SOME RADICAL PROPERTIES OF JORDAN MATRIX RINGS

MICHAEL RICH

Introduction. Let A be a ring (not necessarily associative) in which $2 x=a$ has a unique solution for each $a \in A$. Then it is known that if A contains an identity element 1 and an involution $j: x \mapsto \bar{x}$ and if J_{a} is the canonical involution on A_{n} determined by

$$
a=\left(\begin{array}{cc}
a_{1} & 0 \\
& a_{2} \\
0 & \\
0 & a_{n}
\end{array}\right)
$$

(i.e., $\left.J_{a}:\left(x_{i j}\right) \mapsto a^{-1}\left(\bar{x}_{i j}\right) a\right)$ where the $a_{i}, a_{\imath}{ }^{-1}, 1 \leqq i \leqq n$ are symmetric elements in the nucleus of A then $H\left(A_{n}, J_{a}\right)$, the set of symmetric elements of A_{n}, for $n \geqq 3$ is a Jordan ring if and only if either A is associative or $n=3$ and A is an alternative ring whose symmetric elements lie in its nucleus [$\mathbf{2}, \mathrm{p} .127]$. In this paper we show that for certain radicals there is a natural connection between the radical of A and that of $H\left(A_{n}, J_{a}\right)$. In particular, if R denotes the prime or Levitzki radical then $R\left(H\left(A_{n}, J_{a}\right)\right)=H\left(A_{n}, J_{a}\right) \cap R(A)_{n}$. Also, if A is 3 -torsion free then the same result holds for the strongly semiprime radical. As usual, the associator (x, y, z) denotes $(x y) z-x(y z)$ and the commutator $[x, y]$ denotes $x y-y x$. With this notation a ring A is alternative if $(y, x, x)=(x, x, y)=0$ for all x, y in A and Jordan if $[x, y]=\left(x^{2}, y, x\right)=0$ for all x, y in A. The nucleus, $N(A)$, of an arbitrary ring A is defined by

$$
N(A)=\{n \in A \mid(n, x, y)=(x, n, y)=(x, y, n)=0 \forall x, y \in A\} .
$$

Recall that if A is an alternative ring then the Moufang laws
(1) $[(a x) y] x=a(x y x)$
(2) $x[y(x a)]=(x y x) a$
(3) $(x a)(y x)=x(a y) x$
hold for all x, y, a in A.
We shall rely heavily on the fact that if $H\left(A_{n}, J_{a}\right), n \geqq 3$, is Jordan then there is a one-to-one correspondance between the j-invariant ideals I of A and the ideals of $H\left(A_{n}, J_{a}\right)$ given by $I \mapsto I_{n} \cap H\left(A_{n}, J_{a}\right)$. Also an ideal $K=I_{n} \cap H\left(A_{n}, J_{a}\right)$ of $H\left(A_{n}, J_{a}\right)$ satisfies $K^{\cdot 2}=0$ if and only if $I^{2}=0[\mathbf{2}, \mathrm{p} .129]\left(K^{. n}\right.$ denotes all sums of monomials of degree $\geqq n$ in the Jordan ring K). It is also clear from the argument in $[\mathbf{2}]$ that $K^{\cdot 3}=0$ if and only if $I^{3}=0$.

[^0]1. The prime radical P. If A is an associative ring then it is well known that $P\left(A_{n}\right)=P(A)_{n}$. In this case J_{a} is an involution acting on the associative ring A_{n} so that by [1] we have $P\left(H\left(A_{n}, J_{a}\right)\right)=H\left(A_{n}, J_{a}\right) \cap P\left(A_{n}\right)$. Thus we have $P\left(H\left(A_{n}, J_{a}\right)\right)=H\left(A_{n}, J_{a}\right) \cap P(A)_{n}$ if $n>3$. In this section we prove the same result for $n=3$; i.e., when A is an alternative ring with identity whose symmetric elements lie in its nucleus.

Lemma 1. If A is an alternative ring with involution j, then A is semiprime if and only if A is j-semiprime.

