisfy
the identity (x, x, [y, z\) — 0.

PROPOSITION 1 . Let A be a. right alternative algebra, with characteristic ^ 2.

If [A, A]CNp, then Tip = {v E Np \ vAQ Np} is an ideal of A such that [Np, A] C

Nfi.

PROOF: By Theorem 2 in [19], Tip is an ideal of A. Let v E Np and y, z E A.

Using (2) and ( I 1 ) , we see

[v, z]y = [vy, z] - v[y, z] - (v, y, z) + (v, z, y) - (z, v, y)

= [vy, z) - v[y, z) + 2(v, z, y) + (z, y, v).

Now [A, A] C Np by assumption, and JV̂g is a subalgebra of A by Lemma 1 in [19].
Also, (Np, A, A) C Np by the Corollary to Lemma 6 in [19]; and (4, A, Np) C Np by
Lemma 3.1 in [9]. Thus it follows [v, z]y G Np, that is, [Np, A] C iV^, which completes
the proof. D

As usual, an algebra A is prime if BC = 0 for ideals B and C of A implies either
B = 0 o r C = 0.

THEOREM 3 . Let A be a prime right alternative algebra with characteristic ^ 2.
If [A, A] C Np, then A is either alternative or strongly (—1, 1).

PROOF: Let M be the submodule of A generated by all associators of the form
(x, x, y). By Lemma 11 in [19], M+MA is an ideal of A such that (M + MA)~Np = 0 .
Since A is prime, either M + MA — 0, so A is alternative; or by Proposition 1,
[[A, A), A] C [Nfi, A] C N~p = 0, so A is strongly ( - 1 , 1). D

COROLLARY. Let A be a prime right alternative algebra with characteristic ^
2, 3. If [A, A] C Np, then A is alternative if A satisfies any of the following conditions:

(i) A is without nonzero locally nilpotent ideals,
(ii) A is finitely-generated,

(iii) A has an idempotent e ^ 0, 1,
(iv) A satisfies the minimum condition on right or left ideals.

PROOF: Let A be a strongly (—1, 1) algebra. Then A is associative under con-
dition (i) by Corollary 2 to Theorem 3 in [19]. If A is prime, then A is associative
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under condition (ii) by Theorem 5 in [4], and under condition (iii) by Theorem 2 in
[18]. Under condition (iv), the locally nilpotent radical of A is nilpotent by Theorem
3 in [12]. Since if / is an ideal of A so is /*, this means that if A is prime, then
condition (iv) implies condition (i), that is, A is associative. U

THEOREM 4 . Let A be a finite-dimensional right alternative nil algebra over a
field of characteristic ̂  2. If [A, A] C Np, then A is nilpotent.

PROOF: We first note that, over a field of characteristic ^ 2, any finite-
dimensional right alternative nil algebra is right nilpotent, for example [15]. Our proof
of the theorem will be by induction on the dimension of A, with dim(.4.) = 1 being
immediate. Now by Proposition 1 we have [[.A, A], .A] C Np. Thus if Np = 0, then A
is a strongly ( — 1,1) nil algebra, and so A is nilpotent by Theorem 4 in [3]. We can
therefore assume Np ^ 0, and then let / be a minimal nonzero ideal of A contained
in Np. As noted in the proof of Theorem 1, AI is also an ideal of A; and so by the
minimality of / we must have either AI — 0 or AI = I.

Suppose first that it is the case that AI = 0. Now by induction the algebra A/1 is
nilpotent, since 1^0 implies dim (A/1) < dim (A). Thus An C I for some integer n,
whence A[n+i] = -A-<4[n] Q AAn C AI — 0. This shows the right alternative algebra A
is both left and right nilpotent, and so in this cas A is nilpotent by Lemma 1 in [16].