Proof. Clearly, if A is semiprime then it is j-semiprime. Conversely, if A is j-semiprime then it has no nilpotent j-invariant ideals. If A is not semiprime then it contains an ideal $I \neq 0$ such that $I^{2}=0$. Then $I+I^{j}$ is a j invariant ideal of A and $\left(I+I^{j}\right)^{2}\left(I+I^{j}\right)^{2}=0$. Since squares of ideals are ideals we have $\left(I+I^{j}\right)^{2}=0$ which implies that $I+I^{j}=0$. Thus, I is zero, a contradiction.

The following lemma follows easily from Lemma 1 and the one to one correspondence between Jordan ideals of $H\left(A_{n}, J_{a}\right)$ which cube to zero and ideals of A which cube to zero.

Lemma 2. If $H\left(A_{n}, J_{a}\right)$ is a Jordan ring, then $H\left(A_{n}, J_{a}\right)$ is semiprime if and only if A is semiprime.

Theorem 1. If A is a ring with identity and J_{a} a canonical involution on A_{n} for $n \geqq 3$ such that $H\left(A_{n}, J_{a}\right)$ is a Jordan ring, then

$$
P\left(H\left(A_{n}, J_{a}\right)\right)=H\left(A_{n}, J_{a}\right) \cap P(A)_{n} .
$$

Proof. As mentioned earlier we need only concern ourselves with the case $n=3$ for which A is an alternative ring with involution j whose symmetric elements lie in its nucleus. Now, for any ideal K of $A,(A / K)_{3} \cong A_{3} / K_{3}$. Therefore, if K is a j-invariant ideal of A then the involution j determines a natural involution on A / K and since A is 2-torsion free we have

$$
\begin{equation*}
H\left((A / K)_{3}, J_{u}\right) \cong H\left(A_{3} / K_{3}, J_{u}\right) \cong H /\left(H \cap K_{3}\right) \tag{4}
\end{equation*}
$$

where H denotes $H\left(A_{3}, J_{a}\right)$ for convenience. Let $K=P(A)$. Since $A / P(A)$ is semiprime we conclude from Lemma 2 that $H\left(A_{3} / P(A)_{3}, J_{a}\right)$ and hence $H /\left(H \cap P(A)_{3}\right)$ is a semiprime Jordan ring. But this implies that $P(H) \subseteq$ $H \cap P(A)_{3}$.

Conversely, by the $1-1$ correspondence between ideals of H and j-invariant ideals of A we may assume that $P(H)=H \cap B_{3}$ for some j-invariant ideal B of A. Then by (4) we have

$$
0=P\left(H /\left(H \cap B_{3}\right)\right)=P\left(H\left((A / B)_{3}, J_{a}\right)\right)
$$

Therefore, by Lemma $2 P(A / B)=0$ from which it follows that $P(A) \subseteq B$. Thus $P\left(A_{3}\right) \cap H \subseteq B_{3} \cap H=P(H)$ to complete the proof.
2. The strongly semiprime radical $S P$. An element x of an alternative ring A is called an absolute zero divisor if $x A x=0$. Similarly an element x of a Jordan ring J is called an absolute zero divisor if $J U_{x}=0$ where $U_{x}=2 R_{x}^{2}-R_{x^{2}}$ for R_{x} the multiplication operator in $J, a R_{x}=a x$. An ideal B of a ring R (alternative, Jordan) is called strongly semiprime if R / B contains no absolute zero divisors. The strongly semiprime radical, $S P(R)$, of R is the intersection of all the strongly semiprime ideals of R. Clearly $R /(S P(R))$ is strongly semiprime. If R is associative then $P(R)=S P(R)$. If R is Jordan then $P(R) \subseteq S P(R)[\mathbf{1}]$ and if R is 3 -torsion free alternative then $P(R)=$ $S P(R)[\mathbf{4}]$. Finally it is shown in [4] that if R is a 2 and 3 -torsion free alternative ring with involution and S is the Jordan ring of symmetric elements, then $P(S)=S \cap P(R)$.

If A is an associative ring then by [1] we have $S P\left(H\left(A_{n}, J_{a}\right)\right)=H\left(A_{n}, J_{a}\right) \cap$ $S P\left(A_{n}\right)$. Thus $S P\left(H\left(A_{n}, J_{a}\right)\right)=H\left(A_{n}, J_{a}\right) \cap S P(A)_{n}$. Hence, if $n>3$ and $H=H\left(A_{n}, J_{a}\right)$ is Jordan then $S P(H)=H \cap S P(A)_{n}$. We shall extend this to the case in which A is a 3 -torsion free alternative ring with identity. Thus, throughout this section we assume that A is 3 -torsion free and that $H\left(A_{3}, J_{a}\right)$ is a Jordan ring. Hence A is alternative with 1 with symmetric elements in the nucleus.