We suppose next that it's the case AI — I. By (1') we have [A21)A C (A2A)l +
A2(IA) + A2(AI) C A2I. Also, since I C Np implies

(**) (x, y, m) + (y, x, m) = 0 for all x, y £ A and m £ / ,

we see A{A2l) C A2(AI) + (AA2)l + (A2A)I C A2I. Thus A2I is an ideal of A,
and so by the minimality of / we have either A21 — 0 or A21 = I. We suppose first
that A21 — I. Since A is right nilpotent, we know A2 ^ A. Thus by induction the
ideal A2 is nilpotent, say (-A2) = 0. Then for k factors of A2, since A21 = / we
have / = A2(A2(...(A2(A21)))) C (A2)h = 0, which is a contradiction. Suppose
next that A21 = 0. We let {xi, . . . , x,} be a basis for A and consider a product of
the form Xi,+l (^t, (• • • (*;, (xjt /)))), where the s + 1 factors x,. are any elements from
this basis. Now from (**) and A21 = 0, we see x{yl) = — y(xl) for any x, y 6 A.
Then since / is an ideal contained in Np, and since some basis element Xi must
appear as a factor twice in the indicated product, we see £i,+1 (^i.(• •• (xij(xiiI)))) —
±Xj(xj(... (xikl))) C x)I C A21 = 0. Thus for s + 1 factors of A, since AI = I it
now follows that / = A(A(... (A(AI)))) = 0, which again is a contradiction. This then
shows the case AI = I is impossible, which completes our induction and the proof of
the theorem. D

We next let e ^ 0, 1 be an idempotent in a right alternative algebra A with
characteristic ^ 2. With respect to e, one has the Albert decomposition A = A\ ©
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Hi ffi Ho ffi Ao (module direct sum), where A< = {z £ A | ex — ix — xe}, Hj ffi H0 =
{z £ A | ez + ze = z}, ^ e C i j , and eHo Q Ao [1]. If (e, e, A) = 0, then this Albert
decomposition can be refined to the Peirce decomposition A = An ffi Aio ffi Aoi ffi Aoo
(module direct sum), where Aij = {x £ A \ ex = ix, xe = jx} for i, j = 0, 1. In this
latter case, one also has the following multiplication table for the submodules Aij [5]:

II A n | Aio I Aoi I Aoo I
An
Aio
Aoi

Aoo

An + Aoi
0

Aoi

0

Aio
An "1" Aoi

Aoo
Aoi

Aio

An
Aio + Aoo

Aoi

0
Aio
0

Aio + Aoo

PROPOSITION 2 . Let A be a right alternative algebra, with characteristic ^ 2 ,
such that [A, A] C Np. H e ^ 0,1 is an idempotent in A, then A permits a Peirce
decomposition with respect to e, and the multiplication table is as follows:

An
Aio

Aoi

Aoo

An + Ao!
0

Aoi

0
Aoo
0

0
An
Aio
Aoi

0
Aio

0
Aio + Aoo

Also, if Xij denotes a generic element of Aij, then x\j = 0 for i ^ j .

PROOF: First, setting x = y = e in (3) and using [A, A] C Np, we see
e(e, z, w) + (e, z, w)e = (e2, z, w) + (e, e, [z, w]) = (e, z, w), that is (e, A, A) C
Hi ®H0. In particular, this means (e, e, Hi) C A{ n (#i ffi Ho) - 0. Thus
(e, e, A) — (e, e, At + I7i + Ho + Ao) = (e, e, Hi) + (e, e, Ho) = 0, and so A per-
mits a Peirce decomposition with respect to e.

Next, since [A, A] C Np, we have (i — j)xij — [e, Xij] G Np for i ^ j , that is
(y, z, Xij) = —(z, y, Xij). Using this and the indicated multiplication table for a Peirce
decomposition in any right alternative algebra, we can now compute as follows. First
{j - i)xijyij = {x^, e, yi;) = - (e , xtj, y{j) = -ixijyij + e{xijyij), whence e(xijyij) =
jXijVij. Thus Aij Aij C Aji. Next (t - j)as«j/ji = (zti, e, yj{) = -(e, xn, yji) = 0,
since e{xnyji) = ixuyji. Thus An Aji = 0. This then establishes the multiplication ta-
ble as stated in the proposition, and from it we see that also (i — j)x^ — (e, x^, x^) = 0

by (l). D

COROLLARY. II A is a right alternative algebra, with characteristic ^ 2, suci
that [A, A] C Np, then any idempotent in A is in Np.