Lemma 3. If A is a 3-torsion free alternative ring then $\operatorname{SP}\left(H\left(A_{3}, J_{a}\right)\right) \supseteq$ $H\left(A_{3}, J_{a}\right) \cap S P(A)_{3}$.

Proof. By our earlier remarks $P(H) \subseteq S P(H)$ and since A is 3-torsion free, $P(A)=S P(A)$. By theorem 1, $P(H)=H \cap P(A)_{3}$. Putting these facts together we have

$$
S P(H) \supseteq P(H)=H \cap P(A)_{3}=H \cap S P(A)_{3}
$$

We shall prove the inverse inclusion to Lemma 3 by a series of lemmas.
Lemma 4. If A strongly semiprime and $X=\left(x_{i j}\right) ; i, j=1,2,3$ is an element of $H\left(A_{3}, J_{a}\right)$ such that $H\left(A_{3}, J_{a}\right) U_{X}=0$ then $x_{i i}=0$ for $i=1,2,3$.

Proof. Let $s \in S$, the set of symmetric elements of A. Then

$$
\hat{s}_{1}=\left(\begin{array}{rrr}
s a_{1} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \in H\left(A_{3}, J_{a}\right)
$$

and by hypothesis $\widehat{s a}_{1} U_{X}=0$. A direct calculation shows that the $(1,1)$ component of $\widehat{s a_{1}} U_{X}$ is

$$
\begin{aligned}
\left(s a_{1}\right) U_{x_{11}}+\frac{1}{2}\left[\left(s a_{1}, x_{12}, x_{21}\right)-\left(x_{12}, x_{21},\right.\right. & \left.\left.s a_{1}\right)\right] \\
& +\frac{1}{2}\left[\left(s a_{1}, x_{13}, x_{31}\right)-\left(x_{13}, x_{31}, s a_{1}\right)\right] .
\end{aligned}
$$

Since A is alternative (or since $s a_{1} \in N(A)$) each of the last two terms is zero. Therefore $\left(s a_{1}\right) U_{x_{11}}=0$. Also, since $X \in H\left(A_{3}, J_{a}\right)$ it follows that $X=Y a$ where $Y=\left(y_{i j}\right) \in H\left(A_{3}\right)$, the set of symmetric elements of A_{3} under
the standard involution (i.e., $a=I$) $[\mathbf{2}, \mathrm{p} .60]$. Therefore $x_{11}=y_{1{ }^{\prime} a_{1}}$ and $\left(s a_{1}\right) U_{\nu_{11} a_{1}}=0$. Consider the involution $I_{a_{1}}$ on A where $I_{a_{1}}: x \mapsto a_{1}{ }^{-1} \bar{x}\left(l_{1}\right.$. Then the set T of symmetric elements of A under the involution $I_{a_{1}}$ is given by $T=\left\{s a_{1} \mid s \in S\right\}$. Thus $T U_{\nu_{11} a_{1}}=0$. Since $y_{11} \in S, y_{11} a_{1} \in T$. Therefore, $y_{11} a_{1}$ is an absolute zero divisor of the Jordan ring T. But by [4]

$$
S P(T)=T \cap S P(A)
$$

Since A is strongly semiprime, it follows that $S P(T)=0$. Therefore $y_{11} l_{1}=$ $x_{11}=0$. In similar fashion by letting U_{X} act on $\widehat{\hat{c i}_{2}}=\left(s a_{2}\right) e_{22}$ and on $\widehat{\hat{s i n}}=$ $\left(s a_{3}\right) e_{33}$ and by considering the involutions $I_{a_{2}}$ and $I_{a_{3}}$ we may conclude that $x_{22}=x_{33}=0$.

It follows from our proof that any element X of $H\left(A_{3}, J_{a}\right)$ which is an absolute zero divisor is of the form

$$
X=\left(\begin{array}{ccc}
0 & y_{12} a_{2} & y_{13} a_{3} \\
\bar{y}_{12} a_{1} & 0 & y_{23} a_{3} \\
\bar{y}_{13} a_{1} & \bar{y}_{23} a_{2} & 0
\end{array}\right)
$$

Lemma 5. If A is strongly semiprime and

$$
X=\left(\begin{array}{ccc}
0 & y_{12} a_{2} & 0 \\
\bar{y}_{12} a_{1} & 0 & y_{23} a_{3} \\
\bar{y}_{13} a_{1} & \bar{y}_{23} a_{2} & 0
\end{array}\right)
$$

is an absolute zero divisor of $H\left(A_{3}, J_{a}\right)$ then $y_{i j} S \bar{y}_{i j}=0$ for $i, j=1,2,3$.
Proof. Since $N(A)$ is a subring of $A, s a_{i} \in N(A)$ for every $s \in S$. Thus, it follows that the $(2,2)$ component of $\widehat{s a_{1}} U_{X}$ can be written as $2 \bar{y}_{12}\left(l_{1} s l_{1} y_{12}\left(l_{2}\right.\right.$ and its $(3,3)$ component as $2 \bar{y}_{13} l_{1} s a_{1} y_{13} a_{3}$. Also the $(3,3)$ component of $\widehat{\hat{s i a}}{ }_{2} U_{X}$ is $2 \bar{y}_{23} l_{2} s a_{2} y_{23} l_{3}$. Therefore, since A is 2 -torsion free we have $\bar{y}_{i j} l_{i} s l_{i} y_{i j} l_{j}=0$ for all $i \leqq j$. Since a_{j} is invertible this reduces to $\bar{y}_{i j} l_{i} s a_{i} y_{i j}=0$. If we multiply on the left by $a_{i} y_{i j} s^{\prime}$ and on the right by $s^{\prime} \bar{y}_{i j} a_{i}$ for any $s^{\prime} \in S$ we obtain $\left(a_{i} y_{i j} s^{\prime} \bar{y}_{i j} a_{i}\right) s\left(a_{i} y_{i j} s^{\prime} \bar{y}_{i j} a_{i}\right)=0$. Now $a_{i} y_{i j} s^{\prime} \bar{y}_{i j} l_{i} \in S$. Therefore it is an absolute zero divisor of S. But S is strongly semiprime since A is. Therefore we have $a_{i} y_{i j} S \bar{y}_{i j} a_{i}=0$ for all $i \leqq j$. Since a_{i} is invertible it follows that $y_{i j} S \bar{y}_{i j}=0$ for all $i \leqq j$. Continuing, we obtain $\bar{y}_{i j} s y_{i j} S \bar{y}_{i j} s y_{i j}=0$ for any $s \in S$. Thus since $\bar{y}_{i j} s y_{i j} \in S$ it follows that $\bar{y}_{i j} S y_{i j}=0$ for all $i \leqq j$. But since $\bar{y}_{i j}=y_{j i}$ we have $y_{j i} S \bar{y}_{j i}=0$ for all $i \leqq j$. Thus, in all cases $y_{i j} S \bar{y}_{i j}=0$.

Lemma 6. Under the hypothesis of Lemma 5, $y_{i j} S y_{i j}=y_{i j}+\bar{y}_{i j}=0$ for $i, j=1,2,3$.

Proof. We first show that $y_{i j} S y_{i j}=0$ for all i, j. By hypothesis

$$
\left[\left(x a_{2}\right) e_{12}+\left(\bar{x} a_{1}\right) e_{21}\right] U_{x}=0
$$

since for any x in $A\left(x a_{2}\right) e_{12}+\left(\bar{x} a_{1}\right) e_{21} \in H\left(A_{3}, J_{1}\right)$. Thus the $(2,1)$ component of $\left[\left(x a_{2}\right) e_{12}+\left(\bar{x} a_{1}\right) e_{21}\right] U_{X}$ is zero for each x in A. Now, since $y_{i j} S \bar{y}_{i j}=0$
for all i, j and since $a_{i} \in S$ a straightforward computation gives
(5) $\left[\left(\bar{x} a_{1}\right)\left(y_{12} a_{2}\right)+\left(\bar{y}_{12} a_{1}\right)\left(x a_{2}\right)\right]\left(\bar{y}_{12} a_{1}\right)+\left(\bar{y}_{12} a_{1}\right)\left[\left(x a_{2}\right)\left(\bar{y}_{12} a_{1}\right)\right.$

$$
\left.+\left(y_{12} a_{2}\right)\left(\bar{x} a_{1}\right)\right]+\left[\left(\bar{x} a_{1}\right)\left(y_{13} a_{3}\right)\right]\left(\bar{y}_{13} a_{1}\right)+\left(y_{23} a_{3}\right)\left[\left(\bar{y}_{23} a_{2}\right)\left(\bar{x} a_{1}\right)\right]=0 .
$$