PROOF: Since it is clear we can assume the idempotent e ^ 0, 1, we let x =
xn + «10 + zOi + zoo • Now from just the definition of Aij, we see (x^, e, Xjk) = 0.
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Also, from the multiplication table in Proposition 2 and the fact that x -̂ = 0 for i ^ j ,

we see (as«, e, Xji) = (xu, e, Xjj) = (xij, e, x«) = (xij, e, z t ; ) = 0. Thus by (I1)
(x, x, e) — —(x, e, x) — - ( i n + a;10 + xOi + x00, e, i n + x10 + x01 -f a!Oo) = 0 for all
x € A, which proves the corollary. D

We note that the multiplication table in Proposition 2 cannot be reduced further
to that for an alternative algebra. For let A be the finite-dimensional algebra with basis
{1, e, zio, SEOO) yoo}i where 1 is a unity, e2 = e, and the only other nonzero products
of basis elements are ezjo = Zoojfoo = —yoô oo = zio- A straightforward verification
shows that over any field A is a right alternative algebra. Also, the subspace [A, A]

has basis {zio}, whence it follows directly that [A, A] C (JV/ PI Nr) C Np. However,
A%0 <£ AOo for the idempotent e, and A2

n <£ An for the idempotent 1 — e.

THEOREM 5 . (Wedderburn Decomposition). Let A be a. finite-dimensional right
alternative algebra, over a field F of characteristic ^ 2, 3, with [A, A] C Np. If A/K
is separable, where K is the nil radical of A, then there exists a subalgebra S of A
such that A = S @ K (vector space direct sum).

PROOF: The proof is by induction on the dimension of A, with the initial case
dim(.4.) = 1 being immediate. Then as in [8], by induction one can assume the nil
radical K of A does not properly contain any nonzero ideals of A. Let (Alt) denote
the ideal of A generated by all associators of the form (x, x, y). Then by [14, 15] we
have (Alt) C K. Now if (Alt) = 0, then the algebra A is alternative; and so A has a
Wedderburn decomposition by [13]. Thus we can assume K = (Alt).

We next let S(xy, x, y) = (xy, x, y) + (x, y, xy) + (y, xy, x). Now since the
algebra .4./(Alt) is alternative, by the well-known Artin's theorem we must have
S(xy, x, y) G (Alt). Also, by Proposition 1 the ideal Np contains [[xy, x], y] +

[[x, y], xy] + [[y, xy], x]. Thus by identity (4) we see 2S(xy, x, y) e (Alt) n Tip.

This means that if (Alt) D Np = 0, then the algebra A must satisfy the identity
S(xy, x, y) = 0; and in this case A has a Wedderburn decomposition by Theorem 5 in
[17]. Thus we can now assume (Alt) — K C Np. In particular, by Lemma 11 in [19]
we now have (Alt)2 C (Alt)iV^ — 0, and so as in [8] one can assume the base field F

to be algebraically closed.

Now since K = (Alt), by [15] we know i4/(Alt) ~ I?i©.. .@Bt, where each minimal
ideal Bi is either an associative matrix algebra over a division ring or a Cayley-Dickson
algebra. Since (Alt) C ~Np, we can thus take the ideal ~Np/(Alt) ~ Bk+1 0 . . . © Bt

(or 0), whence A/Wp ~ (A/ (Alt))/(Np/(Alt)) ~ Bx @ ... @ Bk (where Jfe = t if
Np — (Alt)). Now by Proposition 1 we have [[.A, A], A] C Np, so A/Np is a strongly
(—1, 1) algebra. Thus for 1 ^ i ^ A; each Bi is a simple strongly (—1, 1) algebra with
idempotent. Since characteristic F ^ 2, 3, by [6] this means each of these JBj's is a
field. But the field F is algebraically closed, so for 1 ^ i ^ k we must in fact have
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Bi ~ F[ui], where [«j] = ut- + (Alt) is idempotent.

Now [u™] = [u;]m = [ui\, so Ui cannot be nilpotent. Thus the finite-dimensional

associative subalgebra generated by u^ in A must contain an idempotent ê  = f(u{),

where f(x) is some polynomial over F. Then [e^ = [/(«<)] = a[«i] , where a = / ( I ) £

F; so a\ui] = [e<] = [e^]2 = a2[uj]2 = a 2 [« i ] . Now the idempotent e< cannot be in

the nil radical K = (Alt), so a[i*j] ^ 0, that is a / 0 . Thus a = 1, and so each

F[ui] = F[e{] where e< is an idempotent in A. In particular, by the Corollary to

Proposition 2, each ê  € iV^.

We now take a basis for K = (Alt) C Np, and extend this to a basis {xlf . . . , x,}

for Np. Then {z i , . . . , x,, e i , . . . , ej.} C Np will be a basis for A. But this means the

algebra A is alternative, and so as noted earlier A has a Wedderburn decomposition

by [13]. This then completes our induction, and with it the proof of the theorem. D
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