Now, let $x=a_{1}^{-1} S l_{2}^{-1}$ for $s \in S$. Then $x \in N(A)$ and since $y_{i j} S \bar{y}_{i j}=0$ the $(2,1)$ component reduces to $2 \bar{y}_{12} s \bar{y}_{12} a_{1}=0$. Thus, $\bar{y}_{12} s \bar{y}_{12}=0$ for each $s \in S$ so that $\bar{y}_{12} S \bar{y}_{12}=0=y_{12} S y_{12}$. In similar fashion by considering

$$
\left[\left(x a_{3}\right) e_{13}+\left(\bar{x} a_{1}\right) e_{31}\right] U_{X}
$$

and $\left[\left(x a_{3}\right) e_{23}+\left(\bar{x} a_{2}\right) e_{32}\right] U_{X}$ we get $y_{i j} S y_{i j}=0$ for $i, j=1,2,3$.
For the second part of the lemma consider

$$
\begin{aligned}
S U_{y_{i j}+\bar{y}_{i j}}=S U_{y_{i j}, y_{i j}}+S U_{y_{i j}}+S U_{\bar{y}_{i j}}=y_{i j} S \bar{y}_{i j} & +\bar{y}_{i j} S y_{i j} \\
& +\bar{y}_{i j} S \bar{y}_{i j}+y_{i j} S y_{i j}=0
\end{aligned}
$$

by our previous result and Lemma 5 . Since $y_{i j}+\bar{y}_{i j} \in S$, if $y_{i j}+\bar{y}_{i j} \neq 0$ we would have a contradiction to the fact that A, and consequently S, is strongly semiprime. Therefore $y_{i j}+\bar{y}_{i j}=0$ for all i, j.

We are now able to prove the main theorem of this section.
Theorem 2. If A is a 3-torsion free ring with identity and J_{a} a canonical involution on A_{n} for $n \geqq 3$ such that $H\left(A_{n}, J_{a}\right)$ is a Jordan ring, then $S P\left(H\left(A_{n}, J_{a}\right)\right)=H\left(A_{n}, J_{a}\right) \cap S P(A)_{3}$.

Proof. If $n>3$ then A is associative and we are done as mentioned earlier. Assume now that $n=3$ so that A is an alternative ring. In view of Lemma 3 it is sufficient to prove that $S P\left(H\left(A_{3}, J_{a}\right)\right) \subseteq H\left(A_{3}, J_{a}\right) \cap S P(A)_{3}$. We first establish the result in the case in which A is strongly semiprime. In this case, if $H\left(A_{3}, J_{a}\right)$ is not strongly semiprime then there is an element $0 \neq X \in H\left(A_{3}, J_{a}\right)$ such that $H\left(A_{3}, J_{a}\right) U_{X}=0$. Then the results of Lemmas 4,5 , and 6 apply to

$$
X=\left(\begin{array}{ccc}
0 & y_{12} a_{2} & y_{13} a_{3} \\
\bar{y}_{12} a_{1} & 0 & y_{23} a_{3} \\
\bar{y}_{13} a_{1} & \bar{y}_{23} a_{2} & 0
\end{array}\right) .
$$

By Lemmas 5 and $6, y_{i j}+\bar{y}_{i j}=y_{i j} \bar{y}_{i j}=0$. Thus $y_{i j}{ }^{2}=0$ for all i, j. Since $\bar{y}_{i j}=-y_{i j}$, (5) reduces to:
(6) $\left[\left(y_{12} a_{1}\right)\left(x a_{2}\right)-\left(\bar{x} a_{1}\right)\left(y_{12} a_{2}\right)\right]\left(y_{12} a_{1}\right)$

$$
\begin{aligned}
+\left(y_{12} a_{1}\right)\left[\left(x a_{2}\right)\left(y_{12} a_{1}\right)-\left(y_{12} a_{2}\right)\left(\bar{x} a_{1}\right)\right]-[& \left.\left(\bar{x} a_{1}\right)\left(y_{13} a_{3}\right)\right]\left(y_{13} a_{1}\right) \\
& \left.-\left(y_{23} a_{3}\right)\left[y_{23} a_{2}\right)\left(\bar{x} a_{1}\right)\right]=0
\end{aligned}
$$

for any $x \in A$.
In (6) consider the term $\left[\left(\bar{x} a_{1}\right)\left(y_{12} a_{2}\right)\right]\left(y_{12} a_{1}\right)=\left[\left(\left(\left(\bar{x} a_{1}\right) y_{12}\right) a_{2}\right) y_{12}\right] a_{1}$ since $a_{1}, a_{2} \in N(A)$. But by (1), $\left[\left(\left(\left(\bar{x} a_{1}\right) y_{12}\right) a_{2}\right) y_{12}\right] a_{1}=\left[\left(\bar{x} a_{1}\right)\left(y_{12} a_{2} y_{12}\right)\right] a_{1}$. But by Lemma 6, $y_{12} a_{2} y_{12}=0$. Therefore $\left[\left(\bar{x} a_{1}\right)\left(y_{12} a_{2}\right)\right]\left(y_{12} a_{1}\right)=0$. Similarly
$\left[\left(\bar{x} l_{1}\right)\left(y_{13} a_{3}\right)\right]\left(y_{13} a_{1}\right)=0$. Also $\quad\left(y_{12} a_{1}\right)\left[\left(y_{12} a_{2}\right)\left(\bar{x} a_{1}\right)\right]=\left(y_{12} a_{1}\right)\left[y_{12}\left(c_{2} \bar{x} l_{1}\right)\right]=$ $y_{12}\left[a_{1}\left[y_{12}\left(a_{2} \bar{x} a_{1}\right)\right]\right]=\left(y_{12} a_{1} y_{12}\right)\left(a_{2} \bar{x} a_{1}\right)$ by (2). Therefore, by Lemma 6 , $\left(y_{12} a_{1}\right)\left[\left(y_{12} a_{2}\right)\left(\bar{x} a_{1}\right)\right]=0$. Similarly, $\left(y_{23} a_{3}\right)\left[\left(y_{23} a_{2}\right)\left(\bar{x} a_{1}\right)\right]=0$. Thus, (6) reduces to $2 y_{12}\left(a_{1} x a_{2}\right) y_{12} a_{1}=0$. Since A is 2 -torsion free and a_{1} and a_{2} are invertible this becomes $y_{12} A y_{12}=0$ so that by hypothesis $y_{12}=0$. In similar fashion we get $y_{i j}=0$ for all i, j. Thus $X=0$ and we have established that A strongly semiprime implies that $H\left(A_{3}, J_{a}\right)$ is strongly semiprime.

Assume now that A is not strongly semiprime. Since $A /(S P(A))$ is strongly semiprime it follows from our previous remark that $H\left((A /(S P(A)))_{3}, J_{a}\right)$ is strongly semiprime. But, as in the proof of theorem 1 ,

$$
\begin{aligned}
H\left((A /(S P(A)))_{3}, J_{a}\right) \cong H\left(A_{3} /\right. & \left.(S P(A))_{3}, J_{a}\right) \\
& \cong H\left(A_{3}, J_{a}\right) /\left(H\left(A_{3}, J_{a}\right) \cap\left(S P(A)_{3}\right) .\right.
\end{aligned}
$$

Therefore $H\left(A_{3}, J_{a}\right) /\left(H\left(A_{3}, J_{a}\right) \cap\left(S P(A)_{3}\right)\right.$ is strongly semiprime. It follows from the definition of the strongly semiprime radical that $S P\left(H\left(A_{3}, J_{a}\right)\right) \subseteq$ $H\left(A_{3}, J_{a}\right) \cap S P(A)_{3}$, completing the proof.

It is not known in general whether the prime radical and the strongly semiprime radical coincide for Jordan rings. In the case of a Jordan matrix ring, however, we have:

Corollary. If $H\left(A_{n}, J_{a}\right), n \geqq 3$, is a Jordan matrix ring determined by a 2 and 3-torsion free ring A with identity then $P\left(H\left(A_{n}, J_{a}\right)\right)=S P\left(H\left(A_{n}, J_{a}\right)\right)$.

Proof. If $n=3$ then A is alternative and since A is 3 -torsion free $P(A)=$ $S P(A)$. Thus, $S P\left(H\left(A_{3}, J_{a}\right)\right)=H\left(A_{3}, J_{a}\right) \cap S P(A)_{3}=H\left(A_{3}, J_{a}\right) \cap P(A)_{3}$ $=P\left(H\left(A_{3}, J_{a}\right)\right)$ by Theorems 1 and 2 . In case $n>3$ then A is associative and the same proof works without the assumption of 3 -torsion freeness.
3. The Levitzki radical L. Recall that a ring is called locally nilpotent if every finitely generated subring is nilpotent. The Levitzki radical, $L(A)$, of a ring A (associative, alternative, Jordan) is the maximal locally nilpotent ideal of $A . L(A)$ contains all locally nilpotent ideals of A and $A / L(A)$ is Levitzki semisimple. It is known that if A is a 2 -torsion free associative ring with involution * and S is the set of ${ }^{*}$-symmetric elements of A then $L(S)=S \cap L(A)$ [3]. We first treat the easy case in which A is associative. In this case we need not assume that A contains an identity element.

Lemma 7. If A is an associative ring then $L\left(A_{n}\right)=L(A)_{n}$ for any positive integer n.

Proof. $L(A)$ is a locally nilpotent ideal of A. Therefore, if C is a finitely generated subring of $L(A)_{n}$ generated by

$$
M_{1}=\sum_{i, j=1}^{n} r_{1 i j} e_{i j}, \ldots, M_{h}=\sum_{i, j=1}^{n} r_{h i j} e_{i j},
$$

then the ring D generated by all the $r_{t i j}, t=1, \ldots, h ; i, j=1, \ldots, n$ is a finitely generated subring of $L(A)$. Therefore there is a positive integer m such that $D^{m}=0$. But then $C^{m}=0$ and $L(A)_{n}$ is locally nilpotent. Therefore $L(A)_{n} \subseteq L\left(A_{n}\right)$.

For the converse assume first that A contains an identity element. Then if

$$
\sum_{i, j=1}^{n} b_{i j} e_{i j} \in L\left(A_{n}\right)
$$

it is easy to see that $b_{i j} e_{i j} \in L\left(A_{n}\right)$ for every i, j. Therefore $e_{1 i}\left(b_{i j} e_{i j}\right) e_{j 1}=$ $b_{i j} e_{11} \in L\left(A_{n}\right)$ for every i, j. Therefore any finitely generated subring of ($b_{i j} e_{11}$), the ideal of A_{n} generated by $b_{i j} e_{11}$, is nilpotent. In particular, if $r_{1}, r_{2}, \ldots, r_{k}$ are elements of $\left(b_{i j}\right)$, the ideal of A generated by $b_{i j}$, then the subring of A_{n} generated by $r_{1} e_{11}, r_{2} e_{11}, \ldots, r_{k} e_{11}$ is nilpotent. Therefore, the subring of A generated by $r_{1}, r_{2}, \ldots, r_{k}$ is nilpotent and $\left(b_{i j}\right)$ is locally nilpotent. Therefore, $b_{i j} \in L(A)$ for every i, j. Hence $\sum b_{i j} e_{i j} \in L(A)_{n}$ and $L\left(A_{n}\right) \subseteq$ $L(A)_{n}$.

If A does not contain an identity element then if we imbed A into a ring A^{\prime} with 1 in the usual way then it is straightforward to see that $L(A)=$ $A \cap L\left(A^{\prime}\right)$ and $L\left(A_{n}\right)=A_{n} \cap L\left(A_{n}^{\prime}\right)$ (this is also true as a consequence of the fact that the Levitzki radical is hereditary on associative rings). Therefore $L\left(A_{n}\right)=A_{n} \cap L\left(A_{n}^{\prime}\right)=A_{n} \cap L\left(A^{\prime}\right)_{n}=\left(A \cap L\left(A^{\prime}\right)\right)_{n}=L(A)_{n}$.

Corollary. If A is an associative ring with involution j and $H=H\left(A_{n}, J_{a}\right)$ is a Jordan matrix ring determined by the canonical involution J_{a}, then $L(H)=$ $H \cap L(A)_{n}$.

Proof. A_{n} is an associative ring with involution J_{a}. Therefore by [3] $L(H)=$ $H \cap L\left(A_{n}\right)=H \cap L(A)_{n}$.

If A is an arbitrary ring and $x_{1}, x_{2}, \ldots, x_{n}$ are elements of A, denote by $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ the subring of A generated by $x_{1}, x_{2}, \ldots, x_{n}$. If $H\left(A_{3}, J_{a}\right)$ is a Jordan matrix ring then denote by $J\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ the Jordan subring of $H\left(A_{3}, J_{a}\right)$ generated by the elements $x_{i}[j k]$ for $i=1,2, \ldots, n$ and $j, k=1,2,3$.

The following technical lemma will be useful in extending the previous result.
Lemma 8. Let A be an alternative ring and let $H\left(A_{3}, J_{a}\right)$ be a Jordan matrix ring. Then if M_{k} is a monomial of $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ of degree k it follows that $M_{k}[i j] \in J\left[x_{1}, \ldots, x_{n}\right]^{k}$ for $i \neq j$.

Proof. We use the fact that if $x, y \in A$ and i, j, l are all different then $2 x[i j] \cdot y[j l]=x y[i l]$ and proceed by induction on k. If $k=1$ the result is certainly true. Suppose true for any $s<k$. Now either $M_{k}=M x_{t}$ or $M_{k}=x_{t} M$ for some x_{t} and a monomial M of degree $k-1$ or $M_{k}=M_{s} M_{t}$ where $s<k$ and $t<k$. If $M_{k}=M x_{t}$ then if i, j, and l are all different, $M_{k}[i j]=$ $M x_{t}[i j]=2 M[i l] \cdot x[l j] \in J^{\cdot k-1} \cdot J=J^{\cdot k}$ by the induction hypothesis. Similarly if $M_{k}=x_{t} M$. Finally if $M_{k}=M_{s} M_{t}$ then $M[i j]=M_{s} M_{t}[i j]=$
$2 M_{s}[i l] \cdot M_{t}[l j]$ for i, l, and j all different. By hypothesis $M_{s} \in J^{* s}$ and $M_{t} \in J^{t}$. Therefore in all cases $M_{k} \in J\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{\cdot k}$.

Theorem 3. If A is a ring with identity element and J a canonical involution on $A_{n}, n \geqq 3$, such that $H=H\left(A_{n}, J_{a}\right)$ is a Jordan ring, then $L\left(H\left(A_{n}, J_{a}\right)\right)=$ $H\left(A_{n}, J_{a}\right) \cap L(A)_{n}$.

Proof. If $n>3$ then A is associative so the result is true by the corollary to Lemma 7. Suppose then that $n=3$ so that A is alternative. It is apparent that $H \cap L(A)_{n} \subseteq L(H)$ as in the proof of Lemma 7. For the converse first note that $L(H)=H \cap B_{n}$ for some j-invariant ideal B of A. Also B is a locally nilpotent ideal of A. For if $x_{1}, x_{2}, \ldots, x_{n}$ are elements of B then $J\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is a finitely generated subring of $L(H)$. Hence

$$
J\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{\cdot k}=0
$$

for some k. Thus, by Lemma 8 , if M_{k} is a monomial of $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ of degree k then $M_{k}=0$. Hence $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is nilpotent of degree $\leqq k$. Therefore B is locally nilpotent and $B \subseteq L(A)$. Hence, we get $L(H) \subseteq H \cap L(A)_{n}$ to complete the proof.

References

1. T. S. Erickson and S. Montgomery, The prime radical in special Jordan rings, Trans. Amer. Math. Soc. 156 (1971), 155-164.
2. N. Jacobson, Structure and representations of Jordan algebras, A.M.S. Colloq. Publ. Vol. 39, Providence, 1968.
3. M. Rich, The Levitzki radical in associative and Jordan rings, J. Algebra 40 (1976), 97-104.
4. - On alternative rings with involution, Comm. Algebra 6 (1978), 1383-1392.

Temple University, Philadelphia, Pennsylvania

[^0]: Received October 8, 1977 and in revised form March 10, 1978. This research was partially supported by a Temple University summer research grant.

